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ABSTRACT 
Pose estimation is an important operation for many robotic tasks 
such as camera calibration and landmark tracking. In  this paper, 
we propose a new algorithm of pose estimation based on the vol- 
ume measurement of tetrahedra composed of feature-point triplets 
extracted from an arba’trmy quadrangular target and the lens- 
center of the vision system. This method has been tested using 
synthetic and real data; it is efficient, accurate, and robust. Its 
speed, in particular, makes it a potential candidate for real-time 
robotic tasks. 

1 Background 
Several researchers have addressed the problem of self-location 
using standard marks. The central idea of the standard mark ap- 
proach is as follows. By observing a single projection of a fixed 
mark, we are able t o  determine the position and orientation of 
a camera with respect t o  a fixed coordinate system. The mark 
itself is designed such that,  when transformed under perspective 
projection, it yields enough geometric information to recover the 
relative target position (sometime referred t o  as interior orienta- 
tion parameters), the fixed target position (exterior orientation 
parameters) and final pose (translation and rotation elements of 
a transformation matrix relating the target frame to the camera 
frame). 

Haralick [1,2] has shown that it is possible t o  determine the 
camera parameters from the observed perspective projection of a 
3-D rectangle of known size and unknown orientation and posi- 
tion. The author provided a broad review of the properties and 
uses of the transformation matrix for several computer vision re- 
construction problems. He also showed how the orientation of 
a planar surface can be recovered by computing the perspective 
projection of vanishing points from a number of parallel lines 
lying on that surface. 

Fischler and Bolles [3] have shown that, knowing the coordi- 
nates of a number of 3-D points and their corresponding image 
points, it is possible t o  compute the position and orientation of 
the camera using a geometric closed-form technique. They also 
described important results on the conditions under which mul- 
tiple solutions exist for various numbers of correspondences be- 
tween image and target, particularly for the Perspective-&Point 
(P4P) and Perspective-3-Point (PSP) problems. They estab- 
lished that there are up t o  four solutions in the case of a three- 
point target. Multiple solutions may exist even in the case of 
four- or five-point targets when these points are unconstrained 
in space. A unique solution exists for matching four points of 
known location which are coplanar and noncollinear. The effect 
of lens distortion was also addressed. 

Eason et al. [4] and Abidi et al. [5] have formulated the six-. 
four-, and three-point solutions t o  this problem. The three-point 
solution can be recovered by direct means. The four-point solu- 
tion is also direct for an unconstrained quadrangle. Both the pose 
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parameters and decomposition of the transformation matrix were 
accomplished simultaneously. No lens distortion was addressed 
analytically; however, during implementation, the ideal pixel-to- 
sensor mapping (linear for the pinhole model) was approximated 
by a cubic for each image coordinate. 

Tsai [6] introduced a two-stage technique aimed a t  efficient 
computation of camera external position and orientation relative 
to an object reference coordinate system as well as the effective 
focal-length, radial lens distortion, and image scanning parame- 
ters of an imaging system. This method has a major advantage 
over many others in that the optimization used t o  recover the 
camera pose is linear if the lens distortion was not taken into ac- 
count. A nonlinear optimization involving only four parameters 
was required t o  address the lens distortion problem. The initial 
guess fed into the nonlinear optimization was given by the linear 
optimization stage. This method also corrects for abberations 
caused by the camera system and produces an equivalent focal- 
length scaled by the distance between adjacent receptor elements. 
(Part  of this work includes, in addition to the Camera Calibration 
problem 71, a Cartesian Robot-Hand calibration a1 orithm [8], 

Yuan [lo] presented a general solution t o  the exterior orienta- 
tion problem. He has shown that this problem can be formulated 
for an arbitrary number of features. He found a necessary con- 
dition for the existence of a solution. He also provided a proof 
of uniqueness for the case of four coplanar points. Two major 
drawbacks of this technique are worth noting. First, the proposed 
solution is iterative. This means that the algorithm may converge 
t o  the “wrong” physical solution if no proper initial guess for the 
initial solution is provided. Second, the unique configuration that 
generates a unique solution (four coplanar points), which is the 
only one attractive in practical applications, is not numerically 
robust under his formulation. 

