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Abstract— We investigate the problem of estimating the state
of an object during manipulation. Contact sensors provide
valuable information about the object state during actions
which involve persistent contact, e.g. pushing. However, contact
sensing is very discriminative by nature, and therefore the set
of object states which contact a sensor constitutes a lower-
dimensional manifold in the state space of the object. This
causes stochastic state estimation methods such as particle
filters to perform poorly when contact sensors are used. We
propose a new algorithm, the manifold particle filter, which
uses dual particles directly sampled from the contact manifold
to avoid this problem. The algorithm adapts to the probability
of contact by dynamically changing the number of dual particles
sampled from the manifold. We compare our algorithm to
the particle filter through extensive experiments and we show
that our algorithm is both faster and better at estimating the
state. Our algorithm’s performance improves with increasing
sensor accuracy and the filter’s update rate. We implement the
algorithm on a real robot using a force/torque sensor and strain
gauges to track the pose of a pushed object.

I. INTRODUCTION

In this paper, we study contact manipulation, where a

robot makes persistent contact with the object it is manipu-

lating. Imagine reaching into a high cabinet to feel around

for the salt shaker, or a robot push-grasping an object into

its hand (Fig. 1-Bottom).

The persistence of contact makes contact sensors, like

strain gauges, force-torque sensors, and tactile pads, a rich

source of information for object pose estimation during

manipulation.

Prior research on pose estimation for contact manipula-

tion has focused on using simple analytical motion models

derived from the physics of pushing to build analytical state

estimators to track the pose of the object from contact

positions on the hand [1].

Unfortunately, there is much uncertainty both in the mo-

tion and observation models in the real world: physical

parameters, like friction, mass and pressure distributions are

hard to measure and variable, and sensors are noisy. This

naturally leads to probabilistic methods, like particle filters,

for object pose estimation [2], with stochastic motion and

observation models.

However, we observed that conventional particle filters [2,

3] suffer from a startling problem in contact manipulation:

they systematically perform worse as sensor resolution or

sensor update rate increases.

The problem arises because contact sensing is highly

discriminative between contact and no-contact states: if a

particle (i.e. a hypothesized object pose) is infinitesimally

close to the robot hand but not touching it, then contact
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Fig. 1. Top: The contact states constitute a lower-dimensional manifold
in the object’s state space. Bottom: Example manipulation of a box with
persistent contact.

sensors will not discriminate between it and another particle

which is much farther away from the hand. Topologically,

the observation space of contact sensors constitute a lower

dimensional manifold in the state space of the pose of the

object (Fig. 1-Top). In practice, particles sampled from the

state space during contact will have very low probability of

falling into the observation space which will result in particle

deprivation in the vicinity of the correct state. This results

in particle starvation. Artificially introducing noise into the

observation model sidesteps this problem but comes at the

expense of losing precious information.

We address this problem by deriving the Manifold Particle

Filter (MPF) for state estimation on multiple manifolds of

possibly different dimensions.

The gist of the algorithm is quite simple. We factorize

belief into the marginal probability of being on a manifold

and the probability of the current state conditioned on that

manifold. We first sample a manifold. Then, we sample a

particle from that manifold.

Our factorization has two key consequences.

First, we can now use a different sampling technique for

each manifold. This allows us to avoid particle starvation

on the contact manifold by using the dual proposal distri-

bution [4], which samples from the observation model and

computes importance weights using the motion model.
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Second, the marginal adaptively and automatically adjusts

the number of particles on each manifold. So, when there

is no contact, most of the particles are concentrated in the

ambient space. As soon as contact occurs, the marginal shifts

the focus onto the contact manifold.

Computing the belief requires the marginal which requires

the current belief. We subvert this race condition by exploit-

ing the discriminative nature of the observation model to

approximate the marginal.

The MPF is not only theoretically sound but also practi-

cally useful. We demonstrate:

Better state estimation. Through extensive experiments, we

show that the MPF’s state estimate becomes more accurate

as we increase the resolution of the contact sensors. On

the contrary, the regular particle filter becomes less accurate

because higher-resolution sensors further shrink the number

of particles that agree with an observation.

