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Abstract

To narrow the inherent sensing gap in hetero-
geneous face recognition (HFR), recent methods
have resorted to generative models and explored
the “recognition via generation” framework. Even
though, it remains a very challenging task to syn-
thesize photo-realistic visible faces (VIS) from
near-infrared (NIR) images especially when paired
training data are unavailable. We present an ap-
proach to avert the data misalignment problem and
faithfully preserve pose, expression and identity
information during cross-spectral face hallucina-
tion. At the pixel level, we introduce an unsu-
pervised attention mechanism to warping that is
jointly learned with the generator to derive pixel-
wise correspondence from unaligned data. At the
image level, an auxiliary generator is employed to
facilitate the learning of mapping from NIR to VIS
domain. At the domain level, we first apply the
mutual information constraint to explicitly measure
the correlation between domains and thus bene-
fit synthesis. Extensive experiments on three het-
erogeneous face datasets demonstrate that our ap-
proach not only outperforms current state-of-the-art
HFR methods but also produce visually appealing
results at a high resolution (256×256).

1 Introduction

Different sensors deployed under various circumstances may
lead to changes in image illumination, which poses a huge
challenge to face recognition systems. For instance, near-
infrared images (NIR) produce better performance under low-
lighting circumstances thus providing an effective and low-
cost solution to applications in large-scale scenarios (e.g.
monitoring, surveillance, and security). On the other hand,
visible images are easier to access and usually used for sys-
tem registration and enrollment. The illumination variation
makes it difficult to match NIR images and VIS images,
which has drawn much attention in computer vision.

Due to the flourishing of deep learning, many heteroge-
neous face recognition (HFR) methods resort to deep con-
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Figure 1: Most NIR and VIS images are unaligned at pixel level.
There is large variation in poses and expressions. Data misalign-
ment poses great challenges for cross-spectral face hallucination and
heterogeneous face recognition (HFR).

volutional neural networks to learn domain invariant fea-
tures [Kristan et al., 2014] or project images from differ-
ent domains into a common subspace [Peng et al., 2019;
He et al., 2018]. Recent work focuses on “recognition via
generation”, which means synthesizing VIS images from NIR
ones for recognition[Lezama et al., 2017; Song et al., 2018].
In this way, there is no need to modify the recognizer for NIR
images. And the synthesized VIS images can be further used
for suspect testification or other forensic scenarios. Although
this thought tries to bridge the sensing gap between NIR and
VIS, there still remains some challenges.

One of the challenges comes from data misalignment ,since
it’s time-consuming and expensive to obtain well-aligned
paired images from different sensors (as shown in Figure 1).
Even though CycleGAN [Zhu et al., 2017] is proposed
to solve unpaired image-to-image translation with a cycle-
consistency loss, it is still inadequate to generate VIS images
with fine details at a high resolution. The fact is that the out-
put size of the most existing works is often no larger than
128×128 [Riggan et al., 2016; Zhang et al., 2017]. Another
challenge is that by formulating the mapping as an one-to-one
problem like Pixel2Pixel [Isola et al., 2017], the misalign-
ment may result in the variance of poses and expressions be-
tween the input and output. Besides, in [Song et al., 2018],
the cycle-consistency loss is turned out to be insufficient to
preserve adequate geometrical and identity information in the
synthesized VIS images.
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To address these problems, we propose a simple yet ef-
fective Pose-preserving Cross-spectral Face Hallucination
(PCFH) method based on generative adversarial network
(GAN) [Goodfellow et al., 2014]. Given a NIR image, PCFH
can synthesize a VIS image while preserving its original iden-
tity, poses, and expressions. It employs a multi-path gen-
erator with an attention warping module. Global and local
paths guarantee fine-grained realistic details. An auxiliary
generator is employed to facilitate the learning of mapping
from NIR to VIS. The attention warping module first cap-
tures the structural difference between NIR and VIS images
and achieve pixel-wise alignment by the 2D global inverse
distance weighed warping [Ruprecht and Muller, 1995]. This
nonlinear transformation alleviates the misalignment of im-
ages caused by the sensing gap. Considering that 2D warping
introduces local deformation in the facial area, we propose
an attention map learning to guide our model to pay more at-
tention to the undeformed area. Therefore, the generator is
guided to synthesize visually pleasing VIS images with poses
and expressions preserved.

