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Abstract: Using a single sensor to determine the pose estimation of a device cannot give accurate
results. This paper presents a fusion of an inertial sensor of six degrees of freedom (6-DoF) which
comprises the 3-axis of an accelerometer and the 3-axis of a gyroscope, and a vision to determine a
low-cost and accurate position for an autonomous mobile robot. For vision, a monocular vision-based
object detection algorithm speeded-up robust feature (SURF) and random sample consensus
(RANSAC) algorithms were integrated and used to recognize a sample object in several images
taken. As against the conventional method that depend on point-tracking, RANSAC uses an iterative
method to estimate the parameters of a mathematical model from a set of captured data which
contains outliers. With SURF and RANSAC, improved accuracy is certain; this is because of their
ability to find interest points (features) under different viewing conditions using a Hessain matrix.
This approach is proposed because of its simple implementation, low cost, and improved accuracy.
With an extended Kalman filter (EKF), data from inertial sensors and a camera were fused to estimate
the position and orientation of the mobile robot. All these sensors were mounted on the mobile robot
to obtain an accurate localization. An indoor experiment was carried out to validate and evaluate the
performance. Experimental results show that the proposed method is fast in computation, reliable
and robust, and can be considered for practical applications. The performance of the experiments
was verified by the ground truth data and root mean square errors (RMSEs).

Keywords: pose estimation; mobile robot; inertial sensors; vision; object; extended Kalman filter

1. Introduction

Localization is identified as a problem of estimating the pose estimation (i.e., position and
orientation) of a device or object such as aircraft, humans and robots, relative to a reference frame,
based on sensor input. Other related problems of localization are path planning [1,2], indoor
localization/navigation and tracking activities [3]. Several methods are used to determine localization:
inertial sensors [4], odometry [4], GPS [4], and laser and sonar ranging sensors [5–7]. The use of relatively
cheap sensors is important from a practical point of view; however, low-cost sensors seldom provide good
performance due to measurement inaccuracies in various environments. Recently, augmented reality
(AR) has been widely deployed to facilitate a new method for users to interact with their surroundings.
Areas of applications of AR are tourism, education, entertainment, etc. [6–10]. Despite research carried
out on current technologies for indoor environments to estimate the position and orientation of mobile
devices, the high cost of deployment to achieve accuracy is still a major challenge. In recent times,
with the Internet-of-things and mobile devices enabling sensing [11,12] for a variety of consumer,
environmental and industrial applications [13–17], sensors and embedded intelligence have become
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cheaper and easier to integrate into systems [15]. The main contribution of this work is the use of SURF
and RANSAC algorithms to acquire data from vision and integrate it with inertial sensors to estimate
the position and orientation of the mobile robot. The inertial measurement unit (IMU) used for this
practical work is the new Arduino 101 microcontroller which has both accelerometer and gyroscope
compacted into the same device to give accurate results. The fusion of inertial sensors and vision-based
techniques are used to provide a robust tracking experience and thus overcome the inadequacies
associated with individual component-based tracking. The main advantages of this method lie in its
ease of implementation, low cost, fast computation and improved accuracy. Currently, it has been
proven that vision could be a promising navigation sensor that provides accurate information about
position and orientation [18]. Cameras have the advantage of providing an extensive amount of
information while having a low weight, limited power consumption, low cost and reasonable size.
However, the use of vision methods has it shortcomings, such as illumination change and distortion
due to fast movement. Inertial sensors offer good signals with high rate during fast motions but
are sensitive to accumulated drift due to double integration during estimation of position. On the
other hand, visual sensors provide precise ego-motion estimation with a low rate in the long term,
but suffer from blurred features under fast and unpredicted motions. The aim of inertial and vision
sensor integration is to overcome some fundamental limitations of vision-only tracking and IMU-only
tracking using their complementary properties. Tracking of object in an environment is usually
predefined with specific landmarks or markers. More discussion on markers will be presented in
Section 2. The fusion methods, such as the Kalman filter or extended Kalman filter, usually adopt
iterative algorithms to deal with linear and non-linear models, and hence convergence is not always
assured [19,20]. For an autonomous mobile robot to localize and determine its precise orientation and
position, some techniques are required to tackle this problem. Generally, the techniques are split into
two categories [21–24]:

Relative localization techniques (local): Estimating the position and orientation of the robot
by combining information produced by different sensors through the integration of information
provided by diverse sensors, usually encoder or inertial sensors. The integration starts from the initial
position and continuously update in time. The relative positioning alone can be used only for a short
period of time.

Absolute localization techniques (global): This method allows the robot to search its location
directly from the mobile system domain. There numerous methods usually depend on navigation
beacons, active or passive landmarks, maps matching or satellite-based signals such as the global
positioning system (GPS). For absolute localization, the error growth is mitigated when measurements
are available. The position of the robot is externally determined and its accuracy is usually time and
location-independent. In other words, integration of noisy data is not required and thus there is no
accumulation of error with time or distance travelled. The limitation is that one cannot keep track
of the robot for small distances (barring exceptionally accurate GPS estimates); in addition, GPS is
not appropriate for indoor localization. This paper proposed to implement a hybrid method (inertial
and vision) such that the weakness of one technique is complemented by the other. We conducted an
indoor experiment using low-cost devices and a simple methodology to determine the pose estimation
of a mobile robot in an environment in real-time. The two major components used are IMU (6-DoF)
and a single camera. The system is based on the data collected from IMU and camera fused together
using extended kalman filter (EKF) to determine the pose estimation of a mobile robot in reference
to an object in the environment. Object identification from the image captured by the camera will
be simulated and analysed using the computer toolbox in MATLAB with the speeded-up robust
feature (SURF) algorithm, which is the most recent and efficient detector and descriptor for object
recognition. The random sample consensus (RANSAC) algorithm will be used for the feature matching.
This algorithm was used to estimate the homograph matrix of images captured. The combination of
SURF and RANSAC gives robust, fast computation and accurate results for vision tracking scenarios.
The accuracy of the proposed method will be shown as a result of real experiments performed and pose
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estimation method proposed which will be evaluated by the root mean square error model (RMSE).
The RMSE shows that the pose estimation method has low error values in both position and orientation.
Therefore, this approach can be implemented for practical applications used in indoor environments.
In our previous work [25], we proposed a six degree of freedom pose estimation that integrates data
from IMU and monocular vision. Detected natural landmarks (also known as markerless method)
from image captured were used as data input for vision. Experimental results showed an improved
performance of accuracy. This article is based on using a recognized object (marker-based method)
captured by the camera with IMU data to determine the pose estimation of a mobile robot. The rest of
the paper is organized as follows: in Section 2, a review of previous work done is presented. Section 3
discusses the proposed method for pose estimation which includes the IMU and camera mathematical
expressions. The experimental setup is presented in Section 4. This is followed by Section 5, which
presents the results and a discussion of the proposed method. Finally, Section 6 concludes the work
and gives future directions.

2. Related Work

Pose estimation has been studied in past and recent times for applications in object positioning [7],
robotics, and augmented reality (AR) tracking [26]. This section will discuss the existing technologies
used for pose estimation in our environment these days. These methods are categorised into inertial
sensor-based methods, vision sensor-based methods and fusion based methods.