Faster performance. The MPF requires fewer particles and

is orders of magnitude faster than the conventional particle

filter. The increase in speed is critical as it enables state

estimation to occur in real-time.

Real robot implementation. Finally, we contribute an im-

plementation of our algorithm on a real robot, HERB [5],

which uses a force-torque sensor and strain gauges to detect

contact on different parts of its hand and estimates the pose

of a pushed object.

We also discuss several limitations of our work. Key

among them is scope. The MPF is designed for persistent

contact, where contact evolves on manifolds. It is unlikely to

outperform a conventional PF when there is very intermittent

contact, like tracking a billiard ball bouncing on a table. The

MPF is also designed to exploit a discriminative observation

model. It is unlikely to outperform a non-adaptive dual par-

ticle filter when the observation model is not discriminative,

like a mobile robot outfitted with very accurate LIDAR.

II. RELATED WORK

We borrow the concept of dual particles from mobile robot

localization literature [4]. Particle filters in this domain suffer

from a similar particle deprivation problem if a robot uses

very high-accuracy depth rangefinders or cameras. These

systems, however, use a mixture proposal distribution with a

fixed ratio of dual particles to normal particles. This is possi-

ble because vision and depth sensors provide high-accuracy

readings independent of the actual state. Conversely, contact

sensors provide accurate readings only when the object is

in contact with the robot hand. Therefore, normal particles

are necessary for periods of no contact and dual particles

are ideal during contact. Our algorithm achieves this by

varying the number of dual particles according to the contact

probability.

Our focus is on state estimation during contact manipula-

tion and particularly during pushing manipulation. Pushing

enables robots to perform a wide variety of tasks that are not

possible through pick-and-place manipulation: pushing can

move objects that are too large or heavy to be grasped [6],

is effective at manipulating objects under uncertainty [7, 8],

x = (x,y,θ)

(a) State

u

Φx = f (x,u).

(b) Action (c) Observation

Fig. 2. Examples illustrating the (a) state, (b) action, and (c) observation
for the state estimation for contact manipulation problem.

and can be used as pre-grasp manipulation to bring objects

to configurations where they can be easily grasped [9, 10].

Additionally, pushing has been used to simultaneously move

multiple objects [11] and singulate an object from a pile [12,

13]. Since pushing offers such a dramatic expansion of

manipulation skills, there have been extensive research on

the fundamental mechanics of pushing [14–17] and on the

planning of pushing operations [17, 18]. Recently, there has

been interest in generating push trajectories using sampling

based planners [19, 20] and learning methods [21].

Most of the work described above employs pushing as an

open-loop operation. Conversely, closed-loop actions that use

contact sensors for feedback allows the robot to adapt in real-

time and achieve success in more scenarios. One approach

of using sensor feedback is to create a feedback controller

that directly maps sensor readings to actions [22–24]. These

controllers have been shown to be effective for specific tasks,

such as locally refining the quality of a grasp [23], but do

not generalize to general contact manipulation. Our method

explicitly estimates the state of the object, which can then

be used by a higher-level planning algorithm to achieve an

arbitrary goal.

Recent work uses probabilistic methods for the tactile

localization of immovable objects [25–27]. These systems

produce a number of distinct touch actions that provide

information about the object pose. In contrast, our system

uses the persistent contact between the hand and the object

during manipulation.

III. CONVENTIONAL PARTICLE FILTER

In this section, we formalize the problem of state estima-

tion during contact manipulation. We introduce the particle

filter as a potential solution and provide insight into why it

degenerates with contact sensors.

A. Pose Estimation for Contact Manipulation

Let x be the state of a dynamical system which evolves

under actions u and provides observations z. The state

estimation problem addresses the computation of the belief

which is a probability distribution over the state space

bel(xt) = p(xt|z1:t, u1:t) (1)

given the past prior actions u1:t and observations z1:t.