A more detailed summary of papers that  relate t o  the use 
of standard marks for camera calibration and landmark tracking 
may be found in [ l l ] .  In this paper, wc propose a new algorithm 
for pose estimation based on volume measurement of tetrahe- 
dra composed of target points and the lens center of the vision 
system. Using a pinhole model (lens distortion taken into ac- 
count separately) and a quadrangular target, for which only the 
six distance measurements between all pairs of feature points are 
known, the complete pose is determined using an all-geometric 
closed-form solution for the six parameters of the pose (three 
translation components and three rotation components.) A dia- 
gram of the complete pose estimation procedure is highlighted in 
Fig. 1. 

and a Ro L ot Eye-to-Hand calibration algorithm [9]5 

2 Recovery of Object Pose 

2.1 Interior Orientation Parameters 
In this section, we recover the position of the target relative t o  
the camera coordinate system. This is often referred to as interior 
orientation parameters. 

In a pinhole camera model, the image coordinates of a point, 
(z,  y), are related to its camera coordinates, (Xc ,Yc ,  Z‘), by: 
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Step 1: 
Camera Focal-Length (Recovered) 

Step 2: 
Interior Orientation (Recovered) 

T11 TIZ TIS T14 Step 3: 
Given Relative Position of Pi 
In A Fixed Coordinate System, 
Exterior Orientation (Recovered) 

Step 4: 
Final Pose (Recovered) 

/ 
Figure 1: Various steps wing target dimensions and target image 
to rewver the camem focal-length, interior orientation pamme- 
ters, ezterior orientation pammeters, and final pose. Figure 2: nlwtmtion of the tetmhedmn volume measurement 

method for pose estimation. 

In practice, this model cannot be realized. Lens distortion of- 
ten causes image deformation during the imagin process. There 
are many techniques t o  correct this problem k2,13,14]. This 
correction process can be done separately from the pose estima- 
tion problem. In addition, this process is needed only once for a 
given vision system. Brief reviews of thew methods will be given 
in Section 3. 

The transformation from world coordinate system t o  camera 
coordinate system in a homogeneous space can be represented by 
a 4 x 4 transformation matrix T: 

This matrix, T, can be decomposed into a translation and three 
rotations: 

T = R,RpR+D. 

The translation, D, is defined by a vector (-XO, -YO, -ZO! 1)’ 
relating the origin of the world coordinate system and the ongm 
of the camera coordinate system. The rotations, R,, Rp, and 4, 
are defined by their Euler angles a, p, and 7. (The prime denotes 
vector or matrix transposition Hence the pose of the camera 

by a pose vector: P = (XO, Yo, ZO, a, P,  7)’. 
The pose estimation problem involves the computation of the 

elements of the vector P, given a number of world points and their 
corresponding image points. Here, we present a new analytic so- 
lution of a lanar quadrangular target baaed on the measurement 
of t e t r ahega  volumes. The viewing geometry of this method is 
shown in Fig. 2-a. 

re, the points of the quadrangular 
target are labeled PI, Pz, F 3, and 9. The vector emanating 
from the origin of the world coordinate system to  the point Pi is 
labeled Pi. The Euclidean distance between Pi and Pj is denoted 
by s;,. The vector (Pi - Pj)  is denoted by Pij, for i , j  = 1,?,3, 
and 4, i # j. For this quadrangle, the areas of the following 

with respect t o  the world coor ;1 ‘nate system can be represented 

With reference to  this fi 

triangles A’s can be computed as follows: 

A1 = Area A(P1, P2, P3) = (Pi2 x P13(/2 
A2 = Area A(P1, Pz, P4) = JPlz x Pi4(/2 
A3 = Area A(P1, P3, P4) = IPi3 X pi41/2 
A4 = Area A(P2, P3, P4) = JP23 x p241/2. 