2.1. Inertial Sensor-Based Methods

Inertial based sensor methods, also known as inertial measurement units (IMU), are comprised
of sensors such as accelerometers, gyroscopes and magnetometers. Each of these sensors are
deployed in robots, mobile devices and navigation systems [27,28]. The importance of using these
sensors is primarily to determine the position and orientation of a particular device and/or object.
An accelerometer as a sensor measures the linear acceleration, of which velocity is determined from it
if integrated once; for position, integration is done twice. Results produced by an accelerometer for
mobile robots have been unsuitable and of poor accuracy due to the fact that they suffer from extensive
noise and accumulated drift. This can be compensated for by the use of a gyroscope. In mobile
robotics, a gyroscope is used to determine the orientation by integration. The temporal gyroscope
drift and bias are the main source of errors. Various data fusion techniques have been developed to
overcome this unbounded error [29]. Magnetometers, accelerometers, and, more recently, vision are
being used to compensate for the errors in gyroscopes. Gyroscopes as sensors measure the angular
velocity, and by integrating once, the rotation angle can be calculated. Gyroscopes run at a high rate,
allowing them to track fast and abrupt movements. The advantage of using gyroscope sensors is that
they are not affected by illumination and visual occlusion. However, they suffer from serious drift
problems caused by the accumulation of measurement errors over long periods. Therefore, the fusion
of both an accelerometer and gyroscope sensor is suitable to determine the pose of an object and to
make up for the weakness of one over the other.

A magnetometer is another sensor used to determine the heading angle by sensing the Earth’s
magnetic field, which is combined with technologies to estimate pose estimation [30]. However,
magnetometers may not be so useful for indoor positioning because of the presence of metallic objects
within the environment that could influence data collected through measurements [7]. Other methods
proposed to determine indoor localization include infrared, Wi-Fi, ultra-wideband (UWB), Bluetooth,
WLAN, fingerprinting etc. [31]. These methods have their shortcomings; therefore, it is necessary that
two or more methods should be combined to achieve an accurate result. For this work, a 6-DoF of
accelerometer and gyroscope will be used as our inertial sensor to determine the pose estimation of
our system. Before the IMU sensor can be used, it is necessary for the sensor device to be calibrated.
The calibration procedure in ref. [32] was used along with the one given in Arduino software. This
method requires the IMU board to be placed on a levelled surface to ensure stability and uprightness.
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2.2. Vision Based Methods

Vision is another method used to determine the pose estimation of a mobile device or static
objects. Vision-based methods interpret their environment with the use of a camera. The vision could
be in the form of video or an image captured. This poses a spatial relationship between the 2D image
captured and the 3D points in the scene. According to Genc et al. [33], the use of markers in AR is
very efficient in the environment. It increases robustness and reduces computational requirements.
However, there are exceptional cases where markers are placed in the area and re-calibration is needed
from time to time. Therefore, the use of scene features for tracking in place of markers is reasonable
especially when certain parts of the workplace do not change over time. Placing fiducial markers is a
way to assist robot to navigate through its environments. In new environments, markers often need
to be determined by the robot itself, through the use of sensor data collected by IMU, sonar, laser
and camera. Markers’ locations are known but the robot position is unknown, and this is a challenge
for tracking a mobile robot. From the sensor readings, the robot must be able to infer its most likely
position in the environment. For 3D pose estimation, there are two types of methods that can be used
to find the corresponding position and orientation of object or mobile robot from a 2D image in a 3D
scene. They are the markerless method (also known as natural landmark) and marker-based method
(also known as artificial landmark). Natural landmarks are objects or features that are part of the
environment and have a function other than robot navigation. Examples are corridors, edges, doors,
wall, ceiling light etc. The choice of features is vital because it will determine the complexity in the
feature description, detection and matching. For the marker-based method, it requires the objects to
be positioned in the environment with the purpose of robot localization. Examples of these markers
can be any object but must be distinct in size, shape and colour. These makers are easier to detect
and describe because the details of the objects used are known in advance. These methods are used
because of their simplicity and easy setup. However, they cannot be adopted in a wide environment
where large numbers of markers are deployed. For more details on vision-based tracking methods
refer to [7].

Object Recognition and Feature Matching

Object recognition under uncontrolled, real-world conditions is of vital importance in robotics.
It is an essential ability for building object-based representations of the environment and for the
manipulation of objects. Object recognition in this work refers to the recognition of a specific object
(e.g., a box). Different methods of scale invariant descriptors and detectors are currently being used
because of their scale flexible and affine transformations to detect, recognise and classify objects. Some
of these methods are oriented fast rotated BRIEF (ORB), binary robust invariant scalable keypoints
(BRISK), Difference of Gaussian (DoG), fast keypoint recognition using random ferns (FERNS) [34],
scale-invariant feature transform (SIFT) [35], and speeded-up robust feature (SURF) [36]. Reference [37]
explains more on this. Object detection and recognition can be done through the use of computer
vision, whereby an object will be detected in an image or collection of images. The recognised object
is used as a reference to determine the pose of a mobile device. Basically, object detection can be
categorised into three aspects: appearance-based, colour-based and feature-based. All of these methods
have their advantages and limitations [38]. Here we have decided to use the feature-based technique
because it finds the interest points of an object in image and matches them to the object in another
image of similar scene. Generally, finding the correspondences is a difficult image processing problem
where two tasks have to be solved [39]. The first task consists of detecting the points of interest
or features in the image. Features are distinct elements in the images; e.g., corners, blobs, edges.
The most widely used algorithm for detection includes the Harris corner detector [40]. It is based
on the eigenvalues of the second moment matrix. Other types of detectors are correlation-based: the
Kanade–Lucas–Tomasi tracker [41] and Laplace detector [42]. The second task is feature matching; the
two most popular methods for computing the geometric transformations are the Hough transform
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and RANSAC algorithm [36,37,43]. RANSAC is used here because of its ability to estimate parameter
with a high degree of accuracy even when a substantial number of outliers are present in the data set.

SURF was first introduced by Bay et al. [36]. SURF outperforms the formerly proposed scheme
SIFT with respect to repeatability (reliability of a detector for finding the same physical interest
points under different viewing conditions), distinctiveness, and robustness, yet can be computed and
compared much faster. The descriptors are used to find correspondent features in the image. SURF
detect interest points (such as blob) using Hessian matrix because of it high level of accuracy. This is
achieved by relying on integral images for image convolutions; by building on the strengths of the
leading existing detectors and descriptors (specifically, using a Hessian matrix-based measure for the
detector, and a distribution-based descriptor); and by simplifying these methods to the essential. This
leads to a combination of novel detection, description, and matching steps. SURF is used to detect
key points and to generate its descriptors. Its feature vector is based on the Haar Wavelet response
around the interested features [38]. SURF is scale-and rotation-invariant, which means that, even with
variations of the size and rotation of an image, SURF can find key points.

Random sample consensus (RANSAC) is feature matcher which works well with SURF to match
objects detected by SURF in images. RANSAC was first published by Fischler and Bolles [43] in 1981
which is also often used in computer vision. For example, to simultaneously unravel correspondence
problems such as fundamental matrices related to a pair of cameras, homograph estimation, motion
estimation and image registration [44–49]. It is an iterative method to estimate parameters of a
mathematical model from a set of observed data which contains outliers. Standard RANSAC algorithm
of this method is presented as follows:

Assuming a 2D image corresponds to a 3D scene points (xi, wXi), let us assume that some
matches are wrong in the data. RANSAC uses the smallest set of possible correspondence and proceed
iteratively to increase this set with consistent data.

• Draw a minimal number of randomly selected correspondences Sk (random sample);

• Compute the pose from these minimal set of point correspondences using direct linear
transform (DLT);

• Determine the number Ck of points from the whole set of all correspondence that are consistent
with the estimated parameters with a predefined tolerance. If Ck > C* then we retain the randomly
selected set of correspondences Sk as the best one: S* equal Sk and C* equal Ck;

• Repeat first step to third step.

The correspondences that partake of the consensus obtained from S* are the inliers. The outliers
are the rest. It has to be noted that the number of iterations, which ensures a probability p that at least
one sample with only inliers is drawn can be calculated. Let p be the probability that the RANSAC
algorithm selects only inliers from the input data set in some iteration. The number of iterations is
denoted as [50–52]:

k =
log(1 − p)

log(1 − (1 − w)n)
,

where w is the proportion of inliers and n is the size of the minimal subset from which the model
parameters are estimated.