In our problem, the state is the pose x ∈ SE(2) of the

manipulated object (Fig. 2(a)). Actions are motions of the



hand, given by the velocity twist u ∈ se(2). During contact,

the object moves with a velocity fΦ(x, u) where the function

f encodes the physics of the object motion in response

to pushing actions (Fig. 2(b)). The parameter Φ includes

environmental properties such as the coefficient of friction

between the object and the underlying surface, the coefficient

of friction between the robot hand and the object, the mass

distribution of the object, and the pressure distribution of the

object.

Contact sensors provide observations z about where the

object touches the hand during manipulation. In Fig. 2(c)

we illustrate an example distribution of nine contact sensors

(shown as bold line segments) on the hand. We assume

that the sensors are not only noisy but also potentially have

low spatial resolution, much like contact sensors in real life.

Hence, we assume that a sensor cannot discriminate between

different contact points in its boundary.

B. Bayes Filter

The Bayes filter is the most general algorithm of filtering

a belief state given a sequence of actions and observations.

The Bayes filter update works recursively:

bel(xt) = η p(zt|xt, ut)

∫
p(xt|xt−1, ut)bel(xt−1)dxt−1

(2)

where η is a normalization factor. p(zt|xt, ut) is called the

observation model and denotes the probability of making

a certain observation given the current state and action.

p(xt|xt−1, ut) is called the motion model and denotes the

probability of reaching state xt from state xt−1 with action

ut. The Bayes filter update Eq. (2) can be derived from

the definition of belief Eq. (1) by applying the Bayes’ rule

and assuming that the state is complete, i.e. it satisfies

the Markov assumption xt ⊥ (u1:t−1, z1:t−1) |xt−1. The

Markov assumption states that xt is independent of all

previous actions and observations given xt−1.

In our case the observation model p(zt|xt, ut) strongly

discriminates between states which result in contact and no

contact. This is true by definition for contact sensors such as

tactile arrays, force/torque sensors, and strain gauges.

We build the motion model by computing fΦ using a

quasi-static simulation of pushing [11, 22]. Instead of assum-

ing exact values for the parameters Φ, we assume that they

are drawn from a known prior distribution and are stationary.

By doing so, we can predict the effect of our actions on the

state using the stochastic motion model p(xt|xt−1, ut).
Since the quasi-static analysis does not allow accelera-

tions, our formulation of the state x as the pose—and not the

velocity or acceleration—of the object satisfies the Markov

assumption.

The Bayes filter is recursive and, therefore, requires an

initial belief bel(x0). In manipulation, we can initialize the

belief using task-specific knowledge or using other sensors,

e.g. cameras.

There are a variety of techniques for representing the

belief state and implementing the Bayes filter. In our case,

the motion and observation models are highly non-linear

Algorithm 1 Particle Filter

Input: Xt−1, previous particles

Output: Xt, particles sampled from bel(xt)
1: Xt ← ∅
2: for all x

[i]
t−1 ∈ Xt−1 do

3: Sample x
[i]
t ∼ p(xt|x

[i]
t−1, ut)

4: w
[i]
t ← p(zt|x

[i]
t , ut)

5: Xt ← {x
[i]
t } ∪Xt

6: Xt ← Resample(Xt)

and lack analytic derivatives. Even worse, the belief state

is non-Gaussian and may be multi-modal. For example, the

belief becomes bimodal in the common case where the finger

sweeps through the center of the prior distribution without

contacting the object. Together, these challenges preclude us

from using the Kalman filter or its extended and unscented

variants. Instead, we can track the belief state using a particle

filter.

C. Particle Filter

The particle filter [3] is a non-parametric formulation

of the Bayes filter that represents the belief state with a

discrete set of samples. The samples Xt = {x
[i]
t }

n
i=1 are

called particles and are distributed according to the belief

state x
[i]
t ∼ bel(xt). When the particle filter receives a new

action and observation, it recursively constructs a new set

of particles Xt from the previous set of particles Xt−1 by

applying the motion and observation models.