Moreover, inspired by the unsupervised representation
learning, we also propose a mutual information constraint
(MIC). Similar to [Zhang et al., 2018], we argue that we can
decrease the uncertainty about the domain information of a
sample by giving more samples in the same domain, which is
measured via mutual information mathematically. We max-
imize the mutual information of the synthetic VIS images
and the real VIS images, and minimize that of the synthetic
VIS images and the NIR ones. Since it’s intractable to com-
pute the mutual information, we resort to [Brakel and Ben-
gio, 2017] and maximize an optimization problem to estimate
the mutual information. We trained our network on the chal-
lenging CASIA NIR-VIS 2.0 database and verified it on CA-
SIA NIR-VIS 2.0, BUAA and OULU. Extensive experiments
show that our PCFH can greatly facilitate heterogeneous face
recognition with high-quality generated images (256×256).

In summary, the main contributions of this work are in
fourfold:

1. We propose PCFH to solve the data misalignment in het-
erogeneous face recognition (HFR). An auxiliary generator
is employed to facilitate image synthesis and achieve global
structural consistency.

2. At pixel level, we propose an attention warping module
to derive pixel correspondence between pixel-wise unaligned
data. The attention map is learned in an unsupervised way to
provide superior supervision.

3. At domain level, we first apply the mutual information
constraint to explicitly measure the correlation between do-
mains and thus benefit synthesis.

4. Extensive experiments on three datasets including the
challenging CASIA NIR-VIS 2.0, BUAA and OULU show
that our method not only outperforms current state-of-the-art
HFR methods but also produces visually appealing results at
a high resolution(256×256).

2 Related Work

Cross domain image synthesis is to transfer images from one
domain into another. Most face recognition algorithms are

trained on easily acquired VIS images. Therefore, synthesiz-
ing VIS images from NIR is proposed to bridge the gap be-
tween different sensors, which is referred to as ”recognition
via generation”. [Wang et al., 2009] proposes a framework
for transforming images from one domain to another before
heterogeneous face matching. [Tang and Wang, 2003] syn-
thesizes sketches to recognize for face photo retrieval.

Recently, deep learning methods have been booming and
have achieved impressive progress in image processing.
Based on this progress, [Lezama et al., 2017] cooperates
cross-spectral hallucination cooperated with low-rank em-
bedding to maintain identity information. Generative adver-
sarial network(GAN) [Goodfellow et al., 2014] is a recently
proposed generative model. It consists of a generator and a
discriminator, both are trained adversarially. The generator
synthesizes fake data to fool the discriminator, while the lat-
ter one discriminates its input as real or fake. Inspired by
this, [Zhang et al., 2017; Song et al., 2018] propose two-path
GAN to alleviate the lack of NIR images and synthesize fa-
cial images with fine details. However, it is still challenging
to synthesize heterogeneous face images with high resolution
greater than 128×128 with finer details.

Mutual information is widely adopted in unsupervised rep-
resentation learning. [Hjelm et al., 2019; Brakel and Ben-
gio, 2017] maximize the input and the output of a neural net-
work, in order to learn good representation. Recently, mu-
tual information begins to facilitate the adversarial training.
[Zhang et al., 2018] employs mutual information as a mea-
sure of informativeness and diversity between the query and
the response. In this work, mutual information is added to the
objective as a regularizer term. However, mutual information
is notoriously intractable to compute. [Zhang et al., 2018]

proposes Variational Information Maximization Objective
(VIMO) as an alternative to directly compute mutual infor-
mation. And [Zhang et al., 2018; Brakel and Bengio, 2017;
Belghazi et al., 2018] resort to a neural network to estimate
the mutual information.

3 Method

3.1 Overview

The aim of PCFH is to synthesize VIS images conditioned
on input NIR images and further benefit heterogeneous face
recognition (HFR). Generative adversarial network (GAN)
[Goodfellow et al., 2014] is proposed as a powerful method
for generative task. Using cycle-consistency loss, CycleGAN
[Zhu et al., 2017] is proposed to solve the unpaired image-
to-image translation. Although Cyclegan is presented as a
universal unpaired image-to-image translation method, [Song
et al., 2018] showed that it’s inappropriate to directly em-
ploy CycleGAN for HFR. The reason is that the cycle loss is
not strong enough to retain abundant pixel level information
as necessary. Despite the lack of explicit pixel-wise corre-
spondence, we can still derive superior supervision from un-
aligned data in HFR. To this end, we propose Pose-preserving
Cross-spectral Face Hallucination (PCFH). The method con-
sists of a multi-path generator GA to learn a mapping from
NIR to VIS domain, an auxiliary generator GB to learn a
mapping in reverse, a discriminator DA trained with GA, GB
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Figure 2: The proposed PCFH method. (a) is the base method. (b) is our PCFH. PCFH takes NIR images as input and outputs high-resolution
VIS images with original poses and expressions well preserved. Input image: The CASIA NIR-VIS 2.0 face database.

in adversarial learning, an attention warping module (AWM)
to cope with the unpaired data, a mutual information estima-
tor NE to estimate the MIC, and a face recognizer F . The
schematic diagram is shown in Figure 2.