Using Heron’s formula [15], these areas can be computed using 
the following relationships also. 

A1 = 
A2 = 
A3 = [(s:, + 
A4 = [(si3 + si4 + S Z ~ ) ~  - 2(s:, + sj4 + ~ $ ) ] l / ~ / 4 .  

[(& + 4 3  + s & ) ~  - 2(s& + 4 3  + s:3)]1/2/4 
[(& + ~ : 4  + ~ i 4 ) ~  - 2(s& + s f4  + 

+ s Z ~ ) ~  - 2(& + 4 4  + &)]1/2/4 

The volume of the following tetrahedra, r’s, can be computed as 
follows: 

Vl = Volume r(c,p1, p2, p3) = hA$ 
V2 = Volume r(C, p1, P2, P4) = hA2/3 
V3 = Volume r(C, Pl, P3, P4) = hA3/3 
V4 = Volume r(C, P2, P3, P4) = liA4/3. 

The factor h is the perpendicular distance from the lens cen- 
ter C t o  the plane containing the quadrangle. It is worth noting 
that  the area measurements required for this experiment are per- 
formed only once for a given target. 

Figure 2-b shows the vector notations used in this method 
after translation of the camera system to  the center of projection 
C. With reference t o  this figure, we denote the vector emanating 
from the center of projection C t o  Qf by Q!. The vector joining 
C t o  P,! is similarly denoted by Pf. The unit vector collinear t o  
Q .  f = (z i ,  yi, - f)’ pointing to  the target is denoted by: 

ui = ( w ~ ,  uiY, td = - Q ~ / I I Q ~ I I  = (--zi7 -31;’ f)’/Fi , 
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where, 

Hence, the vector Pf can be expressed as: 

Pf = diu;, 

where d; is the distance between the center of projection C t o  
the point P f ,  for i = 1,2 ,3 ,  and 4. At this point, note that the 
problem reduces t o  uniquely determining the focal-length f and 
the four distances d l ,  d2 ,  d3,  and d4.  

To establish this method, we need t o  recall some basic prop- 
erties of the base area and volume measurements for a tetra- 
hedron. The scalar triple product, a .  (b x c),  of three vectors 
a = (a,,ay,u,)', b = (b,, by, b,)', and c = ( C , , C ~ , C , ) ~  is given by 

a. (b x c) = a,(byc, - b,cy) + ay(b,c, - b,c,) + a,(b,cy - bye,). 

r(C, Pf, P,f, P i )  is computed as 
Using this scalar triple product, the volume of tetrahedron 

VI = Alh/3  = IP{. (Pi X P3f)1/6 
= didzd31ui . ( ~ 2  x u3)1/6 . 

Applying the preceding steps t o  the three remaining tetrahedra, 
substituting for U; = (-z;, -y;, f ) ' /F i ,  and solving for h in each 
equation yields: 

f B1 
2FiFzF3 Ai 

h = did2d3-- 

f B4 h = d2d3d4-- 
2 F2 F3 F4 A4 

where, 

The B,'s are equal t o  twice the area of the triangle formed by 
three of the four image points corresponding to the subscripts of 
the coordinates. Using the four equations involving h,  we may 
express d2, d3, and d4 as a function of d l :  

(Note the redundancy in these equations; this will be used later 
to obtain a more accurate solution.) For a complete solution of 
this system, we need t o  solve for both f and d l .  The remaining 
parameters, dz,  d3, and d4 are readily computed using the first 
three of the six previous equations. In order to solve for J ,  we 

need t o  relate it t o  two (or more) non-redundant measurements 
from the target. The two additional measurements can be the 
length of two line segments sharing a point which are part of the 
quadrangular target. These measurements can be selected from 
the following 12-element set: 

s = { ( ~ 1 ~ 2 ~ ~ 1 ~ 3 ~ ~ ( ~ 1 ~ 2 r ~ 1 ~ 4 ~ ~ ~ ~ 1 ~ 3 ~ ~ ~ ~ 4 ) ~ ( ~ 2 ~ ~ ~ ~ 2 ~ 3 ) ~  

