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Abstract 

Pose estimation of a multiple camera system (MCS) is 

usually achieved by either solving the PnP problem or 

finding the least-squared-error rigid transformation 

between two 3D point sets.  These methods employ 

partial information of an MCS, in which only a small 

number of features in one or two cameras can be utilized.  

To overcome this limitation, we propose a new pose 

estimation method for an MCS that uses complete 

information of an MCS.  In our method, we treat the 

MCS as a single generalized camera [7][14] and 

formulate this problem in a least-squared manner.  An 

iterative algorithm is proposed for solving the 

least-squared problem.  From the experimental results, 

it shows that the proposed method is accurate for pose 

estimation of MCS. 

1. Introduction 

In recent years, multiple camera systems (MCS) have 

received much attention in computer and robot vision.  

For example, a multi-camera network [6] was designed as 

a new “eye” to achieve better robustness for structure 

from motion.  In [13], a GlobalAll camera array was 

presented, which can provide electronic pan-tilt-zoom 

effect for applications of vision-based intelligent room.  

In [11], a camera matrix was proposed for achieving 

better stereo matching and 3D reconstruction.  In 

essence, MCS is referred to as a camera set consisting of 

at least two cameras.  These cameras are mounted on 

some rigid objects and thus their relative positions and 

orientations are fixed. 

This paper deals with the pose-estimation problem for 

MCS.  Pose estimation, referred to as computing the 

rotation and translation of a visual sensor relative to 

known geometry, is a fundamentally important problem 

for computer and robot vision.  In fact, almost all the 

existing pose-estimation methods were designed for a 

single camera but not a camera set, and it still lacks of 

systematic methods for solving their pose-estimation 

problem.  In this paper, a generally effective method is 

proposed for pose estimation of MCS. 

Consider a set of cameras with fixed and known 

translations and orientations to each other.  Without lost 

of generality, we can set an MCS coordinate system to 

which all the cameras refer, and an illustration is shown in 

Fig. 1.  The MCS pose-estimation problem is formally 

described below:  

[MCS Pose Estimation] If there are several (at least three) 

3D points in the environment with known coordinates with 

respect to a world coordinate system, the MCS pose 

estimation problem is defined as finding the rotation and 

translation between the MCS and the world coordinate 

systems. 

2. Possible Ways for Pose Estimation of MCS and 

Their Limitations 

In this section, we discuss some possible ways that can be 

used to solve the pose estimation problem of an MCS by 

applying existing methods.  One way is to exploit the 

least-squared-error rigid transformation from two point sets, 

which was thoroughly investigated in the computer/robot 

vision community [1][5][8][10], as introduced in the 

following.  Let P1, P2, …, Pn be n points with known 

coordinates to a world coordinate system.  Consider an 

MCS consisting of m cameras that takes m images, I1, 

I2, …, Im, respectively.  Assume that there are n’ points 

commonly appear in some m’ images, where 2 ≤ m’ ≤ m 

and 3 ≤ n’ ≤ n.  Without lost of generality, let these n’ 

points be P1, P2, …, Pn’.  Since the cameras have been 

calibrated and represented w.r.t. a unified MCS coordinate 

system and m’ ≥ 2, the m’ images form a multi-view stereo 

image set.  The 3D coordinates of all the n’ points can 

therefore be computed in association with the MCS 

coordinate system via simple triangulation (or equivalently, 

ray intersection).  Then, consider that these n’ points also 

have known coordinates w.r.t. the world coordinate system.  

The MCS pose estimation-problem can thus be 

transformed as finding the rotation R and translation t such 

 

(a)                 (b) 

Fig 1.  An illustration of a MCS.  (a) A set of mounted cameras 

with known and fixed translations and orientations each other and a 

MCS coordinate system is defined in these cameras.  (b) A MCS 

pose estimation problem is defined as finding the rigid 

transformation between the MCS coordinate system and the world 

coordinate system. 



that Qi = RPi+t, i = 1, …, n’, where Pi and Qi are the 

coordinates of these n’ points w.r.t. the world and MCS 

coordinate systems, respectively. 

Due to image noises in practice, we can not find (R, t) 

satisfying Qi = RPi+t for all i = 1, …, n’ but usually find 

the one with least sum of squared errors instead:  

E = ∑i||Qi−(RPi+t)||2.   (1) 

When n’≥3, the minimization E in (1) has closed-form 

solutions [1][5][8][10], and the MCS pose (associated 

with the world coordinate system) can then be estimated 

by solving (1). 

