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Accurate pose estimation of object instances is a key aspect in many ap-

plications, including augmented reality or robotics. For example, a task

of a domestic robot could be to fetch an item from an open drawer. The

poses of both, the drawer and the item have to be known by the robot

in order to fulfil the task. 6D pose estimation of rigid objects has been

addressed with great success in recent years. In large part, this has been

due to the advent of consumer-level RGB-D cameras, which provide rich,

robust input data. However, the practical use of state-of-the-art pose es-

timation approaches is limited by the assumption that objects are rigid.

In cluttered, domestic environments this assumption does often not hold.

Examples are doors, many types of furniture, certain electronic devices

and toys. A robot might encounter these items in any state of articulation.

This work considers the task of one-shot pose estimation of articu-

lated object instances from an RGB-D image. In particular, we address

objects with the topology of a kinematic chain of any length, i.e. objects

are composed of a chain of parts interconnected by joints. We restrict

joints to either revolute joints with 1 DOF (degrees of freedom) rotational

movement or prismatic joints with 1 DOF translational movement. This

topology covers a wide range of common objects (see our dataset for ex-

amples). However, our approach can easily be expanded to any topology,

and to joints with higher degrees of freedom.

Figure 1: Our dataset. These images show results on our dataset. The

estimated poses are depicted as the blue bounding volume, the ground

truth is shown as the green bounding volume of the object parts.

Articulated Pose Estimation. To estimate the pose of a kinematic chain

Ĥ = (H1, . . . ,HK) we need to find the 6D pose Hk for each part k. The

problem is however constrained by the joints within the kinematic chain.

Therefore, we can find the solution by estimating one of the transforma-

tions Hk together with all 1D articulations θ1 . . . ,θK−1, where θk is the

articulation parameter between part k and k+ 1. We assume the type of

each joint and its location within the chain to be known. Given θk we can

derive the rigid body transformation Ak(θk) between the part k and k+1.

The transformation Ak(θk) determines the pose of part k+ 1 as follows:

Hk+1 = HkAk(θk)
−1. We can use this to estimate the 6D poses of all parts

and thus the entire pose Ĥ of the chain from a single part pose together

with the articulation parameters.

Hypothesis Generation. We use a random forest to produce two kinds of

predictions for each pixel i. Given the input depth image, each tree in the

forest predicts object probabilities and object coordinates for each sepa-

rate object part of the kinematic chains (Fig. 2, middle). An articulated

pose hypothesis is sampled as follows. We draw a single pixel i1 from

the inner part (k = 2) randomly using a weight proportional to the object

probabilities pk(i). We pick an object coordinate prediction yk(i1) from

a randomly selected tree t. Together with the camera coordinate x(i1) at

the pixel this yields a 3D - 3D correspondence (x(i1),yk(i1)). Two more
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Figure 2: Articulation estimation. Left: Input depth image, here shown

for the cabinet. The drawer is connected by a prismatic joint and the door

is connected by a revolute joint (white lines are for illustration purposes).

Middle: Random forest output. Top to bottom: Drawer, base, door, where

the left column shows part probabilities and the right the object coordinate

predictions, respectively. Right: Articulation estimation between the parts

of the kinematic chain using 3D-3D correspondences between the drawer

/ base and door / base. Note that the three correspondences (red, white,

blue) are sufficient to estimate the full 8D pose.

correspondences (x(i2),yk+1(i2)) and (x(i3),yk−1(i3)) are sampled in a

square window around i1 from the neighbouring kinematic chain parts

k+ 1 and k− 1. We can now use these correspondences to estimate the

two articulation parameters θk−1 and θk between part k and its neigh-

bours. We derive Ak(θk) and Ak+1(θk+1) and map the two sampled points

yk+1(i2) and yk−1(i3) to the local coordinate system of part k. We have

now three correspondences between the camera system and the local co-

ordinate system of part k, allowing us to calculate the 6D pose Hk using

the Kabsch algorithm. The 6D pose Hk together with the articulation pa-

rameters yields the pose Ĥ of the chain. Fig. 2 illustrates this process

Results. We contribute a new dataset consisting of over 7000 frames

annotated with articulated poses of different objects: two cupboards, a

laptop and a toy train1. The objects show different grades of articulation

ranging from 1 joint to 3 joints. When compared to the 6D pose estimation

pipeline of Brachmann et al. [1] our method shows superior results (89%

averaged over all sequences and objects) in comparison to the baseline

(29%). Qualitative results are shown in Fig. 1. Employing articulation

constraints within the kinematic chain results in better performance on

the individual parts as well as for the kinematic chains in its entirety. Our

approach of pose sampling for kinematic chains does not only need less

correspondences, it is also robust when dealing with heavy self occlusion.

Conclusion. We present a method for pose estimation of kinematic chain

instances from RGB-D images. We employ the constraints introduced by

the joints of the kinematic chain to generate pose hypotheses using K 3D-

3D correspondences for kinematic chains consisting of K parts.

[1] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and

C. Rother. Learning 6d object pose estimation using 3d object co-

ordinates. In ECCV, 2014.

1This dataset will be part of the ICCV 2015 pose challenge: http://cvlab-

dresden.de/iccv2015-pose-challenge