Steps to detect and recognise object (marker) in a scene are as follows:

• Load training image;

• Convert the image to grayscale;

• Remove lens distortions from images;

• Initialize match object;

• Detect feature points using SURF;

• Check the image pixels;

• Extract feature descriptor;
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• Match query image with training image using RANSAC;

• If inliers > threshold then compute homograph transform box;

• Draw box on object and display.

2.3. Fusion of Inertial-Vision Sensor-Based Methods

The use of a single sensor is insufficient to provide accurate information of orientation or location
for mobile devices, robots and objects. As each sensor has it benefits, so also they have their limitations.
To complement the weakness of one sensor over another, the fusion of inertial sensors and vision is now
currently being researched. Several authors have proposed different ways that the fusion of inertial
sensors and vision can be integrated. The authors in [7] used only accelerometer data as the inertial
sensor with vision to determine the pose estimation of an object. In [53], both the accelerometer and
gyroscope data for inertial sensors were fused with a marker-based system. The use of continuously
adaptive mean shift (CAMSHIFT) algorithm produces good performance but quite a lot of work has
been developed using the algorithm. You et al. [54] combine the methods of fiducial and natural
feature-tracking with inertial sensors to produce a hybrid tracking system of 3DoF. Data fusion was
regarded as an image stabilization problem. Visual data was obtained by detecting and tracking
known artificial fiducials. Visual gyro data was fused using EKF, but the work only considered the
use of gyro data [55]. These proposed methods provide good performance; hence, they are used
for different applications. However, combining accelerometer and gyroscope data with the recently
proposed image processing algorithms SURF and RANSAC is still an open area of research. To fuse
the inertial data and vision data together, several filter-based methods have been suggested in the
literature. In robotic applications, pose estimation is often referred to as simultaneous localization and
map building (SLAM) and has been extensively explored. SLAM has a history of adopting diverse
sensor types and various motion models and a majority of the approaches have used recursive filtering
techniques, such as the extended Kalman filter (EKF) [20,56], particle filter [57], unscented Kalman
filter [58] and Kalman Filter. According to [20,25,27,59], EKF is the most appropriate technique to be
adopted for inertial and visual fusion. Therefore, EKF is developed to fuse inertial sensor data and
vision data to estimate position and orientation of a mobile robot.

3. Proposed Modeling Method

When working with a sensor unit containing a camera and an IMU, several reference coordinate
systems have to be presented. The four major coordinate systems are depicted in Figure 1:

 

  (a) World frame (b) Object frame     (c) Camera frame (d) Body frame

Figure 1. Reference coordinate system.

Reference frame for the system

• Global frame/world frame {w}: This frame aids the user to navigate and determine the pose
estimation in relative to IMU and camera frames.

• IMU/body frame {b}: This frame is attached to the IMU (accelerometer and gyroscope) on the
mobile robot.

• Object coordinate frame {o}: This frame is attached to the object (a 4WD mobile robot).
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• Camera frame {c}: This frame is attached to the camera on the mobile robot with the x-axis
pointing to the image plane in the right direction and z-axis pointing along the optical axis and
origin located at the camera optical center.

• The IMU method provides orientation of the body {b} with respect to (wrt) world frame {w} Rwb

and vision method provides orientation of the object {o} wrt to camera frame {c} Rco [26,60].

3.1. IMU-Based Pose Estimation

Figure 2 shows the block diagram of the inertial sensors which used a Kalman filter to estimate the
current pose and to reduce drifts and errors [61] of the sensors. This filter is also capable of estimating
an accurate orientation of the system, but is basically used for linear systems.

 

 
 
 
  

 
 
 
  

Figure 2. Block diagram for inertial measurement units (IMU).

Kalman filter (KF) is theoretically an ideal filter for combining noisy sensors to acquire accurate
and estimated output. It is accurate because it takes known physical properties of the system into
account. However, it is mathematically complex to compute and code. The calibrated accelerometer
and gyroscope were used to determine orientation, angular velocity, linear velocity and displacement
of the mobile robot with the use of KF. The KF was used as a prediction and correction model for
the sensors.

To express an object or mobile robot orientation, several representations are proposed to be used.
Examples are the axis angle, Euler angles, direct cosine matrix (DCM) and quaternions [7,26,62]. In this
paper, Euler angles are adopted to solve for roll, pitch and yaw angles.

The gravity in the world frame can be obtained using coordinate information from the body frame.

gw = Rwbgb, (1)

where g denotes the gravity and the subscripts b and w represents the body frame and world frame,
respectively. To obtain the rotation matrix from the world frame {w} to the body frame {b}, (Rwb),
the Euler angles, roll φ, pitch θ, and yaw ψ can be obtained as:

(Rwb) =







cφcθ −cψsθ + sψsφcθ sψsθ + cψsφcθ

cφsθ cψcθ + sψsφsθ −sψcθ + cψsφsθ

−sφ sφcψ cφcθ






, (2)

where c is defined as cos (), and s is defined as sin (). The world frame provides the reference frame
for the body frame, in which the x-axis and y-axis are tangential to the ground and the z-axis is in the
downward direction (view direction). The initial gravity vector in the world frame is given as:

gw =







0
0
g






, (3)
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The 3-axis accelerometer gives the components of the gravitational accelerations expressed in the
object reference frame (gb = [gbxgbygbz]

T), where the superscript T represents the transpose matrix.
Hence, substituting the gravity vector is related through a rotation matrix, the relation is given as:

gb =







gbx

gby

gbz






= Rwbgw = Rwb







0
0
g






=







−g sin θ

g cos ϕ sin φ

g cos ϕ cos θ






, (4)

From Equation (4) pitch and roll angles can be deduced from the gravity vectors as:

θ = arctan

(

gby
√

(gbx
2 + gbz

2)

)

, (5)

φ = arctan
(

−
gbx

gbz

)

, (6)

Equations to calculate position and velocity are given as:

Vb(k+1) = Vbk + abk∆t, (7)

Sb(k+1) = Sbk + Vbk∆t, (8)

where ab, Vb, Sb, k, k + 1 and ∆t are acceleration, velocity, position, time intervals and sampling time.
To calculate the angular rate we used the methods adopted in [63]. The angular rate is integrated to
determine the orientation from gyroscope.

3.2. Vision Based Pose Estimation Method

The 3D vision-based tracking approach tracks the pose of the mobile robot with a camera in
relative to the referenced object. For effective tracking, fast and reliable feature vision algorithm is
vital. The process of vision localization is categorised into four major steps: acquire images via camera,
detect object in the current images, match the object recognised with those contained in the database
and finally, calculate the pose as a function of the recognised object. In this work, a forward-looking
single camera (monocular) was used because it provides a high number of markers, thus allowing
good motion estimation accuracy, if the objects are closers to the camera [19,64].

Projection of Object Reference Points to Image Plane

With monocular vision (one camera), a good solution in terms of scalability and accuracy is
provided [65]. The monocular vision demands less calculation than stereo vision (two cameras).
With the aid of other sensors such as ultrasonic sensor or barometric altimeter, the monocular vision
can also provide the scale and depth information of the image frames [65,66]. The vision method
provides orientation of the object {o} wrt to camera coordinate frame {c}, Rco using the method in [67],
to calculate the pose of the mobile robot with respect to the camera based on the pinhole camera model.
The monocular vision positioning system used in [19], was used to estimate the 3D camera from the
2D image plane. The relationship between a point in the world frame and its projection in the image
plane can be expressed as:

λp = MP, (9)

where λ is a scale factor, p = [u, v, 1]T and P = [Xw, Yw, Zw, 1]T are homogenous coordinates on image
plane and world coordinate M is a 3 × 4 projection matrix.
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The above Equation (9) can further be expressed as:

λ







u

v

1






= M(Rwctwc)











Xw

Yw

Zw

1











, (10)

The projection matrix depends on the camera’s intrinsic and extrinsic parameters. The five intrinsic
parameters are: focal length f , principal point u0, v0 and the scaling in the image x and y directions, au

and av. au = fu, av = fv. The axes skew coefficient γ is often zero.