Algorithm 1 shows an overview of the particle filter. The

particle filter samples x
[i]
t from the proposal distribution

x
[i]
t ∼

∫
p(xt|xt−1, ut)bel(xt−1)dxt−1 (line 3) by forward-

simulating Xt−1 to Xt using the motion model. Next,

the algorithm uses the observation model to compute an

importance weight w
[i]
t = η p(zt|xt, ut) for each forward-

simulated particle (line 4). The weighting step assigns higher

probability to particles that are consistent with our current

observation; i.e. agree with our contact sensors. Finally, the

algorithm resamples the set of weighted particles (line 6) to

distribute Xt according to the desired posterior bel(xt).

IV. DEGENERACY OF THE PROPOSAL DISTRIBUTION

The particle filter described above is agnostic to the

observation model and has been applied to a variety of

application domains [2, 28]. However, contact sensors are

unique because they operate in two discrete states: contact

and no contact. During periods of contact, observations

are discriminative and the states for which p(zt|xt, ut) is

peaked form a lower-dimensional manifold around the true

state (Fig. 1). Conversely, during periods of no contact,

p(zt|xt, ut) is nearly uniform and provides little useful

information. This property makes contact sensors fundamen-

tally different than the cameras and depth sensors—sensors

with relatively smooth observation models—typically used

in mobile robot localization [28].
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Fig. 3. (a) Illustration of particle deprivation. (b) The swept volume
of contact sensors shrinks as the update rate or resolution of the sensors
increases.

In practice, particle filters update in discrete steps. The

hand moves a non-zero distance during each step and the

swept volume of the contact sensor gains full dimensionality.

As such, particle filters do not completely fail at estimating

the state: instead, they require a large number of particles to

increase the probability that some fall into the small swept

volume of each sensor. We illustrate this in Fig. 3(a) for

a hand pushing a cloud of 500 particles that represent the

center of a 7 cm bottle. Of the 500 particles (light blue),

only 17 (dark orange) contact the hand during a 1 cm

step. This causes particle deprivation around the true state

during periods of contact: the proposal distribution poorly

approximates the target distribution and many particles are

wasted in low probability regions of the state space.

Surprisingly, this causes the particle filter to perform worse

as sensor resolution or the update rate increases. We illus-

trate the reason in Fig. 3(b). As sensor resolution increases,

the swept volume of each sensor becomes narrower. As

the update rate increases, the distance traveled by the hand

between updates decreases, and the swept volume becomes

shorter. As a result, the particle filter requires a large number

of particles to successfully track the state.

V. MANIFOLD PARTICLE FILTER

We have shown that the conventional particle filter is

poorly suited for contact sensors because the state evolves on

a lower-dimensional manifold. In this section, we derive the

MPF to solve this problem and show how it can be applied

to contact manipulation.

A. Formulation

Suppose we divide a state space S into m disjoint com-

ponents M = {Mi}
m
1 , where M1, ...,Mm−1 are manifolds

and Mm = S −∪m−1
i=1 Mi is the remaining free space. Then

we can write the belief in this space as:

bel(xt) =

m∑
i

bel(xt|Mi) Pr(xt ∈Mi) (3)

Our algorithm approximates this belief using particles. For

each particle we first choose which manifold to sample from

Algorithm 2 Manifold Particle Filter

Input: Xt−1, previous particles

Output: Xt, particles sampled from bel(xt)
1: Xt ← ∅
2: for i = 1, . . . , |Xt−1| do

3: Sample Mi ∼ Pr(xt ∈Mi)
4: if Mi 6= Mm then

5: Sample x
[i]
t ∼

p(zt|xt,ut)
π(zt|ut)

6: w
[i]
t = π(zt|ut) · EstimateDensity(Xt−1, x

[i]
t )

7: else

8: x
[i]
t , w

[i]
t ← ConventionalSampling(Xt−1, ut, zt)

9: end if

10: Xt ← {x
[i]
t } ∪Xt

11: Xt ← Resample(Xt)

according to Pr(xt ∈ Mi). Then, we sample the particle

from that manifold according to bel(xt|Mi).
Ideally, we would compute Pr(xt ∈Mi) as

Pr(xt ∈Mi) =

∫
Mi

bel(xt) dxt. (4)

Unfortunately, computing this integral requires knowing

bel(xt), which is precisely the distribution that we are trying

to estimate.

