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Abstract

This paper addresses the problem of facial landmark lo-

calization and tracking from a single camera. We present

a two-stage cascaded deformable shape model to effective-

ly and efficiently localize facial landmarks with large head

pose variations. For face detection, we propose a group

sparse learning method to automatically select the most

salient facial landmarks. By introducing 3D face shape

model, we use procrustes analysis to achieve pose-free fa-

cial landmark initialization. For deformation, the first step

uses mean-shift local search with constrained local mod-

el to rapidly approach the global optimum. The second step

uses component-wise active contours to discriminatively re-

fine the subtle shape variation. Our framework can simul-

taneously handle face detection, pose-free landmark local-

ization and tracking in real time. Extensive experiments are

conducted on both laboratory environmental face databas-

es and face-in-the-wild databases. All results demonstrate

that our approach has certain advantages over state-of-the-

art methods in handling pose variations1.

1. Introduction

Facial landmark localization and tracking have been s-

tudied for many years in computer vision. Landmark lo-

calization addresses the problem of matching a group of

predefined 2D landmarks to a given facial image. Land-

mark tracking is to continuously capture the predefined

landmarks in a facial image sequence. Such tasks are pre-

requisite for many applications, such as face recognition,

facial expression analysis, 3D face modeling, video editing,

etc. All the applications require accurate landmark posi-

tions. However, due to complicated background, lighting

conditions and particularly pose variations, accurate land-
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mark localization remains challenging in practice.

Initialization is the first and key step in landmark local-

ization and tracking. Many alignment algorithms heavily

rely on the initialization. Some of them are gradient descent

based methods and may encounter the local optimum. For

example, Active Appearance Model (AAM) [5] is very sen-

sitive to initial positions because complex appearance with

illumination and noise may result in local minima. In addi-

tion, even before initialization, most alignment algorithm-

s [10, 11, 18, 26, 31] require to locate face region from face

detectors [19]. Though they are widely used in many fa-

cial applications, they may lack flexibility of handling large

facial pose variations.

Although multi-view face shape models [6, 33, 34] par-

tially solve the pose variation problem, they cannot cov-

er unlimited possibilities of view changes. Therefore, 3D

shape model [15, 29] is proposed to handle continuous view

change. There are two possible ways to explicitly project

3D shape onto 2D images. One way is to use facial an-

chor points, e.g. eye corners and mouth corners, mapping

from 3D shape; The other is to leverage the view informa-

tion from head pose estimators. Since most pose estima-

tors [4, 24] are based on face detectors, which makes the

problem recursive, a better choice is to train fast and accu-

rate facial anchor point detectors.

For aligning landmarks, traditional parametric method-

s, e.g. Active Shape Model (ASM) [7, 9], AAM [5, 23],

have achieved success for their wide applicability. Howev-

er, they are sensitive to initial shapes. Holistic algorithms

can not handle subtle shape variations [7]. By exhaustive

local search, Constrained Local Model (CLM) [8, 26, 30]

is expected to pull the landmarks out of local minima. As-

suming so, auxiliary local discriminative search may further

approach the global optimum.

In this paper, we propose a unified framework to handle

all the above-mentioned problems. A group sparse learning

method is proposed to automatically select the optimized

anchor points. Then a two-level cascaded deformable shape

model is presented to search global optimal positions. Start-

ing from Zhu and Ramanan’s work [35], we set up weights

for each landmark patch in the part mixture model indicat-



ing the likelihood of choosing these parts. By regulariz-

ing the weights to be group sparse, maximizing the mar-

gin over positive and negative training samples generates

effective weights to simplify the mixtures of parts. With

initialized landmarks, we firstly perform mean-shift search

on pre-trained response map for each landmark with CLM,

pulling the landmarks into the convergence basin globally.

Then component-wise active contour model is used to refine

each component of face, e.g. eyebrows, eyes, etc. Exhaus-

tive local search inside the convergence basin with global

optimum is expected to approach the optimal solution.

Our framework primarily leads to the following contri-

butions. 1) The proposed optimized mixtures and two-step

cascaded deformable shape model achieve real-time perfor-

mance in facial landmark tracking. 2) The proposed two-

step cascaded deformable shape model enhances the flexi-

bility to capture subtle shape variations from classical para-

metric shape models by integrating component-wise active

contours. 3) Extensive experiments have been conducted to

demonstrate that our pose-free landmark fitting framework

consistently achieves more significant results comparing to

state-of-the-art methods on not only laboratory environmen-

tal face databases but also face-in-the-wild databases.

