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Pose Estimation Using Line-Based Dynamic Vision
and Inertial Sensors

Henrik Rehbinder, Member, IEEE,and Bijoy K. Ghosh, Fellow, IEEE

Abstract—In this paper, an observer problem from a computer
vision application is studied. Rigid body pose estimation using iner-
tial sensors and a monocular camera is considered and it is shown
how rotation estimation can be decoupled from position estimation.
Orientation estimation is formulated as an observer problem with
implicit output where the states evolve on (3). A careful ob-
servability study reveals interesting group theoretic structures tied
to the underlying system structure. A locally convergent observer
where the states evolve on (3) is proposed and numerical esti-
mates of the domain of attraction is given. Further, it is shown that,
given convergent orientation estimates, position estimation can be
formulated as a linear implicit output problem. From an applica-
tions perspective, it is outlined how delayed low bandwidth visual
observations and high bandwidth rate gyro measurements can pro-
vide high bandwidth estimates. This is consistent with real-time
constraints due to the complementary characteristics of the sen-
sors which are fused in a multirate way.

Index Terms—Dynamic vision, implicit output, inertial sensors,
lie group, observers.

I. INTRODUCTION

T HE fundamental problem of rigid body state estimation
is that there is no single sensor that measures position

and orientation (pose) with respect to an inertial frame with
high bandwidth and long-term stability. The most known way
of deriving position and orientation is perhaps inertial naviga-
tion where rate gyros and accelerometers are integrated. The
bandwidth of such a system is typically good, but long-term sta-
bility cannot be obtained due to integrated errors. This problem
is further enhanced for cheap sensors where drifting zero-level
offsets will result in an approximately linear error growth in
orientation and a quadratic error growth in position. There are
long-term stable gravity based sensors for attitude estimation
(pitch and roll) such as liquid-filled inclinometers. The working
principle of inclinometers is simply that of a water level. All
gravity based attitude sensors are sensitive to translational ac-
celerations as it is impossible to distinguish between gravity and
inertial forces. Inclinometers are also subject to low bandwidth.
There have been numerous attempts to combine the above men-
tioned sensors by using different heuristics. Aerospace appli-
cations are considered by Greene [13] and Leffertset al. [18].
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Foxlin et al. [10], [11] has studied a virtual reality helmet ap-
plication and among the robotics applications we would like to
point out Vaganayet al.[33], Madniet al.[20] and also Barshan
and Durrant-Whyte [4]. Sakaguchiet al. [28] and Smithet al.
[29] have also considered the problem. Theoretically justified
linear approaches have been studied by Baerveldt and Klang [2]
and Balaram [3] while nonlinear approaches have been investi-
gated by Rehbinder and Hu [25]–[27]. The dominating algo-
rithm among the heuristic studies is the extended Kalman filter
(EKF). Regardless of which method is used, yaw can never be
obtained and position is not considered.

This paper proposes the use of vision and inertial sensors,
fused with a provably stable observer.

A. Vision

Using computer vision as a stand alone sensor for pose esti-
mation is quite a standard task; see, for example, the surveys by
Huang and Netravali [14] and by Olensis [23]. The main body
of research has been devoted to point correspondence based al-
gorithms. An alternative would be a line correspondence based
algorithm such as proposed by Spetsakis [31], [32], Dornaika
and Garcia [9] and by Christy and Horaud [7], [8]. Line corre-
spondences have the advantage of being more robust than point
correspondences. The disadvantages are that line tracking al-
gorithms are computationally more intensive and low sampling
frequency and long time delays can therefore be expected. Fur-
thermore, they are mathematically more complicated. A spe-
cific field of computer vision, where feature tracking and corre-
spondences are studied, isdynamic vision[15], [21], [30] which
utilizes control of dynamical systems where an underlying dy-
namic model for the pose is used. Standard filtering or observer
techniques are often used in dynamic vision. The control theo-
retic approach has also been successfully used inline based vi-
sual servoing by Andreffet al.[1]. In dynamic vision, the above
mentioned time delays and low sampling frequency typically
pose a serious problem when implementing the algorithms de-
veloped. This is especially true if a continuous-time approach
has been used. Such a continuous-time approach is what we will
propose, but we claim to have an algorithm that can be imple-
mented in such a way that the estimates are high bandwidth,
real-time estimates. The reason for this is that our method uses
both vision and inertial sensors and the implementation pro-
posed is a multirate implementation where the vision is run at a
low frequency and the inertial sensors at a high frequency. Our
motivation for why this will work is that the inertial sensors pro-
vide a very accurate high-frequency information about the mo-
tion. Visual information is needed only to estimate the low fre-
quency components of the motion and can therefore be sampled
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at a low frequency. Approaches along this line of thinking has
been proposed earlier by Kurazume and Hirose [17], Lobo and
Dias [19] and by Rehbinder and Ghosh [24]. Apart from these
real-time oriented advantages of using inertial sensors and vi-
sion the robustness of the system will also be enhanced as two
different sensors are used, instead of just one.