Instead, we approximate Pr(xt ∈Mi). Using the previous

belief state to compute
∫
Mi

bel(xt−1) dxt−1 might seem like

a good approximation, but in fact it does not work. To see

why, consider an update step at which the filter receives an

observation which suggests the state to be on a manifold for

the first time. If we use the previous belief, it will indicate

a low probability for the state to be on the manifold and

we will not pick that manifold for sampling. Even if we

keep receiving observations that suggest the manifold, we

will never be able to place particles on it since we will always

be using the belief from the previous step.

Hence we approximate (4) using only the most recent

observation

Pr(xt ∈Mi) ≈

∫
Mi

p(zt|xt, ut)

π(zt|ut)
dxt, (5)

where π(zt|ut) =
∫
xt

p(zt|xt, ut) dxt is the prior probability

of receiving observation zt. This is not, in general, equivalent

to Eq. (4). However, Eq. (5) is a good approximation when

p(zt|xt, ut) accurately discriminates between the manifolds.

In the limit, when observations perfectly discriminate be-

tween manifolds, p(zt|xt, ut) becomes binary and this sam-

pling technique introduces no bias. This approximation per-

forms well for our purposes since contact sensors accurately

discriminate between contact and no-contact.

Finally, we sample a particle x
[i]
t according to the belief

distribution on the chosen manifold bel(xt|Mi). Our key

insight is that we can apply a different sampling technique for

each manifold that is specifically designed to take advantage

of the structure of Mi. In the case of the free space Mm, we

can sample x
[i]
t from S using the conventional technique and
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Fig. 4. Belief state estimated by the PF and MPF for a hand pushing a bottle. (a) p(x0) is a Gaussian prior. (b) Particles that touch the hand are
eliminated through a series of “no contact” observations. (c) and (d) As soon as contact is established the belief state collapses to the true state for the
MPF.

reject any x
[i]
t ∈ ∪

m−1
i=1 Mi. In the case of a contact manifold,

we use dual particles as described in the next section.

B. Manifold Particle Filter for Contact Manipulation

In contact manipulation, there is a single contact manifold

C that contains the set of all states in non-penetrating contact

with the hand. The free space C̄ contains the remaining

poses that are not in contact with the hand. Algorithm 2

summarizes the application of the manifold particle filter to

state estimation for contact manipulation problem.

If we choose to sample from C, then the conventional

sampling technique will be ineffective. Instead, we impor-

tance sample using the dual proposal distribution, which

samples from the observation model and computes impor-

tance weights using the motion model. Formally, we sample

x
[i]
t ∼

p(zt|xt, ut)

π(zt|ut)
(6)

from the observation model (line 5). The corresponding

importance weight

w
[i]
t = η π(zt|ut)

∫
p(xt|xt−1, ut)bel(xt−1)dxt−1 (7)

incorporates the motion model (line 6) and is found by

dividing the target distribution Eq. (2) by the proposal

distribution Eq. (6) [4].

The conventional proposal distribution forward-predicts

using the motion model and computes importance weights

using the observation model. Conversely, the dual proposal

distribution samples particles from the observation model and

weights them by how well they agree with the prediction

of the motion model. This is the logical inverse of the

conventional proposal distribution and has complementary

strengths and weaknesses: the dual distribution performs best

with a discriminative observation model that is tightly peaked

around the true state [4].