~ P 2 ~ 1 ~ p 2 ~ 4 ~ ~ ~ ~ 2 ~ 3 ~ ~ 2 ~ 4 ) ~ ~ ~ ~ ~ 1 ~ ~ 3 ~ 2 ) ~ ( ~ 3 ~ 1 ~ ~ 3 ~ 4 ) ~  

(P3P2,P3P4),(P4P1,P4p2),(P4P1,P4P3),(P4P2,P4P3)}. 

Hence, there are 12 expressions from which we can compute the 
focal-length, f .  They all give the same solution because of the 
redundancy shown earlier in computing h. This fact is exploited 
in reducing the effect of statistical random errors by averaging 
the values obtained for f from each expression or by selecting 
the median of the 12 possible solutions see illustration in Sec- 
tion 4) .  Using the pair of line segments (Lipj, Pip,), ( 2 ,  j ,  and k 
all different), we compute the squared distances: 

s:, = (x; - xy + (5' - y,')2 + (z; - zy 
s;k = (xi - x!)' + (Y,f - Xf)' + (z,f - Zf)' 

The parametric representation of the line joining C t o  P;' in 
terms o f t  is 

CPt : Y,' = t = - ( y , / F ; )  t for i = 1,2 ,3 ,  and 4 . - {  Zf = U;= t = +( f / F , )  t 

Xi = U;, t = - ( z i / F ; )  t 

For t = d,, the point on the line coincides with the target point 
P;'. Substituting in s$ and s : ~ ,  and substituting d j  and dk by 
their expressions as a function of d, ,  we obtain the following two 
equations: 

s;, 2 2  = d;[(xi - C i 3 ~ j ) 2  + (y; - C i j ~ , ) ~  + f2(1 - C..) ' ] /FZ 
'3 z 

s:k = d;[(xj  - Cik2k)2 + ( y ;  - CikYk) '  + f2(1 - C;k)2]/F:. 
(Note that C;, = l/Cji and s i j  = sj;.) Dividing the first equation 
by the second, denoting H: by 

~ , 2 ,  = (2; - Cijzj)' + (Y; - ~ t j ~ , ) ' ,  

and solving for J yield 

If the optical axis of the vision system is normal to the target 
plane, the target and its image are similar, z.e., 

_ -  7-12 > - 1 ' 1 4 - ~ - > - ~  f - - - _ _ _  
s12 s13 514  523 5 2 4  s34 zc - f ' 

_ - _ -  Bi B2 B. - 3 
Ai A2 A3 A4 '  
2; = z; = z,c = z,. = 2'. 

_ _ _  

(The parameter T,? denotes the distance between Q,' and QT.) 
Under these conditions C,, = 1 and T:, = H:, which make both 
numerator and denominator of the expression giving f vanish. 
Only the ratio f / ( f  - 2') can be computed. Hence, to obtain a 
unique solution to the pose problem when the target plane and 
image plane are parallel, f must be given. 

If the optical axis of the vision system is not normal to the 
target plane, the focal-length can be recovered and the interior 
orientation problem can be recovered as follows. Substituting the 
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value o f f  in each of the expressions giving the si+ finally yields 
6 equivalent expressions for 4: 

Re ardless of the shape of the quadrangle PlP2P3P4, all terms 

coincident, which contradicts our first assumption. If the target 
measurements and image data  are erropfree, only one expression 
for dl is necessary. 