B. Observers

Pose estimation is a delicate subject since the set of all ori-
entations is not a vector space, but a manifold and a Lie group,

. In order to circumvent these mathematical difficulties,
local representations such as Euler angles are often used. A con-
sequence of this is complicated nonlinear equations and most
authors resort toEKF-based solutions (see the aforementioned
references). In this paper, we consider observability and propose
an observer where such local representations are not used. The
use of a global representation lends the paper a geometric flavor,
following many ideas proposed by Koditschek [16], Bullo and
Murray [6] and by Soattoet al. [30]. However we do not make
explicit use of the differential geometric framework and stick to
a more standard exposition. The state evolves on and the
output is implicitly characterized. The observability analysis for
this system reveals interesting group theoretic generalizations
of standard linear observability and the observer is designed in
such a way that the estimated state evolves on . The rota-
tion estimation is solved independently of the position and these
estimates can subsequently be used to formulate the position es-
timation as a straightforward problem with linear implicit output
function.

We are of the opinion that the major contributions of this
paper is a new, theoretically sound algorithm that fuses data
from vision and rate gyros and an implementation which en-
ables fast tracking of ego-motion with a slow vision system. We
also outline how these results on orientation estimation can be
used to formulate the position estimation problem as a linear
implicit output problem. From a control theoretic point of view,
the observer proposed is interesting as it evolves not on a vector
space, but on a manifold and the results of the observability anal-
ysis has quite an interesting group structure. A major drawback
is the lack of experimental results and that we do not consider
how to actually find the line correspondences. Further, we con-
sider the observed lines to have known orientations. The outline
of this paper is as follows. In Section II, we derive the mathemat-
ical statement of the problem and in Section III, we study ob-
servability. In Section IV, we describe the orientation estimation
algorithm and prove its convergence and in Section V, we derive
the formulation of the position estimation problem. Section VI
is devoted to the multirate implementation and to handling the
problems with low vision sampling frequency and delays. We
provide simulations in Section VII. In Appendix A, we provide
details of the calculations in Section III.

II. PROBLEM FORMULATION

We will now derive the mathematical formulation of the
problem and describe a moving rigid body equipped with a
camera and a strap-down inertial measurement unit (IMU), i.e.,
a body fixed rate-gyro/accelerometer package.

Fig. 1. Rigid body moving in space.

A. Rigid Body Kinematics

Consider a rigid body moving in an inertial space as shown
in Fig. 1. We are interested in estimating its orientation and po-
sition relative to the surrounding world. Our primary concern
here will be rotation estimation. We denote the inertial frame by

and the body fixed frame by . Let be an arbitrary point in
space and denote by its coordinates in the -frame and by

its coordinates in the -frame (we will use the same nota-
tion for other variables as well). The two coordinate vectors are,
due to the rigid body motion related via

(1)

where is the vector from the -origin to the -origin and
where is a rotation matrix. If we now denote ,

and then rigid body kinematics gives
rise to the following description of the camera motion:

(2)

where

(3)

is called the wedge matrix due to the fact that .
The symbol is the angular velocity expressed in the-frame.
Now let us consider lines fixed in inertial space with the rep-
resentation

(4)

where is an arbitrary point on and its direction vector. The
-coordinates of the lines will be time varying due to camera

motion. Using (1) and (4), we obtain

(5)

which describes the line in -coordinates.
Remark 2.1:The representations of rigid body motion and

lines can be cast in a differential geometric framework where
pose is described as an element in the Lie group of Euclidean
transformations

and the lines are represented as points in the Grassmanian man-
ifold Grass(2,4).
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Fig. 2. Line projected on the image plane.