Figure 4 shows a comparison of the PF and MPF for

a hand pushing a bottle from left-to-right. Each link is

equipped with a binary contact sensor and the belief is

rendered using kernel density estimation. The PF (Fig. 4-

Top) fails to track the state because there are no particles

in the vicinity of the contact observation. The MPF (Fig. 4-

Bottom) avoids this problem by sampling dual particles from

the observation model.

C. Sampling from the Observation Model

One can use different methods to sample states from the

observation model. Since the contact manifold is a two-

dimensional manifold embedded in SE(2), we can approx-

imate C for an arbitrary object using a relatively small set

of pre-computed hand-relative object poses. For each pre-

computed sample, we compute its probability using Eq. (6)

with the current ut and zt. Then, we sample x
[i]
t from this

weighted set.

We can further simplify this computation if we assume

additional structure in the object model. For example, if

the object and hand are extruded polygons, then we can

avoid pre-computing samples of C by using an analytic

representation of the contact manifold.

D. Weighting using the Motion Model

We must compute importance weights for the particles that

we sampled from the dual proposal distribution. Equation (7)

shows that the importance weights consist of three terms:

(1) the normalization factor η, (2) the prior probability of

the observation π(zt|ut), and (3) the probability of the cur-

rent state given our history
∫
p(xt|xt−1, ut)bel(xt−1)dxt−1.

The constant η appears in both the conventional and dual
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Fig. 5. HERB pushing a Pop-Tarts box across the table. The top and bottom rows show the belief as estimated by the PF (top, light blue) and the MPF
(bottom, light orange) during different stages of manipulation. The PF and MPF perform similarly when the object contacts the large palm (left), but the
MPF outperforms the PF when contact occurs with the small distal links (right).

importance weights and can be omitted. Similarly, π(zt|ut)
is the prior probability of receiving observation zt and can

be empirically estimated prior to running the algorithm.

Unfortunately,
∫
p(xt|xt−1, ut)bel(xt−1)dxt−1 is difficult

to evaluate: we have the ability to sample from this distribu-

tion using the motion model, but not evaluate it at an arbitrary

value of xt. Instead, we estimate the distribution by applying

a density estimation algorithm. First, we forward-simulate

the set of particles Xt−1 to time t with the motion model [4].

Next, we use kernel density estimation to approximate∫
p(xt|xt−1, ut)bel(xt−1)dxt−1 from the forward-simulated

samples. Kernel density estimation is a natural choice for

this application because it is a non-parametric technique for

estimating a probability distribution from a set of samples.

VI. REAL-ROBOT EXPERIMENTS

We evaluated the PF and MPF on HERB, a bimanual mo-

bile manipulator designed and built by the Personal Robotics

Laboratory at Carnegie Mellon University [5]. HERB used a

Barrett WAM arm equipped with a BarrettHand end-effector

to push a 1.13 kg Pop-Tarts box across the table. We used the

BarrettHand’s finger strain gauges to detect binary contact on

the distal links and a wrist-mounted force/torque sensor to

detect binary contact on the rest of the hand at approximately

10 Hz. We assume that there is a single point contact, so the

combination of those sensors uniquely localizes the point of

contact in one of nine zones pictured in Fig. 2(c).

Figure 5 shows the two representative runs of the state

estimator on HERB. The pose of the Pop-Tarts box relative

to the hand was tracked by an overhead camera using a

visual fiducial and is drawn as a black box. The conventional

particle filter was run with 500 particles and the MPF was

initialized with 450 conventional and 50 mixed particles. As

described above, the mixed particles are adaptively sampled

using whichever proposal distribution is best suited for the

current state. These parameters were selected such that both

algorithms took approximately 50 ms to update.

In Fig. 5-Left, the Pop-Tarts box initially contacted the

palm and settled into persistent contact with the hand. The

palm has a large swept volume, so both the PF (Fig. 5-Top-

Left) and MPF (Fig. 5-Bottom-Left) successfully tracked the

state. In both cases, the distribution quickly converged to the

true state after contact is observed.