Substituting back the values of C;j, f, Fi, Hij and ui using 
the two equations P! = d+ and Pi' = Pi' + (0, 0, f):, Pf can be 
expressed solely as afunction of sjj, t;, and y;, for 1 , ~  = 1,2,3, 
and 4, for i, j, and k all Werent.  

[Hjj+f2(1-C;j)2] Q are nonzero unless two of the target points are 

where, 

It is worth noting that the Po's do not depend explicitly on the 
focal-length of the vision system. This means that we could have 
solved for all of them without knowing or determining the focal- 
length of the camera. As mentioned earlier, there are six different 
versions for each PI; for brevity, we listed only one of them. For 
the experimental .&s presented in Section 4, all six solutions 
are taken into consideration. 

If the target plane is parallel to the image plane, then 

I 

where, 
Rjj = [H$ + f2(1 - C;j)2]1/2 . 

For an ideal system based on the pinhole model, of infinite 
resolution, no lens-distortion, and error-free image processing, 
the six expressions of PI yield the same numerical answer. In 
practice, however, all these factors contribute to some degree in 
the disparity of the numerical solution. The arithmetic average 
or median of these values constitute the "best" approximation 
for Pf. This completes the interior orientation parameters esti- 
mation problem. 

2.2 
At this step, we have recovered the relative position of the target 
with respect t o  the camera coordinate system. In some circum- 
stances, it is desirable to  describe the position of the camera with 
respect t o  a fixed coordinate system using the transformation T 
explicitly. A detailed development of this transformation may 
be found in [4,11 Once the exterior orientation parameters are 
determined, the okjective is t o  the pose vector of the cam- 
era: P = (&, Yo, 20, U, p, 7)' naing the computed Tij's. A de- 
tailed development of this transformation may be found in [4,11]. 

Exterior Orientation and Final Pose 

3 Lens Distortion Correction 
In practice, almost every lens used for im acquisition con- 
tains some form and degree of distortion. x e  im e deforma- 
tion caused by this lens distortion &grades the pso rmance  of 
the pose estimation algorithm developed in this paper because it 
depends heavily on the exact location of image data. Hence, be- 
fore implementing the pose estimation algorithm, the deformed 
image has to  be transformed into ideal system using some image 
correction processes. These ptocesres can be done using least- 
squares fitting methods with a set of polynomial functions [13,14] 
or using Bezier patches [12]. The coefficients of these polpomi- 
als or the control vertices for the Bezier patches can be deter- 
mined off-line once for a given vision system. In our Robotic 
Laboratory, a method t o  map lens-distorted image coordinates 
in pixels to the ideal image coordinates has been developed and 
implemented for various robotic t a k s .  The pixel-to-sensor co- 
ordinates conversion is approximated by a set of polynomials of 
third order: 

z = + a l I q  a2J + ad2 + a4J2 + a5IJ + 
+ b l I  .+ hJ + W2 + 4J2 + W J  + 

a 6 1 ~  + a 7 ~ ~  + a8P.J + O ~ I J ~  

b613 + b7J3 + ba12J + bJJ2. 
y = 

where (I, J )  are the pixel coordinates of a point. The a; and b; are 
d e t e m e d  once for the camera through a least-squares fitting 
technique using a number of reference points. The values of a; 
and b; are listed below for the camera used in this experiment. 

Qi I bi U 

This conversion will be used through out this paper to carry out 
the experiments using real data. 

4 Experimental Results 
In this section, we present experimental results using real data 
to  illustrate the four-step pose estimation algorithm. (Several 
experiments using synthetic data  were used to evaluate the per- 
formance of this algorithm; the resulting interior and exterior 
parameters as well as pose were all M expected.) 

