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∗ Dept. of Electrical Engineering, Linköping University, Linköping, Sweden
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Abstract—This paper presents a method for global pose
estimation using inertial sensors, monocular vision, and ultra wide

band (UWB) sensors. It is demonstrated that the complementary
characteristics of these sensors can be exploited to provide
improved global pose estimates, without requiring the intro-
duction of any visible infrastructure, such as fiducial markers.
Instead, natural landmarks are jointly estimated with the pose
of the platform using a simultaneous localization and mapping
framework, supported by a small number of easy-to-hide UWB
beacons with known positions. The method is evaluated with
data from a controlled indoor experiment with high precision
ground truth. The results show the benefit of the suggested sensor
combination and suggest directions for further work.

I. INTRODUCTION

To provide full six degrees of freedom (DoF) pose estimates
in indoor environments — indoor positioning and navigation
(IPN) — in real time is an enabling ability for many appli-
cations. A typical example is augmented reality, where an
accurate camera pose is needed to superimpose graphics on
the image; e.g., in TV productions [1, 2] and head-mounted
displays [3]. The technique is also used for vehicle and cargo
localization in warehouses [4]; localization of smartphone
users [5]; and mobile robotics [6]. The systems available today
predominantly rely on pre-installed infrastructure, e.g., refer-
ence markers of some type, or detailed maps in combination
with visual, infrared, ultra sound, or laser sensors, see e.g., [7]
for an overview. Adding infrastructure or providing maps of
environments prone to change can be both time consuming and
difficult to do. This limits the applicability of these systems.

Solutions that avoid the need for external infrastructure
or pre-mapping of the environment using either inertial mea-
surement units (IMUs), see e.g. [42], or cameras exist. Pure
IMU solutions, e.g., [8–10], where the inertial measurements in
one way or another are integrated over time, suffer from drift
already on relatively short term. Camera based systems can
alleviate the need for pre-mapping and external infrastructure
by online mapping of naturally occurring features in a simul-
taneous localization and mapping (SLAM) solution [11–13].
These solutions drift less than the IMU solutions, but have
issues with long term drift and cannot determine the scale
of the map, which is required to relate the map to physical
dimensions.

A popular solution is to combine camera and IMU and
use naturally occurring features to provide pose estimates [14–
17]. The resulting SLAM solutions are however still unable to
provide global pose estimates, and do furthermore tend to drift
over time as a result of accumulating measurement errors over

time [18]. Both problems can be handled by providing extra
information in the form of a map [19]. However, to create the
map can be time consuming and difficult. This paper therefore
proposes to instead combine the visual-inertial SLAM solution
with measurements of the distance to a few known anchor
points using ultra wide band (UWB) radio signals. Including
the UWB measurements makes is possible to provide globally
consistent poses and alleviate the drift problem. Also, com-
pared to providing a complete map, measuring the positions
of a few UWB tags is easy. The usage of IMUs, cameras, and
UWB systems for IPN is nothing new [20, 21], but the idea
to fuse all the three of them is not well explored.

UWB measurements provide the distance to anchor points
and can provide global drift-free positioning (however, only
three DoF). The position accuracy has been reported to be
in the range sub-millimeter to a few decimeters, see [22] for
an overview. It has been suggested to fuse IMU and UWB
measurements to improve pose estimation performance [23–
25]. The papers [24, 25] use the sensor combination only
to track position and ignores the problem of estimating the
orientation. The paper [23] attempts full six DoF tracking,
but experience problem in obtaining height estimates with
accuracy comparable with the estimates in the plane. In [26]
camera, IMU, and UWB sensors are all used together to
track the position and velocity in the plane of a flying drone.
Contrary to the method suggested in this paper, no attempt
is made to obtain a full six DoF pose of the drone. So far,
estimation of the full global six DoF pose using visual-intertial
SLAM aided by UWB measurements of anchor points has not
been attempted.

The problem considered in this paper is sequential estima-
tion of the position and orientation of a platform moving in
six DoF. The three platform mounted sensors considered are:
an IMU, measuring its acceleration and rotational velocity rela-
tive to an inertial reference frame; a UWB radio signal receiver,
measuring the distance to several stationary UWB beacons;
and a monocular camera, producing angular measurements. A
filter that fuses the information from all these three sensors is
proposed and evaluated using real data. The results are then
compared with filters using measurements from only one or
two of the sensors.