B. Sensor Measurements

We consider the body to be equipped with a strap-down
IMU. The rate gyros provide measurements of and we
will therefore take the angular velocity as a known entity in the
problem. A strap-down accelerometer measures inertial forces
and gravity in the -frame so the output can be written as

(6)

where and m/s . It is clear that we can
write from (6) as

(7)

For a discussion on inertial sensor offsets, see Section VII. Fi-
nally, we consider the camera. We let the camera be a perfect nor-
malized pinhole camera. For simplicity, we let the camera focal
point coincide with the -origin and let the optical axis coincide
with the -axis of the -frame. To see how a lineprojects onto
the image plane , consider the plane defined by the camera
focal point and the line (Fig. 2). The line on the image plane
is given by the intersection of and . Two vectors in are

and . Thus, a normal vector to is given by

(8)

where is the wedge (cross) product. On the image plane ,
the line is described by the equation

(9)

where and are the image plane coordinates. From (9), it
may be concluded that we can only deriveup to length from
measurements of the projected line. To get a parameterization of
this measurement it is necessary to make some assumption on
the length or orientation of. If we, for example, consider the
case where we use room corners for indoor navigation it is quite
reasonable to assume that the lines we observe never coincide
with the -frame -axis. If they would, that corresponds to the
camera actually being inside the walls. We therefore assume
that is nonzero. An alternative approach would be to make
assumptions on the orientation of. This is studied in [15]. To
avoid technical difficulties we also assume that is bounded.
We make the following assumption.

Assumption 2.1:There is a constant such that
, i.e., and are not parallel.

Furthermore, there is a such that .

Under this assumption, it follows that and that we
can take the following vectors as our observations:

(10)

where is an unknown sign ambiguity parameter
and where

(11)

It is worth pointing out that even though the line parameters are
to a certain extent arbitrary, the problem actually is well-posed.
The sign parameter accounts for unknown line directions and
the normalization for magnitude. Regarding the pointon the
line, take another point which can then be written as

for some . It follows that
, so the output equation is well defined. Note especially that

without any loss of generality we can take which we
shall assume in the sequel.

Assumption 2.2:

C. Formulation as an Implicit Output System

The input–output system we have from (2), (7), and (10) is

(12)

and our interest is to estimate and based on the measure-
ments . The sensor readings and will be used as known
inputs to the system. If the goal is to construct a standard Lu-
enberger-type observer, the parameterswould pose a serious
problem as they are unknown. This problem can be solved by
noting that, from (10), we have

(13)

due to orthogonality of the vectors and . The formulation
of (12) that we can work with, instead, is therefore an implicit
output problem

(14)

where . It has the ad-
vantage that there are no unknown terms in the output equation.
It will also turn out that we will be able to estimate the rotation

without knowing or estimating. We will, therefore, in Sec-
tions III and IV, consider the less complex problem.

Problem 2.1 (Rotation Estimation):Given the system

(15)

and measurements of and , the problem is to estimate
.

Note that for an observer design based on the system model
(15), is not required.
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III. OBSERVABILITY

In order to understand the structure and fundamental limita-
tions of Problem 2.1, we propose to study observability of (15).
It will turn out that a careful treatment of the observability prop-
erties of the problem will result in insights that are very rea-
sonable and intuitive from the perspective of computer vision.
Before showing the actual calculations of observability, we will
comment on the structure of the problem. We consider as
the states and are the unknown parameters in the output
(10). We also note that is time varying. The output equation
is linear in and the state dynamics appear to be linear. How-
ever, since the states live on and not on a vector space,
such a statement lacks meaning. Ifis not confined to ,
then (15) would have linear state dynamics. This fact will be
used later on, in the observability analysis. For a linear system
evolving on a linear space, theunobservable subspace is de-
rived by considering all the initial state values that produce the
same output. As the states here evolve on , a -mani-
fold and a Lie group, what would correspond to the unobserv-
able subspace could be anticipated to be either an unobservable
subgroup or a submanifold. We will see that an unobservable
subgroup will be the answer.

Now, we will briefly review a standard observability deriva-
tion for a normal linear system. The reason for this is that the
derivation, to a large extent, can be mimicked for system (15)
that evolves on Let be a linear system

(16)

evolving on a vector space. Let us consider the time interval
and assume two initial conditions and
such that

(17)

where is the output corresponding to the initial value,
and likewise for . It is easily derived that

(18)

where is the transition matrix for (16). Define the oper-
ator by

(19)

where is the set all functions

such that

We see that (18) can be written as

(20)

and we define theunobservable subspaceas

(21)

Furthermore, the finite-dimensional observability Gramian
for which it holds that is derived and

we obtain

(22)

where is the adjoint operator of . If there is a and
an such that then the system is called
strongly observable. If we now return to (20) and pay particular
attention to the fact that the vector spaceis also a group under
vector addition and that, is the inverse element of , then
(20) can be written as

(23)

where is now viewed as the unobservablesubgroupand
where is the group operation (vector addition). This group
theoretic thinking provides us with the abstraction needed to
study (15).