3.2 Adversarial Cross-spectral Hallucination

In the following, we first elaborate the basic version of our
method, as presented in Figure 2 (a). Different from Cycle-
GAN, we take GB as an auxiliary generator which aim to
facilitate the training of GA. Only the translating from NIR
to VIS and back to NIR is involved since we only focus on
generating VIS images from NIR ones, and it can decrease
computational cost. In the training process, GA endeavors
to synthesize VIS and NIR images while DA discriminates
whether the image is real or fake. Similiar to [Huang et al.,
2017], to achieve global and local detail synthesis, we add
local patches on eyes, noses, and mouths individually in GA

and add them to the global patch in a max-out way. The ad-
versarial loss is:

Lad = −EIN∼pN
DA(GA(IN )) (1)

where IN denotes NIR images.
GB is an auxiliary generator, since we are not concerned

with the generation from VIS to NIR. This generator is
to maintain the consistency of the global structure between
the synthesized image and the original image by a cycle-
consistency loss. It takes the synthesized VIS image as input
and the output is supposed to be identical to the original NIR,
which is formulated as:

Lrec = λ1EIN∼pN
|GB(GA(IN ))− IN )|1 (2)

In order to keep identity information during the hallucina-
tion, we use a pretrained Lightcnn [Wu et al., 2018] (denoted
as F ) as a feature extractor. We take the output vector of the
second last fully connected layer as the identity feature. in-
spired by the perceptual loss [Johnson et al., 2016], the iden-
tity preserving loss is as followed:

LID = λ2EIN∼pN
|F (IV )− F (GA(IN ))|1 (3)

We also encode the images into YCbCr space, which is
similar to [Song et al., 2018]. The luminance component Y
is employed to maintain a global structure consistency. We

further find this term can also stabilize the training, which is
formulated as:

LY = λ3EIN∼pN
|Y (GA(IN ))− Y (IN )|1 (4)

To sum up, the generator in the basic version receives four
types of losses:

LG = Lad + Lrec + LID + LY (5)

3.3 Attention Warping Module

In reality, it’s time-consuming and expensive to acquire pixel-
wise aligned NIR-VIS dataset. Most NIR and VIS images
are not obtained simultaneously, thus leading to pose and ex-
pression variance. This variance brings a great challenge to
faithfully synthesize pose and expression-preserving VIS im-
ages from NIR ones. To utilize pixel correspondence and
achieve precise pixel-wise supervision with unaligned data,
we present the attention warping module (AWM), which is
shown in Figure 3. It should be noted that warping is not
straightforwardly inserted in our method. An unsupervised
attention learning mechanism is proposed to alleviate the side
effect caused by warping.

This module employs a 2D global inverse distance weighed
warping [Ruprecht and Muller, 1995]. Due to the misalign-
ment of data, we first warp the VIS images into NIR ones
with a 2D global inverse distance weighed warping. It fixes
the points by the correspondence of a set of control points and
uses a bilinear interpolation to generate warped images. The
control points are selected as 68 facial landmarks, which is
well studied [Bulat and Tzimiropoulos, 2017]. After the non-
linear transformation, the warped VIS images achieve global
structural alignment in the facial area, which is expected to
serve as ”pixel-aligned ground truth”. Therefore, it greatly
facilitates cross-spectral face hallucination. This process can
be formulated as:

IWarp = W (IN , IV ), (6)

where IWarp denotes the warped VIS image, W is the warp-
ing module.

However, directly treating the warped VIS image as the
“pixel-aligned ground truth” may be inappropriate. Consid-
ering the large pose and expression variations in VIS and
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Figure 3: The details of the Attention Warping Module. This module
only provides pixel-wise supervision on the “attention areas”. Noted
that the distortion around eyes and mouths in the warped image are
paid “less attention” or even totally covered.