The outline of this paper is as follows. The models and the
filter designed to solve the IPN problem is given in Sec. II.
The used sensors are then discussed in Sec. III. Experimental
design and results are presented in Sec. IV, followed by
concluding remarks in Sec. V.

978-1-4673-8402-5/15/$31.00 c©2015 IEEE
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Fig. 1: Flowchart of the proposed tracking filter. The complete
notation is introduced throughout Sec. II. Note that also
uncertainty information in the form of covariance matrices are
passed between the different steps in the flowchart but this is
not explicitly stated in the figure.

II. SYSTEM MODELS AND FILTERING SOLUTION

An overview of the proposed pose estimation filter is
provided in Fig. 1. The pose of the sensor platform and the
visual landmarks are unknown but coupled through the sensor
data. This results in a SLAM problem which has the typical
form

xt+1 = f(xt, ut, wt), (1a)

lt+1 = lt, (1b)

yt = h(xt, lt, et), (1c)

where f(·) describes the platform dynamics, wt is process
noise, lt are static visual landmarks, h(·) is the measurement
function relating the states and the landmarks to the measure-
ments, and et is measurement noise.

The following parts of this section describe how the sensor
measurements and the motion of the system can be modeled.

A. Coordinate Systems

To be able to precisely describe the individual systems and
the sensors, the following coordinate systems are defined:

• Room fixed coordinate system, e — This system has
its origin, Oe, in the surroundings in which the sensor
platform is moving and its axes are fix relative to
the stationary environment. This frame is considered
inertial.

• IMU fixed/system fixed coordinate system, b —
This system is fixed relative to the sensor platform,
which is to be tracked, and is referred to as the
body frame. Its origin, Ob, is in the center of the
accelerometer triad and is oriented such that it is
aligned with the accelerometer and the gyroscope
axes.

• Camera fixed coordinate system, c — This system
has its origin in the optical center of the camera
integrated on the IMU unit with the z-axis is pointing
outwards from the camera parallel to the z-axis of the
IMU.

For convenience the IMU and the platform frame b is assumed
to coincide, avoiding all complicating lever-arm effects when
using this sensor. The aim with the designed filter is hence to
determine the position and the orientation of the platform/IMU
b relative to the room e as a function of time.

B. Inertial Measurements and Dynamic Motion Model

An ideal strap-down accelerometer measures the platform
referenced acceleration and gravitational field

yat = abt + gbt , (2)

while an ideal gyroscope measures the rotational velocity

yωt = ωb
t . (3)

In order to keep state dimension small the inertial mea-
surements can be viewed as known signals according to

ua
t = abt + gbt , (4a)

uω
t = ωb

t . (4b)

By neglecting sensor biases and drift the 10-state motion model
in [27] can be used

xt+1 =



pet+1

vet+1

qbet+1


 =

[
I3 TI3 0
0 I3 0
0 0 I4

]

pet
vet
qbet


+




T 2

2
I3 0

TI3 0
0 T

2



[
R(qbet )Tua

t − ge

S(uω
t )q

be
t

]
+




T 2

2
I3 0

TI3 0

0 T
2
S̃(qbet )



[
wb

a,t

we
ω,t

]
,

(5)

where

S(uω
t ) =




0 −ωx,t −ωy,t −ωz,t

ωx,t 0 ωz,t −ωy,t

ωy,t −ωz,t 0 ωx,t

ωz,t ωy,t −ωx,t 0


 , (6a)



2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 13–16 October 2015, Banff, Alberta, Canada

S̃(qbet ) =



−q1,t −q2,t −q3,t
q0,t −q3,t q2,t
q3,t q0,t −q1,t
−q2,t q1,t q0,t


 . (6b)

Here pet = [xe
t , y

e
t , z

e
t ]

T is the position, vet = [vex,t, v
e
y,t, v

e
z,t]

T

the velocity, and qbet = [q0,t, q1,t, q2,t, q3,t]
T a unit quaternion

parametrizing the orientation of the platform. A rotation matrix
R(qbet ) = Rbe

t ∈ SO(3) can be parametrized using the
unit quaternion. R(qbet )Tua

t − ge is the specific force input
expressed in the e frame, where ge ≈ [0, 0, 9.81]T is the local
earth gravitational field. Note also that the noise model depends
on the orientation of the platform.