M =







au γ u0

0 av v0

0 0 1






, (11)

Extrinsic parameters: R, T, define the position of the camera center and the camera’s heading in
world coordinates. Camera calibration is to obtain the intrinsic and extrinsic parameters. Therefore,
the projection matrix of a world point in the image is expressed as:

C = −R−1T = −RTT, (12)

where T is the position of the origin of the world coordinate, and R is the rotation matrix. For this
research, camera calibration was done offline using MATLAB Calibration Toolbox [68].

3.3. Fusion Based on IMU and Vision Pose Estimation Method

The objective of sensor fusion is to improve the performance acquired by each sensor taken
individually and integrating their information. Using IMU alone cannot provide accurate information,
so vision is also used. The use of vision alone fails to handle occlusion, fast motion and not all areas
are covered due to the field of view of the camera. Therefore, with the shortcoming of each sensor,
the fusion of both IMU data and vision data will provide a better pose estimation result. Velocity,
position, angular velocity and orientation are given by IMU and so also is the position and orientation
given by vision. The fusion of vision and IMU is carried out using EKF. The fused EKF computed the
overall pose of the mobile robot with respect to the world {w} frame. Figure 3 shows the overview
stages of IMU and Vision fusion adopted.

 
   
   
   
    

 

 
 
 
  

 

Figure 3. Overview of the stages of IMU and vision fusion.
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3.4. EKF Implementation

For sensor fusion, EKF was implemented to estimate position and orientation from IMU and
vision data. EKF is a classic approach for a nonlinear stochastic system; it uses discrete models
with first-order approximation for nonlinear systems. The EKF algorithm enables complementary
compensation for each sensor’s limitations, and the resulting performance of the sensor system is better
than individual sensors [26,27,69]. The motion model and the observation model in EKF are established
using kinematics. EKF gives reasonable performance mostly in conjunction with a long iterative tuning
process. The readers can refer to [70,71] to get details of implementations and demonstrations of the
EKF. The general EKF equations are given here. Let

xk+1 = fk(x̂k, µk, wk),wk ∼ N(0, Qk), (13)

yk = hk(xk, vk),vk ∼ N(0, Rk), (14)

xk is the state vector, uk denotes a known control input, wk denote the process noise, and vk is the
measurement noise. yk is the measurement vector, hk is the observation matrix all at time k. The process
noise wk has a covariance matrix Q and measurement noise vk has a covariance matrix R, are assumed
to be zero-mean white Gaussian noise processes independent of each other. EKF is a special case
of Kalman filter that is used for nonlinear systems. EKF is used to estimate the robot position and
orientation by employing the prediction and correction of a nonlinear system model. Time prediction
update equation is given as:

x̂−k = Ax̂k−1 + Buk, (15)

P−
k = APk−1 AT + Qk−1, (16)

where A is the transition matrix and B is the control matrix.
Measurement update equation is given as:

x̂+k = x̂−k + Kk(zk − H(x̂−k )), (17)

P+
k = (I − Kk Hk)P−

k , (18)

where the Kalman gain is given as:

Kk = P−
k HT

k(HkP−
k Hk + Rk)

−1
, (19)

The Jacobian matrix Hk with partial derivatives of the measurement function h(·) with respect to
the state x is evaluated at the prior state estimate x̂−k , the equation is given as:

H =
∂h

∂X
|X = xk−1, (20)

For the fused filter method used in this work, we adopted one of the models used in [27]. We used
accelerometer data as a control input, while gyroscope data and vision data were used as measurements.
This model is extensively explained in reference above, but the process noise and covariance noise are
suitably tuned. The state vector is given as:

x = [p v q ω]T , (21)
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where p and v stand for the state variables corresponding to the 3D position and velocity of the IMU
in the world frame, q denotes the orientation quaternion corresponding to the rotation matrix R and ω

is the angular velocity from gyroscope. The fused transition matrix used here is given as:

F1
1 =

[

F1 O6x7

O7x6 F1

]

, (22)

The state transition matrix can be written as;

F1 =























1 0 0 ∆t
2 0 0

0 1 0 0 ∆t
2 0

0 0 1 0 0 ∆t
2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 ∆t

2 0 0 0























, (23)

F1 =



















1 0 0 ∆t
2 0 0 ∆t2

2
0 1 0 0 ∆t

2 0 0
0 0 1 0 0 ∆t

2 cos2 t

0 0 0 1 0 0 0
0 0 0 0 1 0 sin2 t

0 0 0 0 0 1 0



















, (24)

where ∆t is the sampling time between images captured. F1 and F1 is the state transition matrix for
inertial sensor and vision respectively. The process noise covariance is taken from the accelerometer
and is given as:

Q1
1 =

[

Q1 O6x3

O7x3 Q1

]

, (25)

Q1 =

[

q1 O3x3

O3x3 q1

]

, (26)

Q1 =







1 0 0 0 0 ∆t2 0
0 1 0 0 0 0 ∆t

0 0 1 0 0 0 0






, (27)

Q1 and Q1 are the process noise covariance from accelerometer and vision respectively.
q1 = I3σa

2 and 1 q1 = I3σa
2, are the process noise taken from accelerometer while the measurement

noise is taken from the gyroscope and vision where In is the identity matrix dimension of n. R is the
key matrix for sensor fusion, R1 and R1 are the covariance from gyroscope and vision.

R1
1 =

[

R1 O4x3

O3x4 R1

]

, R1 = I4σg
2, R1 = I3σ2

v T,

The observation matrix is given as;

H1
1 =

[

H1

H1

]

, H1 = [O3x3 I3x3],
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and is the observation matrix from the gyroscope.

H1 =

[

1
2

t2RT R

]T

,

is the observation matrix from vision. The parameters used for filter tuning and experiments are given
in Table 1.

Table 1. Parameters and their values for filter tuning.

Variables Meanings

Sampling interval of IMU sensor 100 Hz
Gyroscope measurement noise variance, σg 0.001 rad2/s2

Accelerometer measurement noise variance, σa 0.001 m/s2

Camera measurement noise variance, σv 0.9
Sampling interval between image frames 25 Hz

4. System Hardware and Experimental Setup

Figure 4 shows the major hardware used to carry out the experiment. Besides other types of
components such as IR sensors, ultrasonic sensor etc. which aided robot navigation and validated the
proposed method. The mobile robot used in this experiment is a four-wheel drive (4WD) as shown in
Figure 4c with a working voltage of 4.8 V. Four servo motor controllers were used which allowed the
robot to move up to 40 cm/s (0.4 m/s) with microcontroller (Arduino/Genuino 101) which has built-in
of Inertial Measurement Unit of 3-axis accelerometer and 3-axis gyroscope, depicted in Figure 4a.
As stated earlier in Section 2, the IMU was first calibrated before been coupled on the mobile robot.
To reduce the payload, the frame of the robot was built with aluminium alloy. The robot was equipped
with a 6 V battery to power the servo motors and a 9 V battery for the microcontroller. The mobile
robot is also installed with ultrasonic sensor to measure the object distance to the mobile robot in
real time. The performance issues related to reflections, occlusions, and maximum emitting angles
limit independent use of ultrasonic sensors [63]. The camera was also mounted on the mobile robot
to take several images from the environments. The type of camera used for this experiment is the
LS-Y201-2MP LinkSprite’s new generation high-resolution serial port camera module. The pictorial
representation is given in Figure 4b. Its resolution is 2 million pixels. It can capture high resolution
images using the serial port. The camera is a modular design that outputs JPEG images through
universal asynchronous receiver transmitter (UART), and can be easily integrated into existing design.
It has a default baud rate of serial port of 115,200. More of it specification can be found in [72].
The camera was connected to the programmed microcontroller Arduino 101 mounted on the robot
to capture images with a resolution of 1600 × 1200 at 6 fps. Images captured with the programme
written on Arduino environment are stored in an SD card and corresponding IMU transmitted to the
PC, via the USB cord which processes the images and locates the references points in the captured
images. The marker (box) used as a reference object has a size of 15 × 24 cm, and was placed at a
known position. The object was used to calculate the pose estimation of the mobile robot relative to
the camera. The image processing and pose estimation process were analysed offline using MATLAB
software. The data collected from the IMU were sent to MATLAB via the port serial. The mobile robot
trajectory is designed in such a way that it moves on a flat terrain in a forward, left and right directions.
The work area for the experiment is 4 m × 5.2 m.
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(a) (b) (c) 

Figure 4. Hardware used for the experiment: (a) Arduino 101 microcontroller; (b) LinkSprite camera;
(c) 4WD robot platform.