Now, we go back to our system (15) and consider a time in-
terval . Let us assume and take some

(which defines the output ) and assume that we are
observing lines . Let the lines be ordered in such a way that
the first lines have linearly independent direction vectors.
Obviously . The outputs are given, as in (10), by

. Let be a dif-
ferent initial value and consider parameterizing all choices of
that satisfy the implicit output equation

(24)
In (24), is the solution of the equation

(25)

assuming . is the output of (12) assuming
. This is the natural implicit output generalization

of (17). Let be the transition matrix of (25). We obtain

(26)

and

(27)

The implicit output (24) is equivalent to

(28)
where the fact that has been used. If we, in
analogy with (19), redefine as

... (29)

then (28) can be written equivalently as

(30)
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where the group structure of is now used ( and
is matrix multiplication). This formula should be compared to

(23) and it seems clear that if is a group, then (30)
is the natural generalization of (23). It will be made clear that,
if strong observability holds, then actually is a
subgroup and it, therefore, makes sense to define the following.

Definition 3.1: The unobservable subgroupof the implicit
system (15) is given by

(31)

From (30), we understand that we can first compute using
linear methods and then intersect with . The associated
calculations are sketched in Appendix A.1 and here we only
state the main results.

Definition 3.2: Theobservability sub-Gramiansfor (15) are

(32)
where is the orthogonal complement of . The
following definition corresponds to standard strong observ-
ability for time-varying systems.

Definition 3.3: The implicit output system (15) is called
strongly observableif such that ,

, such that

(33)

The introduction of in the definition is merely a technicality
and for clarity of presentation we will assume that . For
an interpretation of (33), see Remark 3.3 and the derivations in
Appendix A.2. For a strongly observable system, analytic ex-
pressions for the unobservable subgroups can be found.

Theorem 3.1:For a strongly observable (15) the unobserv-
able subgroup is given by one of the following three alternatives.

1) One linearly independent line

(34)

2) Two linearly independent lines

if
if

(35)
3) Three linearly independent lines

(36)

where

if
if

(37)

and where are such that is of full rank. The
matrices are rotation matrices describing rotations of
radians around theth axis. Thus, they are diagonal ma-
trices with 1 on the th position and 1 on the remaining
two positions.

Observation 3.1:For strongly observable systems,
is an Abelian subgroup of .

Proof: First, consider case 1). The identity element
. For every , and as

and as , every element has an inverse. A straightforward
calculation shows that is closed under multiplication.
For the cases 2) and 3), so every element is its own
inverse. It is also straightforward that it is closed under multi-
plication.

Observation 3.2:Let . Let , i.e.,
is similar to , if . Then is an equivalence
relation on .

Proof: The fact that subgroups define equivalence rela-
tions on groups in the above way is a standard fact from group
theory [12, p. 120].

Given the previous observations, we can now formulate a the-
orem about observability.

Theorem 3.2 (Observability):If the system (15) is strongly
observable in the sense of (33) then it is observable up to the
equivalence relation defined by .

It should be noted that, as for linear systems, the observable
part of the configuration space can be viewed as a quotient space
[5, p. 60] defined by the equivalence relation.

Remark 3.1:The unobservable subgroups (34)–(36)
have many intuitive interpretations. Note first of all that the

-matrix corresponds to a change of basis reflecting the
line orientations. For the case , the unobservable states
consist of arbitrary rotations from the true state around an
axis parallel to the observed line. A typical example is that
if only vertical lines are observed, then the heading (yaw)
cannot be estimated. For the cases it makes a big
difference whether or not the observed lines are orthogonal.
We first consider the orthogonal case i.e when .
When , then consists of all the four elements
corresponding to . The states that cannot be
distinguished from the true states are those corresponding to

-rotations around the two axes and around the axis
perpendicular to those. For the same fact is true so
that when all the lines are orthogonal, it does not matter if we
observe two lines or three. Considering the other extreme, when
all line pairs are nonorthogonal, we have observability for the

case up to a -rotation around the axis perpendicular to
the observed two. For we have full observability as the
only element in is the identity element.

From an applications perspective, it is rather unfortunate that
the scenario with orthogonal lines provides the least informa-
tion. This is because, in a typical man-made environment, such
line configurations are most likely to be present. However, even
for the case with orthogonal lines ( or ), we can
argue that we have a certain practical observability. Recall that
the orientations that cannot be distinguished from each other
correspond to rotations of rad (180); so with a rough knowl-
edge of the orientation, we can single out the correct alternative.
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Remark 3.2: If (33) does not hold then it can be argued that
the system is still locally observable in the following sense:
There are many elements of that depend on . They
are however bounded away fromso there is a region around
the true state where observability holds. However sinceas
unknown, it is hard to quantify how large this region is. Further-
more, is no longer a group and the appealing algebraic
structure is lost. In Section IV, we present a local observer which
does not require strong observability and we provide some nu-
merical estimates of the domain of attraction where it is clear
that this domain depends on the position of .