C. Camera and Landmark Parametrization

The camera calibration is found using [28] which allows
us to work with normalized image coordinates mc

t . Landmarks
are in the filter parametrized using Cartesian coordinates in the
e-frame as let = [lex,t, ley,t, lez,t]

T while they are expressed in
the c-frame using

lct = RcbRbe
t (let − pet ) + pcc, (7)

where the static relative pose of the camera and the IMU,
represented by Rcb and pcc, is estimated as in [29]. With the
standard pin-hole projection, a camera measurement model is

yct =
1

lcz,t

[
lcx,t
lcy,t

]
+ ect = hc(xt, lt) + ect , (8)

which is a function of both the landmarks and the pose of
the platform. We refer to this parametrization as the direct
parametrization (DP).

A slightly different approach is proposed in [30] where
the authors introduce the inverse depth parametrization (IDP),
which simply decouples the camera orientation from the land-
mark position. IDP has a small linearization error even for
large uncertainty in depth and it is easy to represent the range
of depth uncertainty including infinity in a confidence region.
This makes the parametrization suitable for points at unknown
distance.

To achieve this, six parameters are used. The three first are
the coordinates of the camera from which the landmark was
first observed pet . The remaining three parameters describe the
vector from the camera to the landmark encoded by two angles,
ϕe and θe, and the inverse depth, ρe,

let = pet +
1

ρet
d(ϕe

t , θ
e
t ), (9a)

d(ϕe
t , θ

e
t ) =

[
cosϕe

t sin θ
e
t

sinϕe
t sin θ

e
t

cos θet

]
. (9b)

The angles are computed from the normalized image coordi-
nates as

get = Reb
t Rbcmc

t , (10a)

ϕe
t = arctan2(gey,t, g

e
x,t), (10b)

θet = arctan2(‖[gex,t g
e
y,t]

T ‖2, g
e
z,t), (10c)

where arctan2 is the four-quadrant arctangent function and the
inverse depth can be initiated with any positive number.

The corresponding measurement equation at time t for a
landmark initiated at time j in the camera frame is then

lct = RcbRbe
t

(
ρet (p

e
t − pej −Reb

t Rbcpcc) + d(ϕe
t , θ

e
t )
)
, (11a)

yct =
1

lcz,t

[
lcx,t
lcy,t

]
+ ect . (11b)

This parametrization is used in [15] for SLAM using monoc-
ular vision and inertial sensors. The same sensor setup was
used in [14] showing that feature initialization and prediction
in difficult cases, such as forward motion, can be handled better
using IDP than DP with support of IMU.

D. UWB Measurements

The UWB measurements are in this paper modeled as the
distance between the beacons bi and the receiver r

yUWB
i

t = ‖pebi − per,t‖2 + eUWB
i

t , i ∈ {1, 2, . . . , nb} (12)

where
per,t = pet +Reb

t pbr, (13)

pbr is the position of the UWB receiver relative to the IMU
and it is assumed to be known. Also pebi , the positions of the
UWB beacons in the e-frame, are assumed to be known.

E. Filtering Solution

We can now put together all the models defined above,
which then becomes a nonlinear filtering problem. Let the state
vector, xt consist of the motion model (5), and the set of
landmarks, {lek}

Nl

k=1
where Nl may vary over time. Together

with the sensor models the SLAM system becomes

xt+1 = f(xt, u
a
t , u

ω
t ) +B(xt)wt, (14a)

lt+1 = lt, (14b)

yct = hc(xt, lt) + ect (14c)

yUWB
t = hUWB(xt) + eUWB

t (14d)

where the landmark dynamics are zero since these are as-
sumed stationary and the coordinate frame superscript has been
dropped. A simplistic, yet powerful, approach to the nonlinear
filtering problem (14) is to apply EKF-SLAM [31] which is
an EKF applied to a SLAM system model. The model (14)
is first used in a prediction step where states and landmarks,
xt|t−1 and lt|t−1 together with measurements, ŷUWB

t and ŷct , are
predicted. This prediction is based on measurements gathered
only up to the previous time step. In a second step the
predictions are adjusted, xt|t and lt|t, based on measurements
obtained at the current time step.

The measurement Jacobian is often sparse since the camera
will typically only generate measurements for a subset of
all landmark states at each time instant and an efficient
implementation exploits this structure. Since the measurements
are assumed independent, the measurement update can be
processed iteratively avoiding the need for inverting a large
matrix in the Kalman gain computation.