NIR images, there are many artifacts such as the distortion
of eyes, mouth, noses, and background in the warped VIS
image. These artifacts and distortion can misguide the gen-
erator by inaccurate pixel level supervision. To address this
problem, inspired by the attention mechanism of human and
its application in computer vision[Youssef et al., 2018], we
add an attention module to generate attention maps in order
to adaptively decide which parts of the warped VIS images
can be regarded as the pixel-aligned ground truth while ig-
noring the deformed region. This module is trained with the
generator in an unsupervised way. The loss function is for-
mulated as:

LA =α1EIN∼pN
|A(GA(IN ))− IWarp|1

+ α2rank(Att) + α3|Att|1
(7)

where A denotes the attention module, Att is the attention
map generated by A, α1 to α3 are assigned as 3 ,0.003 and
1× 10−6 respectively.

Conventionally, attention map is easy to converge to 0 or
1, which means no pixel supervision is introduced or all pixel
are used for supervision. [Youssef et al., 2018] use a thresh-
old to control the generation of attention map. However, this
value is hard to select. Too high or too low threshold will
affect the generation of attention map. We use the loss LA

to prevent threshold selection. The first term in Eq(7) pre-
vent the attention map converging to 0 and make sure every
element are close to 1. The second term is a low-rank con-
straint to ensure learning of structure such as face. The third
term prevents all elements from converging to 1. Therefore,
our attention map is differential and continuous from 0 to 1,
which can effectively provide precise supervision and can be
trained in an unsupervised way.

By adding the attention module, we only calculate the
pixel-wise loss between the warped VIS images and the gen-
erated VIS images on the region of interest, thus preventing
the effects of the deformed region. This loss is formulated as:

LAWM = λ4EIN∼pN
|A(GA(IN ))−A(IWarp)|1 (8)

3.4 Mutual Information Constraint

Our work is based on GAN, which implicitly matches the
distribution of the generated data to real data. Mutual infor-

mation is a measure of the correlation between two variables.
Intuitively, given a variable, mutual information measures to
what extend the uncertainty of another variable decreases. In
unsupervised representation [Belghazi et al., 2018; Hjelm et
al., 2019] maximize the mutual information between the in-
put and the output of an encoder in order to learn a good
representation. To achieve informativeness and diversity of
the query, [Zhang et al., 2018] resorts to mutual informa-
tion as a measure of correlation between the query and the
response, that is, given a response, the uncertainty of a query
decreases. Similarly, we argue that mutual information can
be used as a proxy to measure domain correlation between
variables. Similarly, we argue that we can decrease the un-
certainty about the domain information of a sample by giving
another sample in the same domain, which is measured via
mutual information mathematically. In the “recognition via
generation” scenario, we expect the generated VIS images to
reside in the same domain as the real VIS images, and dif-
ferent domain from NIR images, thus bridging the sensing
gap between NIR and VIS. Therefore, we propose the mutual
information constraint (MIC), which maximizes the mutual
information of the synthetic VIS images and the real VIS im-
ages and minimizes that of the synthetic VIS images and the
NIR images. To the best of our knowledge, this is the the
first time that mutual information is used to measure domain
correlation, which is written as:

LMIC = λ5(I(GA(IN ), IV )− I(GA(IN ), IN )) (9)

where I(a, b) denotes the mutual information between a and
b. However, it’s intractable to compute the mutual informa-
tion, we resort to [Brakel and Bengio, 2017] which maxi-
mizes an optimization problem as an alternative to estimate
the mutual information using a neural network.

maxEz∼pNE(z)− Ez∼qNE(z), (10)

where p denotes the joint distribution of variables and q is the
product of all marginal distribution. NE is a neural network
collaboratively trained with the generator.

4 Experiment

4.1 Datasets and Protocols

The CASIA NIR-VIS 2.0 face database [Li et al., 2013] con-
tains 725 subjects, and it’s the largest and the most challeng-
ing NIR-VIS cross spectral face dataset. The images in this
dataset vary in poses and expressions. In our experiment, we
use two different protocols, the recognition protocol and the
generation protocol. We follow the recognition protocol de-
fined in [Huang et al., 2017]. Since there are half the number
of NIR images in the training test in every fold, which con-
tains all the identities. For the CASIA NIR-VIS 2.0 database,
we define the generation protocol that we only show visual
results on the first fold for simplicity, which contains 6010
NIR images and 2547 VIS images of 354 identities. In this
case, the testing set consists of over 6000 images that do not
appear in the training set. The Rank-1 accuracy and the ROC
curve is reported.
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Figure 4: Comparion of visual effects between different methods.