2. Related Work

For face detection, Viola and Jones [19] proposed a

widely used framework. It is fast and effective for most

near-frontal faces, but lacks flexibility dealing with large

pose variations. Sivic et al. [11] used mixture of tree struc-

ture to estimate landmarks. Uricar et al. [27] proposed a

seven-anchor point detector based on deformable part mod-

els (DPM) [12] and structure-output SVMs which achieve

fast speed and high accuracy. However, when the detec-

tion error occurs, seven points are not sufficient to provide

steady initial landmarks. Zhu and Ramanan [35] proposed

another framework based on mixture of part model. How-

ever, the size of parts pool in their model is large, which

impedes the potential for real-time landmark tracking.

Parametric models have been widely used in face align-

ment. Active Shape Model (ASM) [7, 9] and Active Ap-

pearance Model (AAM) [5, 23] have achieved good per-

formance in face alignment. But it is difficult to repre-

sent face shapes merely using linear shape combination or

appearance subspace in extremely varying views . Con-

strained Local Model (CLM) [8, 26, 30], another success-

ful deformable fitting model, performs exhaustive local

search and optimizes the overall likelihood of the landmark-

s’ alignment. To alleviate the varying view problem, multi-

view shape models [6, 34] were proposed either by local

search to estimate the head pose or by incrementally com-

bining models from different views.

Nonparametric shape regression is another way for shape

registration. Cristinacce and Cootes [9] introduced boost-

ed regression for individual landmarks. Valstar et al. [28]

combined the boosted regressor with graph model. Liang

et al. [20] trained directional classifiers to discriminative-

ly search facial components. Pose or shape fern regres-

sors [3, 10] was proposed to handle different shape vari-

ations. Rivera and Martinez [25] proposed kernel regres-

sion to deal with low-resolution images. Xiong and De

la Torre [31] introduced supervised descent method in ap-

proximating the regression matrix mapping from features

to locations. But those methods either lack flexibility in

representing pose-variate cases or require large amount of

training faces. In contrast, our framework simultaneous-

ly tackles face detection and landmark initialization using

proposed optimized anchor point detectors. The framework

deals with arbitrary head pose conditions by introducing 3D

shape model. It achieves real time performance due to the

group sparse selection and cascaded two-stage deformation

strategy.

3. Robust Initialization via Optimized Part

Mixtures

Before shape alignment or landmark tracking, robust ini-

tialization promotes the performance and prevents the fit-

ting process from falling into local minima. We introduce a

pictorial structure [13] to organize the landmarks. In order

to achieve real-time performance for tracking, we propose a

group sparse learning based method to automatically select

the landmarks and reorganize them into a new tree struc-

ture part mixture, which dramatically decreases the number

of landmarks and still preserves the detection effectiveness.

A max-margin method is used to learn the weights for the

landmark detector.

3.1. Mixtures of Part Model

Every facial landmark with predefined patch neighbor-

hood is a part. Same landmark in different viewpoints may

be different parts. As a consequence, the landmarks of a

face are a mixture of those parts. We define the shared pool

of parts as V . The connection between two parts forms an

edge in E. In connecting the landmarks, specific tree struc-

tures are superior to general complete graphical models for

not only the simplicity of representation but also the effi-

ciency in inference [13, 35].

For each viewpoint i, we define a tree Ti = (Vi, Ei), i ∈
{1, 2, ...,M}. Given a facial image IH×W , the jth land-

mark position sj = (xj , yj) ∈ Sj ⊂ {1, ..., H} ×
{1, ...,W}, j ∈ {1, 2, ..., N}. The measuring of a land-

mark configuration s = (s1, ..., sN ) is defined by a scoring

function f : I × S → R,S = {S1, ...,SN}.

fi(I, s) =
∑

j∈Vi

qi(I, sj) +
∑

(j,k)∈Ei

gi(sj , sk) (1)

The first term in Equation 1 is a local patch appearance e-

valuation function qi : I × Si → R, i ∈ (1, N), defined as
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Figure 1. Pose-free facial landmark initialization using Procrustes analysis on 3D reference shape and detected optimized part mixture.