Note that a similar approach can also be used if some
beacon locations, say pebj j ∈ {1, 2, . . . , }, are unknown. This
is then done by appending the unknown locations to the state
vector with zero dynamics, pebj ,t+1

= pebj ,t. Note that the UWB
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Global world

(a) The local map with informa-
tion about one global position can
be rotated arbitrarily around this
global position and has an unre-
solved scale.

Global world

(b) Having information about more
global positions resolves the scale
and rotational degree of freedom of
the local map and fixes it in the
global world.

Fig. 2: Illustration showing how the positioning setup with a
camera and an IMU in combination with UWB TOA measure-
ments gives global observability. The black line is a track, red
stars are detected landmarks and green dots are global position
information achieved from the UWB system.

measurements now depend on both the receiver and beacon
positions

yUWB
t = hUWB(xt, pbj ) + eUWB

t . (15)

This of course makes the estimation problem much harder due
to the increased degrees of freedom.

F. Resolving a Global Estimate

Combining vision, IMU, and UWB in a SLAM system
has some appealing properties. A monocular camera can alone
only provide locally consistent motion and map estimates
defined up to an unknown scale. That is, it is impossible to
distinguish the scale of the scene from motion, or in other
words, if the scene is far away and the motion is fast or if the
scene is close and the motion is slow. An IMU can help resolve
this issue with scale but globally consistent estimates are still
not achievable without for example information about the exact
initial pose of the platform. The UWB does both resolve the
unknown scale and admits estimation of the absolute pose
and map in the e frame. The global position of the locally
consistent map and motion obtained with a the camera or
camera-IMU setup can be inferred from the UWB distance
measurements. Also the rotation relative to the global frame
can be determined without any knowledge of the initial rotation
since two distinct globally known points (not aligned with
gravity), e.g. two beacons, and the direction of gravity uniquely
determines the orientation. This sub-map to global reference
is illustrated in Fig. 2.

III. SENSOR PROPERTIES

In this section we discuss some properties of the sensors
used in this paper and how obtained measurements are pro-
cessed in order to fit into the filtering framework described in
Sec. II-E.

2

2

3

3

7

7

Fig. 3: An example from the image processing pipeline. The
green stars represent the predicted locations of the landmarks
and the blue ellipses correspond to the prediction uncertainty.
The yellow boxes show the regions in which the NCC between
the landmark descriptors and the image is computed. The red
box show the patch with the NCC maximum. The blue stars
represent the measurements forwarded to the filter.

A. Image Processing

The image processing pipeline is coupled with state esti-
mation allowing tight search regions and outlier rejection using
the filter residuals. Features are generated based on the Harris
corner detector [39] which can be computed in image regions
to limit the computational complexity.

The 10 strongest Harris responses which are above a
threshold, are selected with the condition that they need to
be separated with at least 40 pixels. Around each detection a
11 × 11 pixel patch is extracted representing a local feature
descriptor. Since an estimate of the current pose and all
landmarks are available in the filter the measurements can
be predicted using (8). Then, the normalized cross-correlation
(NCC) between the patch and a 25 × 25 pixel search region,
centered at the prediction, is computed for each landmark that
is predicted to be within the field of view. The maximum from
the NCC operation is considered to be the measurement in
the EKF-SLAM filter. See Fig. 3 for a crop of a full image
from the scene illustrating, predictions, matches, uncertainty
ellipsoids and search-regions. This is a rather simple approach
which does not account for occlusion and does not handle
perspective changes. The highest response from NCC is taken
as the measurement. Outliers are rejected using the norm of
the measurement residuals normalised by the inverse square
root of the innovation covariance

ri = ‖S−1/2(yi − ŷi)‖2. (16)

These ri’s are χ2-distributed based on the assumption that the
residuals are zero-mean Gaussian and are rejected if ri > 9
corresponding to a 99% confidence. This gating approach
should not be too conservative since the depth of newly
initialized landmarks may be far off and thus result in large
residuals.

The algorithm searches for new features as soon as the
number of landmarks which are predicted to be within the
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field of view drops below 10.

Loop closures do not work well based on the prediction of
landmark locations due to two reasons; for longer loops the
integrated drift will be too large resulting in unreliable loop
closure candidates; the pixel patch descriptor is not invariant
to perspective changes. In future solutions more sophisticated
features, such as SIFT [40], should be used as it also enables
appearance based loop closures [41].