5. Results and Discussion

In this section, the performance of the experiments and simulated results are evaluated and
analysed. Firstly, we will present the analysis of the images captured and simulated in MATLAB.
Secondly, the results of the experiments performed to determine the position and orientation of the
mobile robot by fusing the inertial sensor and vision data will be presented.

5.1. Simulated Results of Object Detection and Recognition in an Image

In this subsection, we want to give details of the vision techniques used for detection and
recognition in an image; this was implemented in MATLAB using the computer vision toolboxes
following the steps given in Section 2 and with the brief introduction given in Section 4 of how images
were captured and stored on an SD card and transferred to MATLAB for simulation.

More details of how the simulation was done will be given here. Figure 5 shows the detection of
an object box placed in a known position to estimate the position of the mobile robot when moving
in the confined area. The first step was to save the proposed object (which could also be called the
query image); in this case a box was used. The image was saved in a database file. The next step was
to convert the image from RGB to grayscale after resizing the image so that it would not be too large to
fit on a screen.

The purpose of converting from RGB to grayscale is to acquire better results. Examples of such
images are depicted in Figure 5b,c respectively. Figure 5b shows the RGB image, while Figure 5c
shows the grayscale image. Some camera lenses are distorted, and therefore it is important that lens
distortions are removed from images. The purpose of removing distortion in images is to correct any
form of abnormalities and variations in the images to give a good quality output. Figure 5d shows an
image in which distortion has been removed.

To detect features from images using SURF, Figure 5e shows a typical example of the outliers
and inliers. For the simulation, 50 of the strongest feature points were extracted from the query
image to match with the training image in other to have sufficient points when matching the images.
The matching of images was done by RANSAC algorithm. With RANSAC algorithm, the inliers were
computed in such that if the inliers points are more than the threshold then homograph transform
will be estimated. This is shown in Figure 5f. The last step is for a bounding box to be designated and
displayed around the recognised object as shown in Figure 5g,h.
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(a) (b)

 
(c) (d)

 
(e) (f)

 
(g) (h)

Figure 5. A box detected from two different images but in similar scenes. (a) Query image; (b) Training
image; (c) Conversion of RGB to grayscale; (d) Removal of lens distortion; (e) Image including outliers;
(f) Image with inliers only; (g,h) Images with display box around the recognised object.
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5.2. Simulated Results of Object Analysis of Experimental Results

In this subsection, we present the results of the experiments carried out in an indoor environment.
Figure 6 shows the experimental result of the Euler angles obtained from IMU and the filtered estimate.
Various methods have been suggested to calculate Euler angles. Some methods considered using only
data from a gyroscope to estimate Euler angles by integrating angular velocity to give orientation, while
another uses only accelerometer data. Because a gyroscope measures rotation and an accelerometer
does not, a gyroscope seems to be the best option to determine orientation. However, both sensors have
their limitations, and therefore it is suggested that the weakness of one sensor could be complemented
by the other. For this work, we combined accelerometer data and gyroscope data using a Kalman filter.
Figure 2 shows the block diagram of the stages. Equations (5) and (6) were used to calculate the pitch
and roll angles, while the yaw angle was calculated as an integration of angular velocity. The figure
shows the robot travelling on a flat surface. It can be noted that, for about 49 s, roll and pitch angles
maintained a close-to-zero angle until there was a change in direction. At the point where the robot
turned 90 degrees to the right, the yaw angle was 91.25 degrees. The maximum values obtained for
pitch and roll angles are 15 degrees and 18 degrees, respectively. From the experiment carried out on
IMU, it can be concluded that Euler angles are a good choice for the experiment performed because
the pitch angles did not attain ±90 degrees to cause what is known as Gimbal lock.

 

Figure 6. Euler angles from IMU. Roll: red; pitch: green; yaw: blue.

Figure 7a–c shows the orientation result of the fused data from inertial sensor and vision. The IMU
was able to abruptly determine the direction of mobile, but the vision slowly captured the images
to determine the orientation of the mobile robot. With different sampling frequencies, computation
time did not allow both estimates to run at the same time. The IMU was able to determine the
direction of the robot within a specific path, but with the camera, the rotational axis was extended
to capture more views; therefore, the range of direction was widened and areas which could not be
covered by IMU were captured by the camera, although vision-based tracking is more accurate for
slow movement than IMU. However, using only computer vision, tracking is lost almost immediately;
it is therefore obvious that the addition of IMU is beneficial. EKF is used to fuse the inertial and visual
measurement to estimate the state of the mobile robot. With EKF, corrections for pose estimation were
made; this shows that the filter is efficient, specifically when fusing two or more sensors together.
Equations (10)–(12) from Section 3 were used to calculate the camera pose in reference to the image
plane. From the equations, the intrinsic and extrinsic parameters were estimated through the camera
calibration. It should be noted that the described system is very sensitive to calibration parameters. Errors
in parameters used for calibration could deteriorate the tracking of the system. Hence, the design of



Sensors 2017, 17, 2164 16 of 22

accurate calibration methods is vital for proper operation. As observed from the figures, there is a
slight difference between the data obtained from inertial sensor to that of vision. At the point where
the robot made a 90 degrees right turn, the yaw value for IMU was 91.25 degrees, and 88 degrees
for vision. Pitch and roll angles both have values of 1.2 degrees and 4 degrees. With the proposed
method, through the use of EKF, accumulated errors and drifts were reduced and improvement was
thereby achieved.
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Figure 7. Orientation results for fused sensors. (a) Roll angles; (b) Pitch angles; (c) Yaw angles.

Figure 8 shows a comparison of the three directions of the mobile robot taken from vision only.
The figure shows a distinctive estimation of position of the mobile robot. The position estimation
based on the reference object in the image is relative to the position of the mobile robot and the world
coordinate, with the median vector of the planar object for Z-axis close to 1 and −1. This shows that
the feature selection method used is effective. Therefore, SURF and RANSAC algorithms combination
can be used to determine the accurate position of an object through vision.
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Figure 8. Experimental position in XYZ directions from vision data.

5.3. Performance: Accuracy

The ground truth data was collected with the use of external camera placed in the environment
of experiment. The external camera was used because it’s less expensive, available and reliable to
determine 6-DoF of position. The camera was placed on a flat terrain with the mobile robot with a
distance of 4.90 m in between; the scenario is shown in Figure 9. Since the camera used was neither
360 degrees nor a motion camera, it was ensured that the camera was able to cover the experiment
area. It can be observed from the figure that our method exhibits good performance, as it is close to the
ground truth. However, further improvement of the proposed method is encouraged. For accurate
ground truth data to be obtained, a motion capture camera or a laser ranging sensor is also suggested.
The sensors are expensive, but an accurate result is guaranteed. Figure 10a shows the trajectory of
the mobile robot projected in the XY plane and Figure 10b shows the corresponding positions of the
mobile robot trajectory.

 

Figure 9. Ground truth system based on a camera.