qi(I, sj) =
〈

w
iq
j ,Φiq

j (I, sj)
〉

, indicating how likely a land-

mark is in an aligned position. The second term is the shape

deformation cost gi : Sj × Sk → R, (j, k) ∈ E, defined as

gi(sj , sk) =
〈

w
ig
jk,Φ

ig
jk(sj , sk)

〉

, balancing the relative po-

sitions of neighboring landmarks. w
iq
j is the weight vector

convolving the feature descriptor of patch j, Φiq
j (I, sj). w

ig
jk

are the weights controlling the shape displacement func-

tion defined as Φig
jk(sj , sk) = (dx, dy, dx2, dy2), where

(dx, dy) = sk − sj . Such quadratic deformation cost con-

trols the model with only four parameters and has shown

its effectiveness in face alignment [35]. Further, we for-

mulate the two evaluation functions in a uniform way to

obtain a more compact representation fi(I, s) =
〈

w̃i, Φ̃i

〉

,

where w̃i = [wiq
j ,w

ig
jk] and Φ̃i = [Φiq

j (I, sj),Φ
ig
jk(sj , sk)]

for each viewpoint i.

Given an image I , for each possible configuration of

landmark positions, we evaluate the score of each configu-

ration in each viewpoint. The largest score potentially pro-

vides the most likely localization of the landmarks. Thus

the landmark positions can be obtained by maximizing E-

quation 2.

s∗ = argmax
s∈S,i∈(1,M)

fi(I, s) (2)

3.2. Group Sparse Learning for Landmark Selec-
tion

Facial landmarks are usually defined manually without

any consistent rules. Evidence is that the annotation a-

mong different face datasets is largely different. However,

we observe that there are some common points defined by

those different datasets, such as eye corners, eyebrow cor-

ners, mouth corners, upper lip and lower lip points, etc. We

intend to automatically select those landmarks which well

represent facial structure while the number of landmarks

meets real-time requirement for inference.

The chosen landmarks are sparse because only several

key positions are needed to depict the component. Consid-

ering the location and rough shape of a mouth, two corner

points, upper and lower lip points are sufficient to locate the

mouth. However, within each landmark patch, every pixel

contributes to the feature descriptor. We should not expect

pixels for appearance are sparse. Consequently, such prop-

erty is well characterized by group sparsity [17, 21].

3.3. Max-Margin Learning for Landmark Parame-
ters

In our learning process, we collect positive samples

from MultiPIE database [14], which contains annotations

and viewpoint information, denoted as C+. Negative sam-

ples are collected from arbitrary natural scenes but with-

out faces, denoted as C−. The overall training set is C =
C+∪C−. For each viewpoint i, we need to train the weights

w̃i. Hence we denote w̃i as w̃ in the following notation-

s. Based on Equation 1, considering the group sparse con-

straint from section 3.2, we establish a max-margin frame-

work in Equation 3.

argmin
w̃,ε≥0

(

∑

n∈C

εn + λ1 ‖w̃‖22 + λ2

m
∑

t=1

‖w̃t‖2

)

(3)

s.t.∀n ∈ C+,
〈

w̃, Φ̃(In, sn)
〉

≥ 1− εn

∀n ∈ C−, ∀s,
〈

w̃, Φ̃(In, s)
〉

≤ −1 + εn

where w̃ = [w̃1, ..., w̃t], w̃t is a portion of the reorganized

form of w̃, each of which stands for the regularized weights

within one landmark patch. Φ̃ for negative samples are ex-

tracted with arbitrary configurations. To solve the problem,

a group sparse optimization method is used. Please refer to

[21] for further details of algorithms.

4. Two-step Cascaded Deformable Model

With initial anchor points detection, we use general Pro-

crustes analysis to project our 3D shape model onto the

facial image. As head is a near-rigid object in 3D space,

the 3D to 2D mapping is unique. The process is illustrat-

ed in Figure 1. In this section, we firstly formulate the

problem into parametric forms. Assuming the aligning of

neighborhood landmarks conditionally independent, we ap-

ply Bayesian inference to build a probabilistic model. Fur-

ther assuming the response map of each landmark patch

mixture of Gaussian, we propose a two-step cascaded de-

formable shape model to refine the locations of landmarks.

4.1. Problem Formulation

In section 3.1, we have defined the landmarks as vec-

tor s = [s1, ..., sN ], each landmark sj is formed by con-

catenating the x and y coordinates. Let I denote the image



potentially containing faces. The task is to infer s from I .