B. UWB Processing

UWB is a radio technology using high bandwidth signals
and has applications in fields like communications, localiza-
tion, and radar. The technology typically makes use of very
short transmitted pulses to achieve the high bandwidths. Using
high bandwidth signals has the advantage of giving high spatial
resolution which makes accurate positioning possible. In this
paper we make use of time of arrival (TOA) measurements
obtained from a UWB system. A good overview of the UWB
TOA based challenges and techniques is given in [34]. Here
we will give a short summary.

TOA measurements for a signal transmitted from a beacon
b to a receiver r can under ideal line-of-sight (LOS) conditions
be modeled as

τ =
‖pr − pb‖2

c
+∆τ + eτ (17)

as done in [35]. Here pr is the position of the receiver, pb is
the position of the beacon, c is the speed of light and ∆τ is a
time delay due to phenomena such as processing time in the
hardware and unsynchronized clocks and can be determined
from calibration experiment, and eτ is measurement noise.
Using (17) the distance between a beacon and a receiver can
be inferred from TOA measurements and used in the UWB
measurement model (12).

Under non-line-of-sight (NLOS) or multipath conditions an
extra time delay δ must be inserted into (17) due to the fact
that the transmitted signal might not take the shortest path from
the beacon to the receiver [35]. The delay δ is unknown and
can cause biases in the obtained measurements. It depends on
the environment and can change if the environment changes
and if the beacon or receiver is moved. This is why it is
important to be able to detect NLOS conditions. Due to the
high speed of light, a small delay δ or even a small error
in the calibration of ∆τ will give rise to large positioning
errors where the distance between the UWB units seems to be
longer than it really is. Attempts have been made to model the
distance measurements errors for example in [37, 38], where
error probability distributions such as the lognormal and the
skew-t distributions are explored. What both these probability
density models have in common is long heavy tails for positive
errors but shorter tails for negative errors.

In the proposed filter solution the UWB measurement error
noise is assumed to be zero mean Gaussian, a distribution
with short tails both for positive and negative errors. This
means that, in order to get good filtering results, measurements
belonging to the long positive tails of a more realistic error
distribution must be detected and rejected in the filter. This is
here done by the same type of chi-squared test as described
in (16). Note that this approach can introduce a small bias

Fig. 4: The scene in which the sensor platform was moved.

in the pose estimates since the actual measurements are not
zero mean. It is however a good way to make the filter more
robust against NLOS measurements without having to model
the errors, which is something that can be difficult in indoor
environments prone to change.

IV. EXPERIMENTS

In this section we describe the experiments, the pre-
processing used for synchronization of the sensors, analysis
of the UWB data, and estimation results using several sensor
combinations and geometrical configurations.

A. Experimental Design

Measurement data was collected from an indoor environ-
ment where markers, AR-tags [43], were placed on floor level,
see Fig. 4. Five (nb = 5) Spoonphone [44] UWB beacons
with unique ID:s were placed around the area, see Fig. 6. The
purpose of the markers is to increase the number of possible
corners in the images since the floor was otherwise quite fea-
tureless. Hence, at no time has any marker-based localization
methods been used to simplify the SLAM problem.

Two different sensors were mounted on a rigid platform
which is shown in Fig. 5. The first sensor is a Spoonphone
with a UWB radio signal receiver application, which recorded
the distances and corresponding ID:s to the UWB beacons,
and a built in IMU. The Spoonphone UWB system utilizes a
two-way-ranging technique which enables computation of ∆τ
in (17) online. The measurements obtained from this system
are hence already compensated for this term even without
calibration. The second sensor is an Xsens IMU [45] with an
480×640 pixel gray scale camera contained in a single unit.
The sensor platform was hand held while moved over the area
with markers on the floor. The IMU recorded measurements at
100Hz and the camera at 12.5Hz. The UWB sampling time
was not uniform but each beacon normally transmitted a couple
of times each second.
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Fig. 5: The sensor platform used for data collection.
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A Vicon system [46] with sub-centimeter and sub-degree
accuracy was used to record ground truth data which is used
for filter performance evaluation. The Vicon system was also
used to measure the positions of the UWB transmitters, which
are considered as known parameters in the filter. An illustration
of the data collection setup can be seen in Fig. 6.