Remark 3.3:To understand the observability condition (33)
consider the equation with . It can be shown (see Ap-
pendix A.1) that this would correspond to being
confined to a plane containing . An alternative formulation is
that

(38)

To ensure that this is not the case, we require that and
such that

(39)

which can be viewed as a condition alternative to (33).

IV. OBSERVER

In this section, we sketch a heuristic motivation for an ob-
server, prove local convergence and numerically estimate its do-
main of attraction. It should be pointed out that the observer is
local in the errors, not in the representation of rigid body rota-
tion. The fact that the observer is local explains why the results
on observability, discussed in Section III, is not of importance
here. This has been commented on in Remark 3.3

A. Heuristic Motivation

An observer for our orientation estimation problem must be
designed in such a way that the estimated statesevolve on

. It is known that elements of obey

(40)

for some . is defined as in (3). As the true states obey
(2) it is reasonable to choose

(41)

where acts as a correction term. The resulting observer can
be written as

(42)

where . This is very reasonable if compared to
the standard Luenberger observer for linear systems

(43)

Fig. 3. Geometry underlying the observer design.

In order to describe the observer, what remains is to decide.
We propose the following observer:

(44)

where the rationale for the choice of is the following, as il-
lustrated in Fig. 3. From the implicit output equation, it follows
that ideally so if it is not satisfied then a cor-
rective angular velocity should be applied. The angular velocity
needed for this can be directed along which consti-
tutes the first factor in the -expression. The second factor is
simply and is the magnitude of the correction.

B. Local Convergence

We now prove that the observer (44) is locally convergent
provided that the following condition of trivial observability is
satisfied together with Assumption 2.1.

Definition 4.1: For every index set let us
define the information matrix

(45)

where is the shortest vector from to . Furthermore,
if there is a such that for each there is an index set

such that

(46)

then the system is calledtrivially observable.
Note: is the vector where is chosen such

that .
Theorem 4.1:Let us assume that Assumption 2.1 holds and

let (15) be trivially observable. Then, the observer (44) is locally
exponentially convergent.

Corollary 4.1: Let us assume that for eachthere are three
integers such that the lines intersect in a common
point . Assume furthermore that

(47)

where for some . Then the observer is
convergent.
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Proof of Corollary 4.1: It is easy to see that the system is
trivially observable for this simple case.

Proof of Theorem 4.2:Define the error rotation

(48)

and the estimation error

(49)

The error rotation dynamics are

(50)

Consider the Lyapunov function candidate from [16], given as

(51)

The total derivative is

(52)

In order to show local exponential convergence, we must show
that for some constants . A simple
calculation shows that

(53)

so that we have

(54)

As a consequence of Assumption 2.1, there are and
such that

(55)

Use now Rodriques’ representation for rotation matrices (see
[22, p. 28])

(56)

where , and where . By noting that

(57)

we have

(58)

and

(59)

is the Ordo-symbol, that is, is a possibly infinite poly-
nomial where the term with the lowest degree is of degree.
Now, if we let and use the fact that

then we obtain

(60)
Note that due to (55), the Ordo-term is bounded as a function
of time. What now remains is to show that the quadratic term is
bounded below in time by a strictly positive constant. We have

(61)

and also that

(62)

Let us now assume that the pointis a time varying point such
that (see Definition 4.1). Then, it follows
that

(63)

Thus, (60) can be written as

(64)

where . Finally, as a simple consequence of that
we have that

(65)

which concludes the proof.

C. Numerical Estimation of the Domain Attraction

The observer (44) can, according to Theorem 4.1, be shown
to be exponentially convergent. It is of interest to estimate how
large initial errors can be tolerated and how this is connected to
the position vector . The following theorems from [34] can
be used to ascertain this. Let us consider the autonomous system

(66)

Definition 4.2: Suppose 0 is an equilibrium point of (66).
The domain of attraction is defined as

as (67)

Theorem 4.2:Suppose there exist a Lyapunov functionfor
(66). Let be any positive constant such that the level set
defined to be the largest connected set containing the origin such
that is contained in the domain

and is bounded. Then is a subset of .
From (54), we conclude that is a function of but that

it can be taken to have unit length. We now use, once again,
the Rodriques’ representation (see [22, p. 28]) and write

where should be
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Fig. 4. Level curves�(v) (solid) and estimates ofV (v) (dashed).