Proposed by Coots et al. [7], ASM represents face shapes

by a mean shape and a linear combination of k selected

shape basis, s = s̄ +Qu, where s̄ is the mean shape vector,

Q = [Q1, ..., Qk] contains the k shape basis, u ∈ R
k is the

coefficient vector.

The general Point Distribution Model (PDM) takes glob-

al transformation into consideration. For rigid transforma-

tion in 3D space, scaling, rotation and translation are the

only 3 deterministic factors. Considering local deformation,

the ASM shape basis is able to depict it as long as the train-

ing set contains enough variate shapes and the number of

basis k is large enough. Hence we establish the relationship

between any two points in 3D space in Equation 4.

sj = aR(s̄j +Quj) + T (4)

sj is one of the defined landmarks, R is a rotation matrix,

a is a scaling factor and T is the shift vector. The PDM

provides us a way to depict arbitrary shape from a mean

shape by deforming the parameter P = {a,R, u, T}. The

problem is to find such parameter P to map the 3D reference

shape to a fitted shape which best depicts the faces in an

image.

4.2. The Two-step Cascaded Model

We introduce a random variable vector v = [v1, ..., vN ]
to indicate the likelihood of alignment, v = 1 means land-

marks are well aligned and v = 0 means not. In this way,

maximizing p(s|v = 1, I) demonstrates the aim that we are

pursuing.

s∗ = argmax
s

p(s|{vi = 1}N1 , I) (5)

∝ argmax
s

p(s)p({vi = 1}ni=1|s, I) (6)

= argmax
P

p(P)

n
∏

i=1

p(vi = 1|si, I) (7)

Bayesian rule allows Equation 5 being derived to Equa-

tion 6. From Equation 6 to Equation 7, we assume that

the degree of landmark i’s alignment is independent to oth-

er landmarks’ alignment given current landmarks’ positions

and the image. Since s is uniquely determined by parameter

P given 3D shape model, p(P) = p(s).
We build a logistic regressor to represent the likelihood,

p(vi = 1|si, I) = 1
1+exp{ϑϕ+b} , which has shown it-

s effectiveness in [30, 32]. ϕ is the feature descriptor

of landmark patch i, ϑ and b are the regressor weights

trained from collected positive and negative samples. We

assume that the prior conforms to Gaussian distribution,

p(P) ∝ N (μ; Λ),Λ = diag{[λ1, ..., λk]}, where λi is the

ith eigenvalue corresponding to the ith shape basis in Q
from the nonrigid PCA approach, μ is the mean parameter

vector respectively.

Step 1: local patch mean-shift. Given a near-optimal

landmark si, we intend to search its neighborhood to get the

optimal alignment likelihood. Naturally the possible opti-

mal candidates yi form a region Ψi. We assume yi conforms

to Gaussian distribution N (si, σiI). Hence, the alignment

likelihood is modeled as a mixture of Gaussian of the can-

didates yi, p(vi = 1|si, I) =
∑

yi∈Ψi

πyi
N (yi, σiI), where

πyi
= p(vi = 1|yi, I).

An Expectation Maximization (EM) approach is raised

to solve the problem of Equation 7, which follows the solu-

tion presented in [26]. Assuming all the landmarks’ candi-

dates distribution have the same deviation σ, the objective

function is shown in Equation 8.

argmin
P,si

⎛

⎝||P − μ||2Λ−1 +
n
∑

i=1

∑

yi∈Ψi

βyi

σ2
||si − yi||

2

⎞

⎠

(8)

where βyi
= p(yi|vi, si, I). Taking the first order approx-

imation s = s∗ + JΔP , J = ∂s
∂P the Jacobian of shape

points, the updating function of parameter P has a close

form in Equation 9.

ΔP =
(

σ2Λ−1 + JTJ
)−1 [

JTU − σ2Λ−1(P − μ)
]

(9)

where U = [U1, ..., UN ] , Ui =
∑

yi∈Ψi

βyi
yi − si. Actually

U is the mean-shift vector on response map Ψ. By itera-

tively updating the mean-shift vectors on each local patch

response map, the parameter P is updated until converging

to the global optimum.

Step 2: component-wise active contour. Local patch

mean-shift performance relies heavily on the response map.