The Xsens sensor-unit, Spoonphone, and Vicon system
all have their own internal clock and synchronization was
done after the data collection. The norm of the rotational
velocity of the sensor platform was used in the synchronization
process. This norm was computed from the Vicon data, the
Xsens gyroscopes and the Spoonphone gyroscopes, respec-
tively. Then interpolation was performed such that the sample
time for all the three sensors were the same and also uniform.
The three sensors were then synchronized by maximizing the
correlation between the processed gyroscope norms. The clock
in the Vicon data was used as reference to which the other
two sensors were to be synchronized. Each recorded dataset
started and ended with a couple of seconds where the sensor
platform was vividly shaken to excite the gyroscopes so that
the described correlation technique would work well. These
parts of the data were however only used in the synchronization
process, not for filtering. An example of recorded data before
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Fig. 7: An illustration of the data synchronization. The norm
of the rotational velocities recorded with the Vicon, Xsens,
and Spoonphone sensors, respectively, is used. Note that inter-
polation has been done in order to get uniform sample times
resulting in shorter periods where the norm is negative. The
maximum correlation gives the time lag between the internal
clocks.

and after synchronization can be seen in Fig. 7.

An analysis of the collected UWB distance measurements
was performed. Measurements were compared to the recorded
ground truth and error probability histograms for all the
recorded data can be seen in Fig. 8. The specified accuracy of
the Spoonphone system was about 1 dm. The error histograms
however clearly shows that this is not the case here. All
histograms have a high probability mode at around 0.5m,
probably representing measurements where the transmitted
signals did not take the shortest path due to either multipath or
NLOS. The error histogram for UWB beacon number three,
and to some degree beacon number five, also has a smaller
peak at approximately −1 dm. This smaller peak closer to
zero probably represents LOS measurements but could also
be measurement error of the true distance or a small clock
synchronization error. From the error histograms it is clear that
LOS measurements are rare. Also, taking a closer look at the
data revealed that it suffers from periods where the obtained
distances are locked on to the exact same value as the previ-
ous measurement. In fact, almost 70% of the measurements
suffered from this condition. All UWB measurements were
therefore discarded and replaced by simulated measurements
based on the ground truth data measured with the Vicon
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Fig. 8: The illustration shows distance measurement error
histograms for the different UWB beacons after removing all
measurements that are locked on to the exact same value as
the previous measurement.

system. The sample times of the simulated measurements
correspond exactly to the sample times of the real recorded
data and the measurements were perturbed with Gaussian noise
with standard deviation 1 dm, which is roughly the specified
accuracy. Even though this was not the accuracy obtained with
the equipment used in this paper it is likely to believe that this
accuracy can be obtained with some other equipment. The IMU
data and images used for filter evaluation in Section IV-B are
however both real data from the experiments.

The dataset used for filter evaluation in this paper is
30 s long. The sensor platform has been moved in all three
directions (x, y and z) while being rotated. The acceleration
and velocity of the sensor platform is moderate. During four
shorter time periods of the data there are interruptions in the
flow of UWB measurements. The ground truth trajectory can
be seen in Fig. 6.

B. Results

In this section a selection of experimental results obtained
by applying the algorithm proposed in Sec. II and Sec. III on
the experimental data described in Sec. IV-A are presented.

1) Different sensor configurations: The use of data from
the different sensors placed on the sensor platform was turned
on or off in order to investigate whether there was any gain
in using all three sensors in comparison to only one or two
of them. The experimental results are summarized in Table I
where the root mean square errors (RMSEs) for different
sensor combinations are presented.

The upper part of the table shows results obtained when
using data from the UWB system but not from the camera.
Here we can see that it is possible to obtain relatively good
position estimates in the x- and y-axis direction but the z-axis

TABLE I: Estimation RMSE when using different sensor com-
binations. Distance errors are given in centimeters and angle
errors in degrees. Experiments including the camera measure-
ments have been made both with the direct parametrization
(DP) and the inverse depth parametrization (IDP) of the visual
landmarks.