Furthermore, the accuracy of the proposed method is assessed and evaluated by computing the
root mean square error (RMSE). To evaluate the accuracy, IMU and a single camera were used as
equipment for real measurement. Figure 11a,b show the results of error for position and orientation,
which is the difference between the ground truth and proposed method. From the graph, it can be
deduced that the maximum error value for position and orientation are 0.145 m and 0.95◦ respectively.
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These error values are still reasonable for indoor localization. In Table 2, RMSE position and orientation
are further stated for specific periods. It can be observed from the table that the position error slightly
increases with increase in time. For RMSE orientation, both pitch and yaw error angles decreases
as time increases while for roll, error was gradually increasing from the start time to about 80 s
and later decreases. The accuracy of the proposed method was improved and better performances
were achieved.
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Figure 10. Comparing the proposed method with the ground truth. (a) Robot trajectory in the XY
plane; (b) Position corresponding to the trajectory.
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Figure 11. Results of RMSE for position and orientation. (a) Position; (b) Orientation.

Table 2. RMSE of position and orientation.

Time (s) Position Error (m) Orientation Error (Degree)

x y Roll Pitch Yaw

20 0.05 0.08 0.78 0.62 0.62
40 0.05 0.08 0.81 0.60 0.56
60 0.07 0.09 0.85 0.56 0.55
80 0.06 0.09 0.90 0.56 0.54
100 0.07 0.09 0.62 0.50 0.53
120 0.14 0.09 0.75 0.18 0.18
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6. Conclusions

In this paper, a novel fusion of computer vision and inertial measurements to obtain robust
and accurate autonomous mobile robot pose estimation was presented for an indoor environment.
The inertial sensor used is the 6-DoF, which was used to determine the linear velocity, angular velocity,
position and orientation. For the computer vision, a single forward-looking camera was used to
generate 2D/3D correspondences. The purpose of data fusion is to produce reliable data that is not
influenced by accelerometer noise and gyroscope drift. In respect to this, vision was proposed as the
best fit to complement the weaknesses of inertial sensors. The inertial sensors and the camera were
both mounted on the robot to give excellent performance of the robot estimate.

For object recognition, SURF and RANSAC algorithms were used to detect and match features
in images. SURF is used to detect key points and to generate its descriptors. It is scale-and
rotation-invariant, which means that, even with differences on the size and on the rotation of an
image, SURF can find key points. In addition, RANSAC is an algorithm to estimate the homograph
matrix of an image; therefore, the combination of SURF and RANSAC gives robust, fast computation
and accurate results for vision tracking scenarios.

The experimental results have shown that a hybrid approach of using inertial sensors and vision
is far better than using a single sensor. An extended Kalman filter was designed to correct each sensor
hitches by fusing the inertial and vision data together to obtain accurate orientation and position.
RMSE values for position and orientation were determined to evaluate the accuracy of the technique.
As a result, the method shows reliable performance with high accuracy. This type of system proposed
further improves the accuracy with respect to localization. The weakness of this method is that it may
not be a good approach to be used in a large environment, because the field of view is limited and
not all areas can be covered. It is therefore important to consider the use of stereo vision (i.e., the use
of two cameras). Again, another limitation is the single type of object (marker) that was used as a
reference to determine the pose estimation of the mobile robot. The use of two or more mobile objects
to estimate the robot’s position and orientation in other to give better and accurate results should also
be considered. Further research work is to determine the robot’s pose estimation by tracking a mobile
object in a real-time video in a large scale environment.

Acknowledgments: The authors would like to appreciate the anonymous reviewers for their valuable comments
that contributed to improving this paper. This work was supported by National Researcher Foundation grant
funded by the South African government in collaboration with the University of Pretoria.

Author Contributions: M.B.A. designed the experiments, performed the experiments and analyzed the results.
G.P.H. supervised her work, advising on possible approaches and supplying equipment and analysis tools.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Röwekämper, J.; Sprunk, C.; Tipaldi, G.D.; Stachniss, C.; Pfaff, P.; Burgard, W. On the position accuracy of

mobile robot localization based on particle filters combined with scan matching. In Proceedings of the 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October

2012; pp. 3158–3164.

2. Alomari, A.; Phillips, W.; Aslam, N.; Comeau, F. Dynamic fuzzy-logic based path planning for mobility-assisted

localization in wireless sensor networks. Sensors 2017, 17, 1904. [CrossRef] [PubMed]

3. Mohamed, H.; Moussa, A.; Elhabiby, M.; El-Sheimy, N.; Sesay, A. A novel real-time reference key frame scan

matching method. Sensors 2017, 17, 1060. [CrossRef] [PubMed]

4. Gregory Dudek, M.J. Inertial sensors, GPS and odometry. In Springer Handbook of Robotics; Springer:

Berlin/Heidelberg, Germany, 2008; pp. 446–490.

5. Jinglin, S.; Tick, D.; Gans, N. Localization through fusion of discrete and continuous epipolar geometry with

wheel and imu odometry. In Proceedings of the American Control Conference (ACC), San Francisco, CA,

USA, 29 June–1 July 2010.

http://dx.doi.org/10.3390/s17081904
http://www.ncbi.nlm.nih.gov/pubmed/28820451
http://dx.doi.org/10.3390/s17051060
http://www.ncbi.nlm.nih.gov/pubmed/28481285


Sensors 2017, 17, 2164 20 of 22

6. Weng, E.N.G.; Khan, R.U.; Adruce, S.A.Z.; Bee, O.Y. Objects tracking from natural features in mobile

augmented reality. Procedia Soc. Behav. Sci. 2013, 97, 753–760. [CrossRef]

7. Li, J.; Besada, J.A.; Bernardos, A.M.; Tarrío, P.; Casar, J.R. A novel system for object pose estimation using

fused vision and inertial data. Inf. Fusion 2017, 33, 15–28. [CrossRef]

8. Chen, P.; Peng, Z.; Li, D.; Yang, L. An improved augmented reality system based on andar. J. Vis. Commun.

Image Represent. 2016, 37, 63–69. [CrossRef]

9. Daponte, P.; De Vito, L.; Picariello, F.; Riccio, M. State of the art and future developments of the augmented

reality for measurement applications. Measurement 2014, 57, 53–70. [CrossRef]

10. Khandelwal, P.; Swarnalatha, P.; Bisht, N.; Prabu, S. Detection of features to track objects and segmentation using

grabcut for application in marker-less augmented reality. Procedia Comput. Sci. 2015, 58, 698–705. [CrossRef]

11. Potter, C.H.; Hancke, G.P.; Silva, B.J. Machine-to-machine: Possible applications in industrial networks.

In Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town,

South Africa, 25–28 February 2013; pp. 1321–1326.

12. Opperman, C.A.; Hancke, G.P. Using NFC-enabled phones for remote data acquisition and digital control.

In Proceedings of the AFRICON, 2011, Livingstone, Zambia, 13–15 September 2011; pp. 1–6.

13. Kumar, A.; Hancke, G.P. An energy-efficient smart comfort sensing system based on the IEEE 1451 standard

for green buildings. IEEE Sens. J. 2014, 14, 4245–4252. [CrossRef]

14. Silva, B.; Fisher, R.M.; Kumar, A.; Hancke, G.P. Experimental link quality characterization of wireless sensor

networks for underground monitoring. IEEE Trans. Ind. Inform. 2015, 11, 1099–1110. [CrossRef]

15. Kruger, C.P.; Abu-Mahfouz, A.M.; Hancke, G.P. Rapid prototyping of a wireless sensor network gateway

for the internet of things using off-the-shelf components. In Proceedings of the 2015 IEEE International

Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; pp. 1926–1931.