thought of as a direction of rotation andas the angle of ro-
tation. By virtue of (57), can be written as

(68)

Now, we define as the set of such that is decreasing
on the level sets where , so that

where (69)

An estimate of the domain of attraction is obtained by studying
the sets . To be able to obtain the estimate numerically,
define

(70)

With a slight abuse of notation and using the spherical coordi-
nate representation of, we obtain the following:

(71)

which can be visualized graphically by considering the level
curves where

(72)

In Fig. 4, a sample of these level curves can be seen along with a
conservative estimate of . The figure illustrates how the do-
main of attraction gets smaller and smaller, the closer the camera
is to the lines observed. This is of course natural as we then get
closer and closer to violating the assumption 2.1 that .
The minimization in (71) is carried out by exhaustive search.

V. TRANSLATION ESTIMATION

In this section, we turn to the problem of estimating position
and velocity assuming that the rotation matrix has already been
estimated. We will show how the orientation estimates can be
used to formulate the position estimation problem as a linear
implicit output problem. To actually solve the problem, that is

to find an observer, remains an open issue. We consider the case
where three lines intersect in a common pointand we estimate
the position relative to this point. The pointwill now be used
instead of the arbitrary points on the lines. The translational
parts of (12) are

(73)

where is the accelerometer output. We also
have the rotation estimateand we propose to use this estimate
as if it was a perfect estimate to transform (73) to a linear im-
plicit output system. Let us define

(74)

Observe now that

(75)

Therefore

(76)

where , since the observer presented in
Section IV is convergent. As these unknown error terms vanish
we use the model

(77)

as a model for (73). The quantities and are measur-
able quantities derived from the accelerometer and from the
camera. Let us introduce the state vector
and rewrite . We can write (77) as the
linear implicit output problem

Problem 5.1 (Position Estimation Using Lines):We are
given the system

(78)

where

(79)

and

(80)

Assume that the measurements of and are known in a
certain interval of time, the problem is to estimate.

The state dynamics for system (78) are quite simple (three
parallel double integrators). A Luenberger type observer for crit-
ically stable linear implicit output systems has been shown to be
convergent [21] by Matveevet al.That particular choice of ob-
server is not applicable here since the system is unstable. How-
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ever, the observability Gramian for linear implicit output sys-
tems is also given [21] and it is

(81)

and strong observability amount to the existence of
such that . In order to understand this con-
dition, we consider the equation . Calcula-
tions similar to those in Appendix A.2 shows that if is
confined to a plane, then observability is lost. This is quite nat-
ural as in order to achieve depth information, the camera must
move in such a way that a stereo effect is achieved.

VI. M ULTIRATE IMPLEMENTATION

In this paper, we have so far assumed that sensor data is con-
tinuously available. In an implementation, sensor data will of
course be sampled and the observer has to be integrated in dis-
crete time. Here, as in the rest of this paper we mainly consider
rotation estimation but the implementation presented could just
as well be used for position estimation. As the line detection al-
gorithms will take a considerable amount of time, it will be nec-
essary to make an implementation with this in mind in order to
get a high-bandwidth system. We would like to point out that the
observer itself is convergent to any trajectory and can thus
be said to be of infinite bandwidth. What will limit the achiev-
able bandwidth here is the sampling frequency of theinertial
sensors. It might be argued that what should limit bandwidth is
the computational time associated with thevision data(which
will induce low sampling frequency and time delayed data) but
that is actually not the case. The key insight is that the IMU pro-
vides excellent high-frequency information and the vision data
will only be used to compensate for the slowly varying errors
induced by the integrated gyro signals. In the light of this, the
low vision sampling frequency and the time delay is no longer
a problem as it will implicitly only be used for slowly changing
signals. Regarding the time delayed vision data, this problem
can also be solved by a proper use of the IMU. Predicting the
orientation ahead in time for, say a few seconds, is easy, using
integrated gyros. This prediction will be associated with a small
error but for the time span considered here, this error can for
most practical cases be neglected. The observer can now be run
with old data, estimating old orientations which are used, to-
gether with the predictions, to obtain the actual orientation.

To put all this on a firmer basis, let the IMU sampling fre-
quency be , the vision sampling frequency be and
let the vision data be delayed by . Let also, for simplicity,

and where and are integers. The struc-
ture of the implementation is given in Fig. 5. The multirate ob-
server is

for

else (82)

where , , .
Based on this estimate, where is computed as

(83)

Fig. 5. Data flow in the implementation.

where is the prediction, obtained by solving

(84)

for . With this multirate prediction based architec-
ture itwill bepossible toobtainhigh-bandwidth (due to the IMU),
long-term stable (due tovision)orientation estimateswitha slow,
line-based vision algorithm. This is due to the complementary
bandwidth characteristics of vision and inertial sensors.