Sensors x y z Roll Pitch Yaw

UWB1 6.5 7.9 16.7 – – –
UWB + Gyro 6.4 8.6 17.3 29.1 26.9 19.3
UWB + IMU 8.0 20.8 21.6 1.0 3.3 5.0

Vision + Gyro, DP 11.8 8.5 10.1 1.6 1.9 2.4
Vision + Gyro, IDP 10.1 8.9 6.7 1.8 2.9 2.8
Vision + IMU, DP 17.6 11.8 12.0 2.0 2.0 1.0
Vision + IMU, IDP 12.2 13.8 5.0 1.3 1.8 1.2

Vision + Gyro + UWB, DP 3.3 3.5 3.6 1.5 1.0 1.5
Vision + Gyro + UWB, IDP 5.5 5.6 5.6 0.9 1.2 2.2
Vision + IMU + UWB, DP 4.5 4.9 3.5 1.2 1.1 1.9
Vision + IMU + UWB, IDP 5.2 6.5 6.3 1.3 1.1 2.1
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Fig. 9: An illustration of the orientation estimate drift when
using only data from UWB and gyroscopes.

direction is more difficult. This was also noticed in [23]. A
reasonable explanation is that this problem appears because of
the setup of the UWB beacons with a high spread in the x-
and y-directions but a very low spread in the z-direction.

As mentioned before, with only UWB data the orientation
of the platform cannot be estimated. Adding data from the
gyroscopes makes it possible to estimate orientation based
on an correct initial orientation but the biased measurements
make the estimates drift, as can be seen in Fig. 9, and the
UWB data contains no information to reduce this drift. Also
adding data from the accelerometers makes it possible to
correct the drifting orientation estimates by alignment of linear
acceleration information obtained indirectly from the UWB
measurements and directly from the accelerometers. However,
the position estimate get much less accurate. During the time
periods when no UWB measurements were obtained, the filter
has to rely only on dead reckoning from biased accelerometer
data to estimate the position. During these periods the position
estimation error grows quickly. The filter is able to recover
when new UWB measurements are obtained but the total
RMSE for the whole experiment is affected. Fig. 10 illustrates
this behavior.

The middle part of the Table I shows results obtained
when using data from the camera but not from the UWB
system. Here we can see that the orientation estimates are
better compared to in the upper part of the Table I. Fig. 11
illustrates that the visual-inertial combination has a tendency
to drift, a phenomena that was typical for all four experiments
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Fig. 10: An illustration of the position estimate drift during
periods without any new UWB measurements for the case
when using data only from UWB and IMU. The time intervals
shaded red indicate periods without UWB measurements.
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Fig. 11: An illustration of the position errors (top) and orien-
tation errors (bottom) using various sensor combinations.

from the middle part of the Table I.

The lower part of Table I table shows the results after
combining all three sensors. The table shows clear benefits
of combining visual-inertial SLAM with UWB measurements.
The over all position and orientation estimates have improved.
There is no longer any issue with estimation of position in the
z-axis direction nor with maintaining good estimates during
the periods where no new UWB measurements are obtained
and Fig. 12 shows that drift is no longer present, or at least it
has been reduced considerably.

It should be pointed out that all the results obtained
without UWB are local in nature, and relies on being properly
initialized. Similarly, only UWB and gyroscope can only give
a local orientation based on the initialization.

2) Effect of UWB beacon placement: In indoor environ-
ments it is common to place UWB beacons at high levels so
that the direct path between the beacon and the receiver is less
likely to be blocked by e.g. furniture or people. This section
will therefore only consider beacons placed at high levels.
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Fig. 12: An illustration of the tracking result when combining
data from all three sensors.
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Fig. 13: An illustration of how the positioning accuracy in the
z-direction is increased when an additional beacon, centered
in the middle of the original beacons but at varying height,
is introduced. The dashed line corresponds to the error from
Section IV-B1 with the original setup and the solid lines corre-
sponds to the error when the additional beacon is introduced.

The UWB system in its current configuration has some
problems estimating the height of the sensor platform, as could
be seen in Section IV-B1. In order to investigate whether the
pose estimate accuracy could be further increased, simulated
UWB beacons were placed such that the spread in height
became larger. In a first try, one additional beacon centered in
the middle of all the other beacons was simulated. The height
at which it was placed was varied and the tracking result using
only UWB data can be seen in Fig. 13.

In a second experiment the additional beacon was instead
placed right above the center of the track at the reasonable roof
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Fig. 14: An illustration of the tracking result in the z-axis
direction with and without an extra simulated beacon placed
at roof level (2.5m) right above the sensor platform track.

level 2.5m. This resulted in a tracking accuracy in z-direction
of about 11.5 cm, which is the lower limit in Fig. 13. Raising
the beacon higher gave no significant improvement. Neither
did adding more than one beacon at the same height 2.5m.