16. Phala, K.S.E.; Kumar, A.; Hancke, G.P. Air quality monitoring system based on ISO/IEC/IEEE 21451

standards. IEEE Sens. J. 2016, 16, 5037–5045. [CrossRef]

17. Cheng, B.; Cui, L.; Jia, W.; Zhao, W.; Hancke, G.P. Multiple region of interest coverage in camera sensor

networks for tele-intensive care units. IEEE Trans. Ind. Inform. 2016, 12, 2331–2341. [CrossRef]

18. Ben-Afia, A.; Deambrogio, D.; Escher, C.; Macabiau, C.; Soulier, L.; Gay-Bellile, V. Review and classification of

vision-based localization technoques in unknown environments. IET Radar Sonar Navig. 2014, 8, 1059–1072.

[CrossRef]

19. Lee, T.J.; Bahn, W.; Jang, B.M.; Song, H.J.; Cho, D.I.D. A new localization method for mobile robot by

data fusion of vision sensor data and motion sensor data. In Proceedings of the 2012 IEEE International

Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; pp. 723–728.

20. Tian, Y.; Jie, Z.; Tan, J. Adaptive-frame-rate monocular vision and imu fusion for robust indoor positioning.

In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe,

Germany, 6–10 May 2013; pp. 2257–2262.

21. Borenstein, J.; Everett, H.R.; Feng, L.; Wehe, D. Navigating mobile robots: Systems and techniques.

J. Robot. Syst. 1997, 14, 231–249. [CrossRef]

22. Persa, S.; Jonker, P. Real-time computer vision system for mobile robot. In SPIE, Intelligent Robots and

Computer Vision XX: Algorithms, Techniques, and Active Vision; David, P.C., Ernest, L.H., Eds.; SPIE: Bellingham,

WA, USA, 2001; pp. 105–114.

23. Goel, P.; Roumeliotis, S.I.; Sukhatme, G.S. Robust localization using relative and absolute position estimates.

In Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS ‘99,

Kyongju, Korea, 17–21 October 1999; pp. 1134–1140.

24. Fantian, K.; Youping, C.; Jingming, X.; Gang, Z.; Zude, Z. Mobile robot localization based on extended

kalman filter. In Proceedings of the 2006 6th World Congress on Intelligent Control and Automation, Dalian,

China, 21–23 June 2006; pp. 9242–9246.

25. Alatise, M.; Hancke, G.P. Pose estimation of a mobile robot using monocular vision and inertial sensors data.

In Proceedings of the IEEE AFRICON 2017, Cape Town, South Africa, 18–20 September 2017.

26. Kumar, K.; Reddy, P.K.; Narendra, N.; Swamy, P.; Varghese, A.; Chandra, M.G.; Balamuralidhar, P.

An improved tracking using IMU and vision fusion for mobile augemented reality applications. Int. J.

Multimed. Appl. (IJMA) 2014, 6, 13–29.

27. Erdem, A.T.; Ercan, A.O. Fusing inertial sensor data in an extended kalman filter for 3D camera tracking.

IEEE Trans. Image Process. 2015, 24, 538–548. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.sbspro.2013.10.297
http://dx.doi.org/10.1016/j.inffus.2016.04.006
http://dx.doi.org/10.1016/j.jvcir.2015.06.016
http://dx.doi.org/10.1016/j.measurement.2014.07.009
http://dx.doi.org/10.1016/j.procs.2015.08.090
http://dx.doi.org/10.1109/JSEN.2014.2356651
http://dx.doi.org/10.1109/TII.2015.2471263
http://dx.doi.org/10.1109/JSEN.2016.2555935
http://dx.doi.org/10.1109/TII.2016.2574305
http://dx.doi.org/10.1049/iet-rsn.2013.0389
http://dx.doi.org/10.1002/(SICI)1097-4563(199704)14:4&lt;231::AID-ROB2&gt;3.0.CO;2-R
http://dx.doi.org/10.1109/TIP.2014.2380176
http://www.ncbi.nlm.nih.gov/pubmed/25531951


Sensors 2017, 17, 2164 21 of 22

28. Azuma, R.T. A survey of augmented reality. Presence Teleoper. Virtual Environ. 1997, 6, 355–385. [CrossRef]

29. Nasir, A.K.; Hille, C.; Roth, H. Data fusion of stereo vision and gyroscope for estimation of indoor mobile

robot orientation. IFAC Proc. Vol. 2012, 45, 163–168. [CrossRef]

30. Bird, J.; Arden, D. Indoor navigation with foot-mounted strapdown inertial navigation and magnetic sensors

[emerging opportunities for localization and tracking]. IEEE Wirel. Commun. 2011, 18, 28–35. [CrossRef]

31. Sibai, F.N.; Trigui, H.; Zanini, P.C.; Al-Odail, A.R. Evaluation of indoor mobile robot localization techniques.

In Proceedings of the 2012 International Conference on Computer Systems and Industrial Informatics,

Sharjah, UAE, 18–20 December 2012; pp. 1–6.

32. Aggarwal, P.; Syed, Z.; Niu, X.; El-Sheimy, N. A standard testing and calibration procedure for low cost

mems inertial sensors and units. J. Navig. 2008, 61, 323–336. [CrossRef]

33. Genc, Y.; Riedel, S.; Souvannavong, F.; Akınlar, C.; Navab, N. Marker-less tracking for AR: A learning-based

approach. In Proceedings of the 2002 International Symposium on Mixed and Augmented Reality,

ISMAR 2002, Darmstadt, Germany, 1 October 2002. [CrossRef]

34. Ozuysal, M.; Fua, P.; Lepetit, V. Fast keypoint recognition in ten lines of code. In Proceedings of the IEEE

International Conference on Computer Visionand Pattern Recognition, Minneapolis, MN, USA, 17–22 June

2007; pp. 1–8.

35. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.

[CrossRef]

36. Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (surf). Comput. Vis. Image Underst.

2008, 110, 346–359. [CrossRef]

37. Loncomilla, P.; Ruiz-del-Solar, J.; Martínez, L. Object recognition using local invariant features for robotic

applications: A survey. Pattern Recognit. 2016, 60, 499–514. [CrossRef]

38. Farooq, J. Object detection and identification using surf and bow model. In Proceedings of the 2016

International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), Quetta, Pakistan,

11–12 April 2016; pp. 318–323.

39. Hol, J.; Schön, T.; Gustafsson, F. Modeling and calibration of inertial and vision sensors. Int. J. Robot. Res.

2010, 2, 25. [CrossRef]

40. Harris, C.; Stephens, M.C. A combined corner and edge detector. Proc. Alvey Vis. Conf. 1988, 15, 147–151.

41. Tomasi, C.; Kanade, T. Shape and Motion from Image Streams: A Factorization Method—Part 3: Detection and Tracking

of Point Features; Technical Report CMU-CS-91-132; Carnegie Mellon University: Pittsburgh, PA, USA, 1991.

42. Mikolajczyk, K.; Schmid, C. Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 2004, 60, 63–86.

43. Fischler, M.; Bolles, R. Random sample consensus: A paradigm for model fitting with applications to image

analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

44. Serradell, E.; Ozuysal, M.; Lepetit, V.; Fua, P.; Moreno-Noquer, F. Combining geometric and appearance

prioris for robust homography estimation. In Proceedings of the 11th European Conference on Computer

Vision, Crete, Greece, 5–11 September 2010; pp. 58–72.

45. Zhai, M.; Shan, F.; Jing, Z. Homography estimation from planar contours in image sequence. Opt. Eng. 2010,

49, 037202.