We found in some cases merely mean-shift strategy cannot

find the correct positions. Possibly the global constrain of P
after mean-shift does not guarantee fitting each component

exactly. But the result of mean-shift is expected to fall in

the convergence basin of the global minima. We aim to take

external force constrain to push the landmarks in each com-

ponent aligning to its global minimum. It is component-

wise because there is seldom such general external force

for all the landmarks. By adding shape constrain similar as

Φig
jk(sj , sk) = (dx, dy, dx2, dy2) defined in section 3.1, we

expect to preserve the structure of shape.

For each landmark, we evaluate its alignment by another

measurement exp(−ηei). ei is positive energy item includ-

ing shape constrain, appearance constrain and external force

constrain. Combining with objective function Equation 7,

we obtain a refined objective function as Equation 10.

argmax
P

p(P)
n
∏

i=1

p(vi = 1|si, I)
n
∏

i=1

exp(−ηei) (10)



η is a regularization term. We take the linear combination

of the three constraints as shown in Equation 11.

ei = γ

⎡

⎢

⎣

Δs = [ΔxΔy]
Δs2 = [x′′y′′]

∇I

exp(−d) + log(1 + d)

⎤

⎥

⎦
= γΓs (11)

where γ is the linear combination coefficients and d is a

distance measure. We choose the Mahananobis distance of

pixel value as d, which is the distance between the value of

current landmark’s pixel and the average value of face skin

pixels. We notice that ∇I is the function of I and s while

d is the function of I and s too. Once I is known, they are

just the function of s.

ΔP =
(

σ2Λ−1 + JTJ
)−1

· (12)
[

JT (U +
1

2
ηγΓ)− σ2Λ−1(P − μ)

]

Similarly we give out the overall rule for parameter update

in Equation 12, which can be achieved by gradient descen-

t method. The reason not merging the two steps together

is because in step 1, some patches’ mean-shift may devi-

ate due to low quality of response map before global shape

constraint. If we directly raise the component-wise active

contour on the deviated landmarks, the error may propa-

gate. But if step 1’s result is regularized by global shape

constraint, the deviation is mediated and step 2 finds the

convergence point with fewer iterations.

5. Experiments

To evaluate our method, we introduce five main face

databases used in our experiments, i.e. MultiPIE, AR, LFP-

W, LFW and AFW. They are collected either under specific

experimental conditions or under natural conditions. All of

them present challenges in different aspects.

MultiPIE [14] contains images of 337 people with differ-

ent poses, illumination and expressions. We collected 1300

images from it, which include 13 different poses and each

pose contains 100 images from different people. The train-

ing of optimized part mixtures is based on this database.

Images in AR [22] are frontal with different facial expres-

sions, illumination and occlusion. We take 509 images of

126 people with different facial expressions to conduct the

experiment.

LFPW [2], LFW [16] and AFW [35] are image databas-

es collected in wild conditions. The images contain large

variations in pose, illumination, expression and occlusion.

For LFPW, we collected 801 training images and 222 test-

ing images. For LFW, we used 12007 images which have

valid annotations. For newly published AFW, we can only

access 205 testing images.

As each of them has different number of annotation land-

marks, when evaluating different algorithms on the same

(a) TSPM (b) Optimized Mixtures

Figure 2. Facial landmark models of TSPM and Optimized Mix-

tures. (a) TSPM landmark model with 68 red dots as landmark

positions and blue rectangles as local patches. (b) The Optimized

Mixture model with only 17 red-dot landmarks and blue rectangles

as local patches.

database, we use the landmarks from database annotation

which are common in all the algorithms. We firstly verify

the group sparse learning selection based landmark detec-

tors by comparing to the Tree Structure Part Model (TSP-

M) [35] algorithm. We then raise the near-frontal face align-

ment comparison with Multi-view ASMs [18], CLM [26],

Oxford landmark detector [11] and TSPM. The databases

are AR and near-frontal images from MultiPIE. Based on

LFPW, LFW and AFW, we compare the algorithms on the

unconstrained cases. In addition, our method is potentially

capable of tracking facial landmarks because of its fast up-

date between two consecutive frames. We test it on talking

face video [1] and compare it with CLM and Multi-ASM

algorithms.

Quantitatively, the alignment error is measured by the

distance from ground truth normalized by the distance of

two centers of eyes for frontal face databases. For those

non-frontal databases, in which case not all two pupils are

visible, we normalize the error by the square root of face

size, reflected by the rectangle hull of aligned landmarks.