However, there are two drawbacks for solving the MCS 

pose-estimation problem in this way.  First, this 

approach can be used only when there exist at least three 

commonly visible points for some pair of images (i.e., n’ 

≥ 3 and m’ ≥ 2).  If all the pairs of images have less than 

three commonly visible points, this method can not be 

applied.  Second, even when n’ ≥ 3 and m’ ≥ 2 are 

satisfied, only partial information of a MCS is used for 

estimating the pose because n’ may be smaller than the 

number of world points, n.  Intuitively speaking, 

information in association with the remained n-n’ points 

and m-m’ images are wasted. 

Another way to solve the MCS pose-estimation problem 

via existing approaches is to use the solution of the 

perspective-n-point (PnP) problem [4][6][9][12][15].  In 

our case, given n” points (n”≥ 3) and their projecting 

points in some image Ii, i = 1, …, m, the solution of the 

PnP problem is the rotation and translation between the 

i-th camera coordinate system and the world coordinate 

system.  Since the MCS has been calibrated, the rotation 

and translation between the MCS and the i-th camera 

coordinate systems (i = 1, …, m) is fixed and known.  

By composing the two pairs of rotation and translation 

above, the rotation and translation between the world and 

MCS coordinate systems can then be obtained. 

However, solving the MCS pose-estimation problem in 

this way also suffers from the same drawbacks.  First, 

the applicable condition is limited because such a method 

can not be used when no images have sensed three world 

points, even the total number of world points is indeed 

sufficient for determining the MCS pose.  Second, the 

solution obtained in this way can not fully exploit the 

information useful for pose estimation because only a 

single image is used. 

In this paper, we propose a method that exploits all the 

world points for pose estimation of an MCS.  Our 

method can also be used when all images have sensed less 

than three world points or all pairs of images have less 

than three commonly sensed points, as long as the number 

of world points, n, is at least three.  Details can be found 

in the next section. 

3. The Proposed Method 

Consider a world point Pi (i = 1, …, n), Pi is visible (or 

sensible) in the image Ij means that there is a point pji in the 

image plane of the j-th camera satisfying that Lji, the ray 

from O j to Pji, passes through Pi, where O j is the focal 

center of the j-th camera, j = 1, …, m, and Lji is represented 

w.r.t. the world coordinate system.  Let A be the set 

consisting of the world points that are visible in more than 

one image and A be the set of world points that is visible in 

only one image.  For each point Pi contained in A, the 

number of rays associated with it is more than one, and its 

coordinate w.r.t. the MCS coordinate system can be 

computed from the intersection point of all the associated 

rays.  On the contrary, the coordinate w.r.t. the MCS 

coordinate system can not be estimated for the points 

contained in A. 

According to the definitions above, we discuss the MCS 

pose-estimation in the following two situations.  First, 

consider a world point P∈A.  Assume its estimated 

coordinate w.r.t. the MCS coordinate system to be S.  The 

objective function in the case of Pi∈A is defined as 

EA = min∑i||Si−(RPi+t)||2.   (2) 

Second, we consider the situation when a world point P∈A.  

In this case, there is a ray L passing through it and this ray 

can be represented by a vector (c, v) w.r.t. the MCS 

coordinate system, where c is a point passed by this ray and 

v is the direction of this ray.  Thus, the projection of P on 

L can be written as Proj(P;L) = vvT(RP+t−c)+c.  The 

distance between P and L is  

||Proj(P;L)−P|| = ||(vv
T−I)(RP+t−c)||, (3) 

where I is the 3 by 3 identity matrix.  The objective 

function in the case Pi∈A is defined as 

EA = min∑i||(vivi
T−I)(RPi+t−ci)||

2.  (4) 

By combining the two situations above, the objective 

function minimized in our approach is E = EA+EA: 
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where |A| and |A| are the cardinalities of A and A, 

respectively.  In the above, the points contained in A 

provide point-to-point correspondence information, and 

those contained in A provide point-to-line correspondence 

information.  Our algorithm use both kinds of 



correspondence information for solving the MCS 

pose-estimation problem, as presented below: 

Algorithm:  

Step 0.  Let (R0, t0) be the transformation initially given. 