This experiment was conducted using a T3 - 726 Cincinnati 
Milacron industrial robot having an accuracy of 3 % and a re- 
peatability of 0.1 mm. The vision system consists of a Fairchild 
3000 CCD camera (f = 13 mm) and a Perceptics 9200 image 
processor. 



i Algorithm 

d l  443.6 
dz 431.5 
dz 443.8 
d4 I] 462.4 I 468.2 1 5.8 

Robot Motion Disparity 
443.4 0.2 
431.3 0.2 
447.4 3.6 

These results show tentatively that the pose estimation al- 
gorithm performs well. Recall, that  the method is all plug-in, 
hence its uniqueness is guaranteed. Since the robot itself has 
good repeatibility but not as good of an accuracy, more precise 
evaluation of these results is not possible. 

5 Performance Evaluation 

5.1 Error Analysis 
As to the sensitivity of the this method, we have analytically 
studied and experimentally tested the relative variation of the 
error of these results as a function of errors in the 14 inputs 
(length of six line-segments on the target and coordinates of the 
four image points). Some samples of the experiments showing 
the relative errors of d l ,  d z ,  d3, and dq as a function of the 
errors of 5-12, 21, and y1 are given in Fig. 3; these were per- 
formed for the two poses, PI = (135,240,500,35”, 165’, 20’)’ and 
P 2  = (135,240,500,35”, 180”, 20’)’. The four-point targets are 
arbitrary chosen in these experiments. These graphs show the so- 
lution is well-behaved. These operations were performed for all 
inputs and all outputs using a large number of poses, all resulting 
in the same conclusions. 

5.2 

In the presence of noise due t o  quantization and other errors, 
although the averaging process of the new algorithm yields fairly 
good results, these may differ, t o  some extent, from the opti- 
mum. Exploiting the redundancy in computing dl ,  an optimiza- 
tion method is used t o  further improve these results. For this 
algorithm, we estimated the errors in the computed pose param- 
eters in terms of errors in the image coordinates. Noise in the 
image coordinates is assumed t o  have a zero mean and known 
variance with the range corresponding t o  the width of the pixels. 
For a Fairchild’s 3000 CCD camera, which is used as an imaging 
sensor in our experiment, the width of a pixel of a 256 x 256 im- 
age is approximately equal t o  0.05 mm. We model the noise with 
a uniformly-distributed random number. The image coordinates 
after the noise is added are 

Performance Improvement of the Algorithm 

2, = 4 + q E  , 
y; = y * * + q ( , i = l )  ..., 4 ,  

where q is the level of noise in pixels and a zero-mean 
uniformly-distributed noise in the range of [-0.5, $0.5 . We 
demonstrate this optimization process using simulation d a t a  to 
see how it can improve the results of the solution for the pose. 
The Polak-Ribiere’s Conjugate-Gradient algorithm [16] is used 
as an optimization algorithm. The computed image coordinates 
are used as initial guesses in the optimization process. 

Simulation Using Synthetic Datu: The location of the targets 
used in these experiments are given below. 

The effects of increasing the noise level on the solution for the 
pose are presented in Fig. 4.  As we can see from these six graphs, 
the values of the standard deviations, STD’s, increase as the 
noise level increases. However, with the optimization process, the 
values of STD’s can be reduced t o  approximately half of those 
obtained without optimization. From these graphs, we can see 
also that even with noise level of 2.0 pixels, the errors a,re still 
tolerable. 

To study the sensitivity of the algorithm to the variations 
of the target size, we used Target f as the original target; then 
through varying the four sides of Target f by a size factor from 
1 t o  2 in increment of 0.1, we computed the STD in % of each of 
the parameters of the pose with noise level of 0.5 and 1.0 pixels. 
These results are given in Fig. 5 .  For the case where the algo- 
rithm is run without optimization (dashed curves), the variations 
of the target size have a significant effect on the accuracy of the 
algorithm; the errors in the pose increase drastically as the target 
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Figure 3: Sensitivity of the d's due to the perturbation errors in 
512, 21, and y1. Pose used in (a), (c), and (d) is P I .  Pose used 
in (b), (d), and ( f )  is P2. 