5.1. Optimized Mixtures vs. Tree Structure Part
Model

Zhu and Ramanan [35] proposed a tree structure part

model to simultaneously detect face and localize landmark-

s. The landmarks in their model are densely distributed. We

propose a group sparse learning method to select the most

representative landmarks. We conduct the comparison of

the average localization error on AFW and LFPW datasets.

As the code provided by the authors is based on Matlab, we

compare the running time on the same Matlab platform.

Figure 2 visualizes the TSPM dense model and our op-

timized mixture model. The optimized model attempts to

capture the most significant anchor points while omitting

the intermediate landmarks, which reduces the risk of er-

ror propagation from misaligned landmarks. Quantitatively,

in Table 1, the proposed optimized mixture method outper-



Table 1. Percentage of images less than given relative error level of

TSPM and the proposed optimized mixtures on AFW and LFPW

datasets and average running time per image.

< 5% < 10% < 15% time(s)

AFW
TSPM 61.3% 88.9% 92.6% 14.03

proposed 68.9% 95.6% 98.4% 5.81

LFPW
TSPM 72.8% 87.8% 91.2% 8.23

proposed 81.1% 96.1% 98.5% 2.25

forms TSPM in both AFW and LFPW datasets. The run-

ning time is about 3 to 4 times less than TSPM method. One

reason is that the number of simplified model landmarks is

less, hence with less possibility of misalignment. Another

reason is that the sparse structure interferes the misaligned

landmark’s error from being passed to the neighborhood

landmarks. The accuracy of initialization is not critical in

our algorithm. But the running time is a key factor in the

whole framework. Since TSPM is claimed possible to be

real-time [35], we expect to push the proposed method real-

time by certain implementing techniques other than matlab.

5.2. Comparison with Previous Work

We compare our approach (optimized mixtures with cas-

caded deformable shape model) with the following method-

s. (1) Multi-view ASMs [18], (2) Constrained local model

(CLM) [26], (3) Oxford facial landmark detector [11], (4)

tree structure part model (TSPM) [35]. TSPM and CLM are

two of the state-of-the-art methods in face alignment. Espe-

cially for wild faces, TSPM has reported superior perfor-

mance over many other state-of-the-art methods. For non-

frontal comparison, we hard code ground truth face rectan-

gle to Multi-ASMs, CLM and Oxford as face detection re-

sults because in those cases such methods may fail to locate

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

Average localization error as fraction of pupil dist.

F
ra

c
ti
o
n
 o

f 
N

O
. 

o
f 

te
s
ti
n
g
 f

a
c
e
s

proposed(56.8%)

TSPM(40.8%)

CLM(47.7%)

Multi−ASM(43.2%)

Oxford(51.5%)

(a) AR

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

Average localization error as fraction of face size

F
ra

c
ti
o
n
 o

f 
N

O
. 

o
f 

te
s
ti
n
g
 f

a
c
e
s

proposed(66.9%)

TSPM(75.1%)

CLM(57.6%)

Multi−ASM(30.4%)

Oxford(59.4%)

(b) Near-frontal MultiPIE

Figure 3. Cumulative error distribution curves for landmark lo-

calization on near-frontal images. (a) Error distribution tested on

near-frontal AR database. The numbers in legend are the per-

centage of testing faces that have average error below 5% of the

pupil distance. (b) Error distribution tested on near-frontal Mul-

tiPIE database. The percentage is the ratio of error less than 5%

of ground truth face size. TSPM is a little marginally better than

proposed method on MultiPIE. It is because TSPM is trained on

MultiPIE database which potentially causes over-fitting. But in

AR, the proposed method outperforms all the other methods in-

cluding TSPM.

faces merely using Viola-Jones detector.

We firstly evaluate performance on frontal and near-

frontal faces in AR and MultiPIE database. For MultiPIE,

we select the near-frontal portion of all the pose-variant im-

ages. The near-frontal is defined as faces with yaw angle

varying from −45◦ to 45◦, in which case all landmarks are

visible. For the relative error (Figure 3(a)), our proposed

method outperforms other methods with 5% improvemen-

t compared to the second one at relative error level 0.05.