46. Cheng, C.-M.; Lai, S.-H. A consensus sampling technique for fast and robust model fitting. Pattern Recognit.

2009, 42, 1318–1329. [CrossRef]

47. Torr, P.H.; Murray, D.W. The development and comparison of robust methods for estimating the fundamental

matrix. Int.J. Comput. Vis. 1997, 24, 271–300. [CrossRef]

48. Chen, C.-S.; Hung, Y.-P.; Cheng, J.-B. Ransac-based darces: A new approach to fast automatic registration of

partially range images. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 1229–1234. [CrossRef]

49. Gonzalez-Ahuilera, D.; Rodriguez-Gonzalvez, P.; Hernandez-Lopez, D.; Lerma, J.L. A robust and hierchical

approach for the automatic co-resgistration of intensity and visible images. Opt. Laser Technol. 2012, 44,

1915–1923. [CrossRef]

50. Lv, Y.; Feng, J.; Li, Z.; Liu, W.; Cao, J. A new robust 2D camera calibration method using ransac. Opt. Int. J.

Light Electron Opt. 2015, 126, 4910–4915. [CrossRef]

51. Zhou, F.; Cui, Y.; Wang, Y.; Liu, L.; Gao, H. Accurate and robust estimation of camera parameters using

ransac. Opt. Lasers Eng. 2013, 51, 197–212. [CrossRef]

52. Marchand, E.; Uchiyama, H.; Spindler, F. Pose estimation for augmented reality: A hands-on survey.

IEEE Trans. Vis. Comput. Graph. 2016, 22, 2633–2651. [CrossRef] [PubMed]

http://dx.doi.org/10.1162/pres.1997.6.4.355
http://dx.doi.org/10.3182/20120403-3-DE-3010.00058
http://dx.doi.org/10.1109/MWC.2011.5751293
http://dx.doi.org/10.1017/S0373463307004560
http://dx.doi.org/10.1109/ISMAR.2002.1115122
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.patcog.2016.05.021
http://dx.doi.org/10.1177/0278364909356812
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1016/j.patcog.2009.01.007
http://dx.doi.org/10.1023/A:1007927408552
http://dx.doi.org/10.1109/34.809117
http://dx.doi.org/10.1016/j.optlastec.2012.01.034
http://dx.doi.org/10.1016/j.ijleo.2015.09.117
http://dx.doi.org/10.1016/j.optlaseng.2012.10.012
http://dx.doi.org/10.1109/TVCG.2015.2513408
http://www.ncbi.nlm.nih.gov/pubmed/26731768


Sensors 2017, 17, 2164 22 of 22

53. Tao, Y.; Hu, H.; Zhou, H. Integration of vision and inertial sensors for 3D arm motion tracking in home-based

rehabilitation. Int. J. Robot. Res. 2007, 26, 607–624. [CrossRef]

54. Suya, Y.; Neumann, U.; Azuma, R. Hybrid inertial and vision tracking for augmented reality registration.

In Proceedings of the IEEE Virtual Reality (Cat. No. 99CB36316), Houston, TX, USA, 13–17 March 1999;

pp. 260–267.

55. You, S.; Neumann, U. Fusion of vision and gyro tracking for robust augmented reality registration.

In Proceedings of the IEEE Virtual Reality 2001, Yokohama, Japan, 13–17 March 2001; pp. 71–78.

56. Nilsson, J.; Fredriksson, J.; Ödblom, A.C. Reliable vehicle pose estimation using vision and a single-track

model. IEEE Trans. Intell. Transp. Syst. 2014, 15, 14. [CrossRef]

57. Fox, D.; Thrun, S.; Burgard, W.; Dellaert, F. Particle filters for mobile robot localization. In Sequential Monte

Carlo Methods in Practice; Springer: New York, NY, USA, 2001. Available online: http://citeseer.nj.nec.com/

fox01particle.html (accessed on 15 September 2016).

58. Wan, E.A.; Merwe, R.V.D. The unscented kalman filter for nonlinear estimation. In Proceedings of the

Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000 (AS-SPCC),

Lake Louise, AB, Canada, 4 October 2000; pp. 153–158.

59. Jing, C.; Wei, L.; Yongtian, W.; Junwei, G. Fusion of inertial and vision data for accurate tracking. Proc. SPIE

2012, 8349, 83491D.

60. Ligorio, G.; Sabatini, A. Extended kalman filter-based methods for pose estimation using visual, inertial

and magnetic sensors: Comparative analysis and performance evaluation. Sensors 2013, 13, 1919–1941.

[CrossRef] [PubMed]

61. Ahmad, N.; Ghazilla, R.A.R.; Khairi, N.M.; Kasi, V. Reviews on various inertial measurement unit (IMU)

sensor applications. Int. J. Signal Process. Syst. 2013, 1, 256–262. [CrossRef]

62. Diebel, J. Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 2006, 58, 1–35.

63. Zhao, H.; Wang, Z. Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with

extended kalman filter for data fusion. IEEE Sens. J. 2012, 12, 943–953. [CrossRef]

64. Choi, S.; Joung, J.H.; Yu, W.; Cho, J.I. What does ground tell us? Monocular visual odometry under planar

motion constraint. In Proceedings of the 2011 11th International Conference on Control, Automation and

Systems (ICCAS), Gyeonggi-do, Korea, 26–29 October 2011; pp. 1480–1485.

65. Caballero, F.; Merino, L.; Ferruz, J.; Ollero, A. Unmanned aerial vehicle localization based on monocular

vision and online mosaicking. J. Intell. Robot. Syst. 2009, 55, 323–343. [CrossRef]

66. Chaolei, W.; Tianmiao, W.; Jianhong, L.; Yang, C.; Yongliang, W. Monocular vision and IMU based navigation

for a small unmanned helicopter. In Proceedings of the 2012 7th IEEE Conference on Industrial Electronics

and Applications (ICIEA), Singapore, 18–20 July 2012; pp. 1694–1699.

67. Dementhon, D.F.; Davis, L.S. Model-based object pose in lines of code. Int. J. Comput. Vis. 1995, 15, 123–141.

[CrossRef]

68. Zhengyou, Z. Flexible camera calibration by viewing a plane from unknown orientations. In Proceedings of

the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999;

pp. 666–673.

69. Park, J.; Hwang, W.; Kwon, H.I.; Kim, J.H.; Lee, C.H.; Anjum, M.L.; Kim, K.S.; Cho, D.I. High performance

vision tracking system for mobile robot using sensor data fusion with kalman filter. In Proceedings of

the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan,

18–22 October 2010; pp. 3778–3783.

70. Delaune, J.; Le Besnerais, G.; Voirin, T.; Farges, J.L.; Bourdarias, C. Visual–inertial navigation for pinpoint

planetary landing using scale-based landmark matching. Robot. Auton. Syst. 2016, 78, 63–82. [CrossRef]

71. Bleser, G.; Stricker, D. Advanced tracking through efficient image processing and visual–inertial sensor

fusion. Comput. Graph. 2009, 33, 59–72. [CrossRef]

72. Linksprite Technologies, Inc. Linksprite JPEG Color Camera Serial UART Interface. Available online:

www.linksprite.com (accessed on 12 October 2016).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0278364907079278
http://dx.doi.org/10.1109/TITS.2014.2322196
http://citeseer.nj.nec.com/fox01particle.html
http://citeseer.nj.nec.com/fox01particle.html
http://dx.doi.org/10.3390/s130201919
http://www.ncbi.nlm.nih.gov/pubmed/23385409
http://dx.doi.org/10.12720/ijsps.1.2.256-262
http://dx.doi.org/10.1109/JSEN.2011.2166066
http://dx.doi.org/10.1007/s10846-008-9305-7
http://dx.doi.org/10.1007/BF01450852
http://dx.doi.org/10.1016/j.robot.2016.01.007
http://dx.doi.org/10.1016/j.cag.2008.11.004
www.linksprite.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Inertial Sensor-Based Methods 
	Vision Based Methods 
	Fusion of Inertial-Vision Sensor-Based Methods 

	Proposed Modeling Method 
	IMU-Based Pose Estimation 
	Vision Based Pose Estimation Method 
	Fusion Based on IMU and Vision Pose Estimation Method 
	EKF Implementation 

	System Hardware and Experimental Setup 
	Results and Discussion 
	Simulated Results of Object Detection and Recognition in an Image 
	Simulated Results of Object Analysis of Experimental Results 
	Performance: Accuracy 

	Conclusions 