VII. SIMULATIONS

To demonstrate the observer convergence and to show the
effect of gyro offsets and of the multirate implementation we
will consider some numerical simulations. We let the camera
move in front of an orthogonal corner which for simplicity is
taken as the origin of the inertial frame. Thus, and are
the three unit vectors along the coordinate axes. The unknown
camera position is given by

(85)

and the orientation trajectory by the Euler angles yaw, pitch
, roll

(86)

which are translated into a rotation matrix . We would like
to point out thatthe only reasonfor using yaw/pitch/roll here is
pedagogic. It is hard to visualize rotations in terms of 33-ma-
trices. The observer is initialized with an error corresponding to
a rotation of rad around a randomly chosen direction. The
gain parameters are taken as . The IMU sampling in-
terval is s, the vision sampling interval is s
as is the delay s. We will show two simulations with the
aboveparameters. InFig.6, trueand estimated, , can be seen
when there is no gyro offset and in Fig. 7 when there is a rate gyro
offset of 0.1 rad/s. It can be seen from both figures that the esti-
mated angles tend to the true. It appears however that in the case
with gyro offsets, the convergence is slower. This is confirmed by
plotting [see (51)] in Fig. 8. It is clear that the convergence
is slower when the offset is present. Note however that the es-
timates still converge to the true values. It is also apparent that
the error decreases every when visual data arrives.
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Fig. 6. Estimated and true yaw pitch and roll angle. There is no rate gyro offset
used in this simulation.

Fig. 7. Estimated and true yaw pitch and roll angle. There is a rate gyro offset
of 0.1 rad/s used in this simulation.

Fig. 8. kX(t)k for the case with and without rate gyro offsets.

VIII. SUMMARY AND DISCUSSION

In this paper, we have discussed a control theoretic approach
to camera pose estimation. We have studied how to simultane-
ously use inertial sensors and computer vision and have paid
particular attention to an implementation that is consistent with
real-time demands. We have solved the orientation estimation
problem with a locally convergent observer where the estimated
states evolve on the Lie group of rotation matrices. When dis-
cussing observability we were able to show that the system it-
self actually is not only locally observable and it would there-
fore be interesting to design an observer with nonlocal conver-
gence. This is one issue of further work. On a more general
level, this problem could be studied in the context of implicit
output systems evolving on manifolds. Position estimation is
not at all solved in this paper and an observer for system (78)
should be designed. A first attempt could be to try an implicit
extended Kalman filter such as proposed by Soattoet al.in [30].
It might also be possible to generalize the ideas by Matveevet
al. to unstable systems. The final test of the ideas presented is
to implement the algorithms on a mobile robot. For the ideas
presented here to be implemented there are a number of ques-
tions that must be answered. Consider the perhaps simplest re-
alistic scenario, that of a mobile robot moving in a structured
indoor environment. We are assuming that the direction of the
lines are known. In an indoor environment, the number of or-
thogonal triplets corresponding to different corners can rather
safely be assumed to dominate over those lines that do not cor-
respond to these corners. With the robot starting in a standstill
position, the accelerometer can be used to determine initial pitch
and roll and as zero yaw anyway is arbitrary, good lines with
their directions along the, , -directions should be possible
to find. Once this initialization phase is completed and the robot
starts moving, these lines can be tracked using the IMU to help
solving the line correspondence problem. The IMU should also
prove helpful when handling the problem of disappearing lines.
If the lines are obscured by other objects, the IMU can be used
for inertial navigation while searching for new lines. Handling
these problems is far from easy but the simultaneous use of vi-
sion and an IMU provides new possibilities for doing it.

APPENDIX A
OBSERVABILITY CALCULATIONS

A. The Unobservable Subgroup

The unobservable subgroup has been defined in (31) as

(87)

and it has been clarified that with
given by (29). Here, we will first compute and later

consider the intersection with . Let us, with a slight abuse
of notation, redefine as an operator from as opposed to

by

... (88)
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where and where

... (89)

is the Kronecker product. A brief summary of some useful
properties of Kronecker products and vectorized matrices is
found in Appendix B. It easy to derive the adjoint operator
of and the observability Gramian is given by

(90)

In the sequel, we will consider the case with , i.e.,
when all the lines are linearly independent. In Remark A.3, we
comment on the case.