These results tells us that spreading the UWB beacons in
the z-axis as well gives a better geometrical configuration for
the case when only UWB data is used which should also be
clear from Fig. 14. The highest accuracy is achieved when
an extra tag is placed right above the track or alternatively
at a very high level. However, even though there is a clear
advantage with adding one extra beacon for the case when only
UWB data is used in the filter, turning on all three sensors gave
no clear improvement compared to the last part of Table I.
This indicates that the camera-inertial system can support
the UWB system in dimensions where the UWB beacon
configuration fails to give sufficient information. This raises
the questions; Can any of the UWB beacons in the original
setup be removed without great loss in tracking accuracy? How
few UWB beacons are actually needed for the case when data
from camera, IMU and UWB are all being fused?

3) Minimal UWB beacon setup: This section evaluates
how many and which beacons are needed to improve the
visual-inertial SLAM solution. This is done by removing
one beacon (from the original setup in Fig. 6) at a time
from the measurements in the “Vision + IMU + UWB, DP”
configuration in Sec. IV-B1. In each stage, the beacon that
changes the estimate accuracy the least compared to the
previous best setup is removed. The result of the procedure, is
presented in Table II. It shows that the difference between
using five or two beacons is almost negligible, yielding a
position and orientation accuracy of about half a decimeter
and a few degrees respectively. With less than two beacons,
the estimate degenerates considerably, which is in agreement
with the observability discussion in Sec. II-F

V. CONCLUSIONS

Indoor positioning systems based on measurements from
cameras and/or inertial measurement units are gaining pop-
ularity. Systems like this often suffer from drifting estimates
since both these sensors measure only relative motion. Existing
solutions to this problem predominantly rely on pre-installed
infrastructure, such as reference markers of some type, or
detailed maps. Additional infrastructure is both time consum-

TABLE II: RMSE using different subsets of UWB beacons
from the configuration in Fig. 6 in the “Vision + IMU + UWB,
DP” configuration in Sec. IV-B1. Distance and orientation
errors are given in centimeters and degrees, respectively. Lines
in bold face, indicate the beacons contributing the least to the
estimate for a given number of beacons.

ID:s of removed x y z Roll Pitch Yaw

UWB beacons

– 4.5 4.9 3.5 1.2 1.1 1.9

1 4.6 4.5 3.6 1.5 1.2 2.0

2 4.5 4.3 4.5 0.9 1.0 2.3
3 4.7 5.0 3.5 1.5 1.1 2.1
4 4.6 4.6 4.5 1.0 1.1 2.3
5 4.9 5.5 3.6 1.4 1.0 1.9

1,2 5.0 4.4 4.3 1.6 1.1 2.0

1,3 4.9 5.1 4.0 1.8 1.4 2.0
1,4 4.8 4.9 4.5 1.1 1.2 2.3
1,5 5.8 5.7 3.9 1.3 1.4 1.6

1,2,3 5.7 4.8 4.2 1.8 1.2 2.1

1,2,4 8.9 5.1 6.1 1.5 1.2 2.7
1,2,5 7.9 7.0 6.8 1.7 1.5 1.4

1,2,3,42 – – – – – –
1,2,3,4 11.8 7.1 9.0 1.4 1.5 1.6

ing and costly to install and this is a limiting factor for the
applicability of visual-inertial positioning systems.

The use of time of arrival measurements from ultra wide
band to a few number of anchor points in order to support
visual-inertial positioning systems has been explored in this
paper. It has been shown that measurements of the distance to a
few anchor points using UWB can be used to aid visual-inertial
simultaneous localization and mapping to obtain improved
drift-free global six degree of freedom pose estimates. It
has been shown that the proposed solution is capable of
handling missing UWB data and also poorly placed anchor
points. Furthermore, this can be achieved without the need
for extensive pre-mapping of the environment since the results
presented in this paper has shown that only a very few number
of anchor points is needed. The result has been verified with
experimental data with good ground truth.

Future work should include exploring more sophisticated
visual features that enable appearance based loop closures for
robuster performance. It is also important to further investigate
if the Gaussian distribution assumption of the UWB distance
measurement errors is reasonable. Based on the results in this
paper this might not be the case since non-line-of-sight mea-
surements seems to occur rather frequently. If non-Gaussian
assumptions has to be made, then perhaps a particle filter
implementation of the proposed filter would give better results.
A third direction for future work is to also treat the positions
of the UWB anchor points as landmarks within the SLAM
framework.
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