In Fig. 5-Right, the Pop-Tarts contacted the hand’s left

distal link and slips off the finger during the duration of the

push. In this case, the distal link had a small swept volume

and the PF incorrectly converged to the palm. As expected,

the MPF successfully traced the state through the duration of

the contact. This problem would be even more pronounced

if HERB’s observation model included high-resolution data,

e.g. tactile arrays.

Please see the accompanying video1 for more examples.

VII. SIMULATION EXPERIMENTS

We have qualitatively shown that the MPF outperforms the

particle filter when used for state estimation on a real robot.

In this section, we verify those properties in simulation and

show that these differences are statistically significant.

We will verify the following hypotheses:

H1 The error of the PF and MPF are similar before contact.

H2 The MPF has lower error than the PF after contact.

H3 Improving resolution increases the error of the PF.

H4 Improving resolution reduces the error of the MPF.

Additionally, we demonstrate that the MPF achieves lower

error than the MPF for a fixed amount of processing time.

A. Experiment Design

We implemented both filters in the OpenRAVE [29] sim-

ulation environment and evaluated the algorithms with a

BarrettHand pushing a bottle. In each simulation, the hand

moves in a straight line at a constant speed of 10 cm/s for

5 s and receives sensor updates from binary contact sensors

at 10 Hz. The initial pose of the bottle was drawn from a

Gaussian prior distribution with a randomly chosen mean and

a standard deviation of 10 cm. We distributed contact sensors

of a fixed size uniformly across the front surface of the

hand. Observations from these sensors were simulated using

full three-dimensional mesh collision checks between the

object and sensors. For efficiency, the pushing simulation was

implemented using an approximate, cached collision checker

with a 1 mm resolution. Sensing errors were simulated by

randomly perturbing the observation with a 5% probability.

1Video is available online at http://youtu.be/iCfApA39PiU.

http://youtu.be/iCfApA39PiU
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Fig. 6. (a) and (b) RMSE and SR of the PF and MPF plotted over time for 500 particles. Contact occurs at t = 0 and is denoted by the dashed line.
(c) Effect of sensor resolution on RMSE. The MPF monotonically decreases in RMSE as resolution increases. Conversely, the accuracy of the PF degrades
with high resolution sensors. (d) Real-time performance of the filters. The MPF achieves lower RMSE than the PF given a fixed computational resources.
Additionally, the MPF achieves acceptable error with real-time update rates of 60+ Hz. The gray shaded region in (a) denotes the 95% confidence interval.
This is omitted from (b), (c), and (d) because the confidence intervals are of a negligible size.

B. Metrics

We will compare the performance of the algorithms with

the following metrics:

• Root-mean-square error (RMSE) between the particles

and the true state.

• Success rate (SR), the percent of time during which

mean of the particles is within 2 cm of the true state.

• Update rate (UR), the maximum rate at which particle

filter updates step can be executed.

These three metrics capture different properties of the filters.

RMSE is the traditional error metric used in the localization

literature [4, 28] and measures how closely the particles

track the true state. Similarly, SR acts as a proxy of how

well the filter would perform while performing a task that

succeeds under bounded uncertainty. UR directly measures

the computational complexity and real-time performance of

each filter.

C. Localization Error

We tracked the RMSE (Fig. 6(a)) and SR (Fig. 6(b)) of

the two filters over time using a hand with 1 cm resolution

contact sensors. The x-axes of the plots are aligned such

that contact occurs at t = 0. Before contact, both filters

behave similarly and there is a negligible difference in RMSE

(3.67 mm < 5 mm, t(24192) = 4.3050, p < .0001). After

contact, the MPF achieves 7 cm less RMSE than the PF

(t(35556) = 74.86, p < .0001). These results confirm

hypotheses H1 and H2: the MPF achieves significantly lower

error than the PF. We present example simulated runs of MPF

and PF in Fig. 4.

D. Sensor Resolution

We additionally evaluated the effect of sensor resolution

on the RMSE error of both filters. Figure 6(c) shows the

average RMSE error during contact as the sensor resolution

is varied from cell sizes of 2 mm to 5 cm. Smaller sizes

correspond to a higher sensing resolution and, ideally, lower

error. As expected, the MPF outperforms the PF at all sensor

resolutions.