Figure 4: Improvement of the algorithm performance with op- 
timization method. Dashed curves are the results without op- 
timization. Solid curves ape Unth optimization. Pose used is 
P = (497,308,1000,126', 165", -143')'. 

m 
IS 

'- 

(4 
1.0- , 

Figure 5: Impmement  of the algorithm performance with o p  
timization method. Noise levels used are 0.5 and 1.0 pixels 
as indicated in the dashed-pattern of the curves. Pose used is 
P = (497,308,1600,126", 165', -143')'. 
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size decreases. This is not the case for the results obtained with 
optimization process (solid curves). Hence, the optimization pro- 
cess not only improves the accuracy of the algorithm, but also 
reduces the sensitivity of the algorithm t o  the variations of the 
target size. 

Experiments Using Real Data: Here, we examine the dis- 
crepancy of the results by measuring their means and standard 
deviations for each pose of the camera using a target consisting 
of 10 black dots on a white background. Using a set of coor- 
dinates of combinations of four noncollinear centroid points and 
their corresponding image coordinates, the pose can be solved 
using the new algorithm. This is performed for a set of 25 target 
quadruples. In this experiment, the camera was placed at sev- 
eral poses. At each pose, a 256 x 256 image of the target was 
acquired, thresholded, and the coordinates of the centroid of the 
dots in pixels were obtained. These pixel coordinates are then 
converted t o  the camera coordinate system. 

The means and standard deviations of the results with two 
poses were given below. 

PZ ll 

1 Unopt imired  1 Optzmzzed 
M e a n  I STD I M e a n  I STD 

-~ I 

YO (mm) 331.9 34.8 304.2 10.8 
ZO (mm) 1505.3 10.5 1505.4 3.5 

yo &mj j j  323.4 j 12.7 j 308.0 j 8.6 /I P, I Zn fmmJ 11 1409.2 1 4.5 1 1410.0 1 2.8 

c* (degree) 
(degree) 

7 (degree) 

\ ,  II ~ I a - f d e g r e e )  i i  129.7 i 1.4 i 126.9 i 1.5 H 

~ ~ 

130.4 5.3 125.5 1.3 
165.3 1.1 165 5 0.5 

-139.5 5.2 -144.2 1.3 

. ~ , ,, 
p (degree) 11 164.8 I 0.5 I 164.9 I 0.3 
Y f d e a r e e )  11 -140.2 1 1.4 1 -142.9 1 1.5 

I I I 

I X O  l m m )  1 1  486.6 1 29.3 I 504.9 I 10.2 11 

6 Summary and Conclusions 
In this paper, we described a new technique for tracking a 
known-size target. The  resulting algorithm has unique features 
compared t o  previously published other algorithms, particularly 
those that were designed for tracking purposes. The sequential 
recovery of the equivalent focal-length, interior orientation pa- 
rameters, exterior orientation parameters, and final pose is a very 
attractive feature for many operations. For a number of applica- 
tions (including the one for which this algorithm was originally 
conceived), only the interior orientation parameters are necessary 
because the camera is rigidly fixed t o  the robot end-effector, with 
respect to which all motions required by manipulation tasks are 
performed. Hence, the exterior orientation parameters and final 
pose need to be computed every time. The algorithm is being 
implemented as a vision-based tracking system on a mobile plat- 
form carrying a six-degree-of-freedom robotic arm to perform 
manipulation functions a t  various stations of a manufacturing 
floor. The sensor used in this system is an off-the-shelf camera 
equipped with an auto-iris and auto-focus mechanisms, in addi- 
tion t o  a variable zoom system servoed to keep the ima;e target 
within preset dimensions in order t o  increase the efficiency of the 
tracking algorithm. Under these circumstances, the recovery of 
the effective focal-length of the camera is necessary each time 
the vision system acquires an image in its tracking sequence. Us- 
ing synthetic and real data, we have shown tha’ the method is 
accurate. 
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