Step 1.  Compute P*i= R0Pi+t0 for all i = 1, ..., n. 

Step 2.  Find the closest point P'i of P*i. 

2.1. If Pi∈A, set P'i = Si for all i = 1, ...,n, where Si is 

the intersection point of the associated rays. 

2.2. If Pi∈A, set P'i = vivi
T(P*i−ci)+ci for all i = 1, ...,n, 

where vector (ci, vi) is associated with a ray L that 

passes through Pi. 

Step 3.  Find the least-squared-error rigid transformation 

[1] between P*i and P'i, i = 1, …,n.  That is, find (Rnew, 

tnew) that minimizes ∑i||(RnewP*i+tnew−P'i)||
2. 

Step 4.  If Rnew is close enough to the identity matrix and 

tnew is close enough to the zero vector, then stop; Else 

compose (Rnew, tnew) and (R0, t0) by R0 ← RnewR0, t0 ← 

tnew+Rnewt0, and go to step 1. 

By using this algorithm, all the world points can be 

employed.  In fact, the proposed algorithm is inspired 

from both the iterative-closest-point algorithm [2] and 

NPnP problem [3].  The monotonic convergent property 

of these algorithms is ensured.  Hence, similar 

convergent properties also hold for our algorithm. 

In the initialization (Step 0) of our method, three 

strategies are suggested to obtain a good initial: 

(1) If available, pick up three points from A randomly and 

calculate an initial rigid transformation via 

least-squared-error transformation [1]. 

(2) If more than three world points can be seen in one of 

the cameras in MCS, the associated three rays can be 

used to estimate an initial pose by solving the P3P 

problem [15]. 

(3) We also can regard a MCS as a non-perspective 

imaging device, and the method for initializing the 

non-perspective n point problem [3] can be adopted. 

Among them, strategy 3 is applicable as long as the 

number of world points, n, is at least three.  Hence, 

strategy 3 is employed in our experiments. 

4. Experimental Results 

In our experiment, a MCS consists of three CCD cameras 

with overlapped field-of-views is used, as shown in Fig. 2.  

There are three images captured simultaneously in our 

MCS.  The intrinsic model of this MCS is calibrated in 

advance, so that every pixel in the MCS image set 

corresponds to a ray w.r.t. the MCS coordinate system.  

We place this MCS in two positions of an indoor 

environment to construct a stereo pair, and some 3D 

fiducial marks are measured in advance for pose estimation.  

Then, the poses of the MCS are estimated for these two 

placements via the proposed method.  In Fig. 3, two sets 

of MCS image captured from these two placements are 

shown and the red points in Fig. 3 are the fiducial marks 

for pose estimation. 

According to epipolar geometry, the correspondence in one 

MCS images should lie on a line in the other MCS image 

set.  In Fig. 3(a), we pick up 8 points in one MCS image 

set.  If no errors occur, the corresponding epipolar lines 

will pass through the corresponding points in the other 

MCS image set.  From Fig. 3(b), it shows that our method 

is very accurate so that these epipolar lines all pass through 

the corresponding points. 

In addition, a stereo pair of MCSs can help us compute the 

3D coordinate of any other point in this environment if its 

corresponding point is identified.  We use this stereo pair 

to compute the coordinates of some 3D points.  Table I 

lists the relative errors measured for some length ratios, 

where line 0 shown in Figure 4 serves as the unit length.  

The relative error is the ratio of the difference between real 

and estimated values to the real value. 

5. Conclusion 

In this paper, we propose a pose estimation method for 

MCS to improve the existing methods.  In our method, all 

the fiducial marks can be used for pose estimation.  To 

obtain a good initial estimate, some initialization strategies 

are suggested.  Then, an iterative algorithm is proposed to 

obtain a least-squared solution of a MCS.  From the 

experimental results, it shows that the proposed method is 

accurate. 
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Fig 2.  The MCS used in our experiment that consists of three CCD 

cameras. 

 

   
(a) 

   
(b) 

Fig 3.  The image sets captured by our MCS from two placements in an indoor environment, the red points are the fiducial marks used for pose 

estimation.  (a) Eight points selected from one MCS image set. (b) The corresponding epipolar lines are shown in the other MCS image set. 

 

   
Fig 4.  Experiment on the Length-ratio.  The red lines are used for the length-ratio results, and line 0 is the unit length. 
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