In both cases, an ANOVA showed that sensor resolution

was a significant main effect for both the particle filter

(F (4, 134674) = 146.462, p < .0001) and the MPF

(F (4, 134674) = 137.211, p < .0001) with a negative

correlation for the PF and a positive correlation for the MPF.

In both cases, all but one pairwise tests of sensor resolutions

were significant. This confirms hypotheses H3 and H4.

Unlike the MPF, the performance of the PF degrades as the

sensor resolution increases. As described in Section IV, this

occurs because it becomes progressively less likely to sample

particle with high p(zt|xt, ut) during periods of contact. The

MPF does not suffer from this problem and improves with

sensor resolution.

E. Realtime Performance

These filters are intended to be used for real-time feed-

back. Therefore, it is important that the filters achieve accept-

able error at real-time update rates. Figure 6(d) shows RMSE

during contact as a function of update rate. The update rate

was indirectly manipulated by varying the number of parti-

cles from 50 to 10,000 and measuring the time require for

each filter to execute a single update step. All measurements

were taken using a single core of a 2.53 GHz Intel Xeon

processor.

The MPF achieves acceptable accuracy (e.g. < 2 cm

RMSE) with several hundred particles and URs of 60+ Hz.

Conversely, the PF only achieves comparable accuracy when

run with 10,000 particles and has an UR of approximately

1 Hz. These results confirm that PF requires a huge number

of particles to accurately track the state and is ill-suited for

real-time use. Conversely, the MPF is fast enough to be used

as real-time feedback.

VIII. DISCUSSION

A. Limitations

We made several simplifying assumptions to find a real-

time solution to the state estimation problem during contact

manipulation.

First, we implicitly assume that the hand can only contact

the object that we are manipulating. This may not be possible



in highly cluttered environments where we must contact

multiple objects to achieve the desired task [11]. In future

work, we hope to explore methods of generalizing the MPF

to environments with multiple—both static and movable—

objects. We believe it is possible to do so by factoring

the belief state (e.g. through Rao-Blackwellization) to avoid

requiring exponentially more particles.

Second, we assume xt ∈ SE(2). This is sufficient for

planar manipulation, but the state space becomes larger if

objects are articulated, can topple, or can roll. In particular,

sampling x
[i]
t according to Eq. (6) may become challenging.

For most observation models, this is done by representing C

with a finite set of samples. However, the number of samples

required to densely represent C grows exponentially with

the dimension of the state space. We plan to address this by

replacing the importance sampling step with a more efficient

Markov chain Monte Carlo sampling technique.

Third, we can improve our algorithm by recognizing

that tracking the state on different manifolds may have

very different computational costs. They are different during

pushing: tracking particles on the contact manifold requires

making a physics-based motion prediction, whereas tracking

particles in the free space is almost free since those particles

do not move. Similarly, different manifolds may require dif-

ferent number of particles. For example, fewer particles may

be enough to track the state on lower dimensional manifolds.

The performance of our algorithm can be improved by taking

into account such manifold characteristics.

Finally, in future work, we plan to use the state estimate

provided by the MPF as real-time feedback for physics-based

actions. For example, this could include a closed-loop push

grasp that uses constant feedback to react in real-time.

B. Contributions and Implications

Contact sensors provide useful information during object

manipulation. We believe that the state estimation technique

described in this paper could be used to create robust closed-

loop actions that use real-time contact feedback to deal with

high amounts of uncertainty.

In this paper, we have shown that contact sensors funda-

mentally differ from the vision and depth sensors tradition-

ally used in state estimation (Section IV). Using this insight,

we formulated the MPF (Section V) and demonstrated an

implementation on a real robot (Section VI) using a simple

sensor model. We evaluated the same implementation in a

suite of simulations (Section VII) and showed that the MPF

outperforms the conventional particle filter in both accuracy

and speed.
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