In Figure 3(b), the TSPM method achieves the best perfor-

mance. However, the proposed method still shows compet-

itive performance as compared to the other methods. The

reason is that TSPM is trained on MultiPIE database. Poten-

tially it may be over-fitting to the particular database. Later

experimental results verified the assumption.

Table 2. Mean Average Pixel Error (MAPE) on AR and Near-

frontal MultiPIE datasets in pixels.

CLM ASM Oxford TSPM proposed

AR 9.50 15.63 9.04 9.72 7.87

MultiPIE 19.65 23.51 19.59 6.38 7.34

From the absolute pixel error point of view, we evalu-

ate all the algorithms on mean average pixel error (MAPE)

measure. Our method achieves 7.87 pixels MAPE on AR

database and 7.34 pixels MAPE on near-frontal MultiPIE

database as shown in Table 2. Though TSPM leads the ac-

curacy in MultiPIE, our method controls the absolute error

in a very low level which consistently outperforms the state-

of-the-art methods.

Further investigation is conducted about the performance

of all the methods on LFW, LFPW and AFW. Figure 4

shows that our method consistently outperforms other meth-

ods with a significant margin. For fair comparison, we

provide ideal face bounding boxes for compared methods

, CLM, Multi-ASM and Oxford, as they may fail to detect

faces in side-view face images. Star sign is shown in Fig-

ure 4 for those manually labeled methods. Although giving

advantage to those methods, the proposed method achieves

71.0% of total face volume within relative error 5% on

LFW, 81.1% fraction on LFPW and 68.9% on AFW, which

consistently retains the localization accuracy in a very high

level. Absolute pixel error results in Table 3 also supports

the conclusion.

Table 3. Mean Average Pixel Error (MAPE) on LFW, LFPW and

AFW datasets in pixels.

CLM ASM Oxford TSPM proposed

LFW 5.08 8.53 4.23 5.26 3.64

LFPW 11.36 17.33 10.21 9.26 7.37

AFW 19.32 20.22 27.44 11.09 9.13

We notice that the proposed method is better than T-

SPM with a large marginal gap (at least 9%) all through

the three datasets. It shows that TSPM may be over-fitting
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Figure 4. Cumulative error distribution curves for landmark localization on face-in-the-wild databases. (a) Error distribution tested on Life

Face in the Wild (LFW) dataset. (b) Error distribution tested on Labeled Face Parts in the Wild (LFPW). (c) Error distribution tested on

Annotated Face in the Wild (AFW).

to MultiPIE environmental conditions. Moreover, in Fig-

ure 4 (c), CLM, Multi-ASM and Oxford achieves abnor-

mally poor performance which indicates that those models

can not accommodate to the extremely bad face-in-the-wild

conditions.

5.3. Evaluation on Talking Face Video

We claim that the proposed method (optimized mixtures

with cascaded deformable shape model) has potential to

track videos and image sequences. The reason is that in

our model, initialization is simplified from TSPM which is

claimed real-time detection performance and the two-step

cascaded strategy is based on mean-shift and component-

wise active contour. We can directly use information from

past frames as the initialization for the following frames.

Table 4. Percentage of talking face image frames less than giv-

en relative error level and Mean Average Pixel Error (MAPE) in

pixels.

Relative error < 5% < 10% < 15% MAPE

Multi-ASM 38.07% 73.72% 95.67% 12.22

CLM 73.16% 98.01% 99.80% 8.59

proposed 79.19% 99.70% 99.98% 7.31

Since TSPM is a detection based method without any

plug-in of tracking strategy, we only compare the results on

talking face video with CLM and Multi-ASM, which are

able to raise video tracking. The relative error is defined as

the fraction of average localization error over pupil distance.

Table 4 shows that our method outperforms the other two

methods with distinct margin. Visualization from Figure 5

convinces our conclusion that the error by proposed method

is consistently smaller than the other two methods.

6. Conclusion

We present a two-stage cascaded deformable shape fit-

ting method for face landmark localization and tracking.

By introducing 3D shape model with optimized mixtures of
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Figure 5. Average landmark tracking error in pixels of talking face

video from frame 500 to frame 1000.

parts, we achieve pose-free landmark initialization. Exten-

sive experiments demonstrate the advantage of our method

in aligning wild faces with large pose variation. It also

outperforms CLM and Multi-ASM in face landmark track-

ing. Future work may further investigate local discrimina-

tive search and its efficiency.
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