If the observed lines are oriented along the coordinate axes,
calculating would be straightforward. The general case
can be transformed to that special case by applying a change of
basis. Recall that the lines are ordered in such a way that the
first -vectors are linearly independent. Take vectors

such that the matrix

if
if

(91)

is full rank. Let be a 3 3 block matrix of 3 3-blocks such
that that the -block is

(92)

is full rank. The identity

(93)

will be used repeatedly. Now, let us define

(94)

We have

(95)

and using (132)–(135) from Appendix B, we have the th
block

(96)

Now, the th block of the matrix can be derived as

(97)

and consequently we have the block diagonal matrix

(98)

It is also clear that

where (99)

Regarding it is clear that it is nonempty because ,
as defined above, is a solution. As a matter of fact, it is at least
three-dimensional. The best observability that can be achieved
is, thus, given by the existence of such that

(100)
which is what has been defined in Definition 3.3 as strong ob-
servability. We have provided an interpretation of this condition
in Remark 3.3 and in Appendix A.2 we have provided the calcu-
lations supporting this interpretation. From now on, we assume
that (100) holds and proceed to the problem of computing .
Given (100) in (99) we see that for , are solu-
tions to the integral constraint for some . For ,
is free and can be written in the basisas for arbi-
trary . In a shorthand notation

(101)

Inserting (101) in from (32), we obtain

(102)

where

(103)

We can now formulate and we do this for the original
definition (29) of , that it is as an operator from . As we
consider , by reverting the vec operation for an

, we have the following:

(104)

where is given by (103). We now proceed to intersect with
. For , it must hold that

(105)

which is equivalent to

(106)

and that

(107)
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The (106) and (107) constrains, and will be explored further
separately for each of the -cases.

1) Three Linearly Independent Lines:Let us assume that
in (103). Then, we obtain

diag (108)

for some that will be determined. Denoting
we get from (106)–(108) that

(109)

(110)

Since is of full rank and , we have

(111)

It now follows from (110) that, either two or none of the is
1. Thus, we have at most four elements. The solution that all

corresponds to the identity solution

(112)

Consider now the solution candidate . We note
that it exists if and only if . From the (109) for

, we infer that which in light
of symmetry of and demands that .
The if part of the statement is equally straightforward. As the
choice of indices is arbitrary we have showed that for

(113)

where are diagonal matrices with 1 on positionand 1 on
the two remaining positions.

2) Two Linearly Independent Lines:Let us now consider
in (103). It follows that

(114)

for some , , . Let in (91) be orthogonal to
and and of unit length. Then, we have

(115)

where

(116)

and (106) can be written as

(117)

From (117), it can be deduced that

(118)

and by using (114) we see that . Using the same thinking
for finding the sign combinations as in the -case we get
that

if
if

(119)
3) One Line: Let in (103). Then

(120)

By letting and in (91) be such that is orthogonal, (106)
simply states that be a rotation matrix. It is then clear from
(120) that

where (121)

are the solutions. We have

(122)

B. Interpretation of Strong Observability

In Definition 3, strong observability was defined and in Re-
mark 3.3 we gave an interpretation. The calculations supporting
this interpretation are given below. Consider (33) with .
Take basis vectors for such that is a
right-oriented ON-base and study the kernel of

(123)

There is a nonempty kernel if the determinant of the right hand
side is zero, i.e.,

(124)

According to the Cauchy–Schwartz inequality, (124) is satisfied
if and only if

or

(125)
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for some . Using (11), the definition of , and that
is a right-oriented basis, this is rewritten as

or

(126)

As and are fixed, this means that is confined
to a plane containing . An alternative formulation is that

(127)

To prevent that this is not the case we demand that and
such that

(128)

C. Linearly Dependent Lines

In Appendix A.1, it was assumed that , i.e., that
all lines have linearly independent direction vectors. Here, we
comment on the -case and motivate why the structural
results still hold. Consider for example the case ,
and let , that is two of the four lines are parallel. The
matrix from (98), for this case is given by

As , from (99) is still the same. define the
unobservable subgroup so the fourth line does not have any in-
fluence on the observability structure of the problem. Regarding
the conditions of strong observability the extra lines does have
the influence that could be expected. The more lines that are
observed the easier it is to achieve strong observability. The ob-
servability sub-Gramians (32) for is for this example

(129)
As and typically are not parallel, it is easier to achieve full
rank with the -term than without it.

APPENDIX B
VECTORIZEDMATRICES AND KRONECKERPRODUCTS

Let be a matrix and a matrix. TheKronecker
productof and is the matrix given by

(130)

An example is that if , then

The operation is defined by stacking matrix columns in a
column vector according to

... (131)

where is ’s :th column. For matrices of compatible di-
mensions, the following rules apply:

(132)

(133)

(134)

(135)
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