For the BUAA-VisNir database and the Oulu-CASIA NIR-
VIS database, the training sets in these two databases are not
used. We directly employ our model trained on the first fold
of CASIA NIR-VIS 2.0 and test our model on the testing sets
in the two databases for evaluation.

The Oulu-CASIA NIR-VIS database [Chen et al., 2009]

contains 80 subjects with six typical expressions including
anger, disgust, fear, happiness, sadness, surprise and three il-
luminations including normal indoor, weak light and dark.
The Rank-1 accuracy and the ROC curve are reported.

The BUAA-VISNIR face database [Huang et al., 2012]

consists of 150 subjects with 13 VIS-NIR pairs and 14 VIS
images varying in illumination. The NIR and VIS images of
the same identity are acquired simultaneously with different
poses and expressions by a multi-spectral camera. The Rank-
1 accuracy and the ROC curve are used as evaluation criteria.

4.2 Implementation Details

Our end-to-end network is trained on the CASIA NIR-
VIS 2.0 face database on an NVIDIA Titan XP GPU. For
144×144 images, 32×32, 40×32 and 28×52 patches are
cropped around two eyes, noses and mouths respectively.
52×52, 60×52 and 36×72 patches are cropped around these
areas in 256×256 images. The VIS images are warped ac-
cording to the corresponding landmarks of NIR and VIS im-
ages before fed into our network. The hyperparameters from
λ1 to λ5 are assigned as 2.5× 10−5, 0.002, 0.1, 2.5× 10−5,
0.1 respectively.

A pretrained Light CNN-29 which consists of 29 convo-
lutional layers is employed as a feature extractor to calculate
identity preserving loss and also the baseline recognizer. We
verify the performance of our model in the “recognition via
generation” fashion. Following [Yin et al., 2017], we define
our distance metric as the average of the original image pair
distance and the generated image pair distance. We find that
utilizing both the original and the transferred NIR faces ef-
fectively improves the recognition performance.

4.3 Experiment Results

In Table 1, we compare the quantitative performance of dif-
ferent generative models on the 1-fold of the challenging CA-
SIA NIR-VIS 2.0 database. It shows that our method outper-
forms CycleGAN and Pixel2Pixel. It also further improves
the performance of Light CNN. The unpaired data makes it
difficult to directly utilize the pixel-wise supervision for cross

Method Rank-1 VR@FAR=1% VR@FAR=0.1%

Pixel2Pixel 22.13 39.22 14.45
CycleGAN 87.23 93.92 79.41

Light CNN 96.84 99.10 94.68
PCFH w/o AWM 96.89 99.07 94.96
PCFH w/o MIC 97.66 99.22 96.49

PCFH 98.50 99.58 97.32

Table 1: The comparison of Rank-1 accuracy (%) and verification
rate (%) on the CASIA NIR-VIS 2.0 database. (1-fold)

Method Rank-1 VR@FAR=1% VR@FAR=0.1%

VGG 62.1±1.88 71.0±1.25 39.7±2.85
TRIVET 95.7±0.52 98.1±0.31 91.0±1.26

Light CNN 96.7±0.23 98.5±0.64 94.8±0.43
IDR-128 97.3±0.43 98.9±0.29 95.7±0.73
ADFL 98.2±0.34 99.1±0.15 97.2±0.48

PCFH 98.80±0.26 99.57±0.08 97.68±0.26

Table 2: The comparison of Rank-1 accuracy (%) and verification
rate (%) on the CASIA NIR-VIS 2.0 database. (10-fold)

spectral face hallucination, thus leading to the unsatisfying
performance of Pix2Pix. Although CycleGAN is proposed to
address the unpaired image-to-image translation, it struggles
to bridge the gap between the NIR and VIS images due to
the large pose and expression variation. In conclusion, our
method has a huge improvement over two other generative
methods in HFR.

Comparison with five deep learning models including
TRIVET [Liu et al., 2016], IDR [He et al., 2017], ADFL,
VGG [Parkhi et al., 2015], and Light CNN [Wu et al., 2018]

further indicate the superiority of our method. In Table 2, the
performance of the VIS CNN method such as VGG is un-
satisfying due to the large sensing gap between the NIR and
VIS images. It can be observed that the proposed method
outperforms the other five deep learning models. It is no-
table that the performance of ADFL is the closest to ours.
However, in the testing period, ADFL finetunes the recog-
nizer with the synthesized images while we directly match
the generated VIS images with the VIS gallery. We show
visual effects of the synthesized images in Figure 4. Consid-
ering of different protocols, we only compare 3 subjects in
the first fold of CASIA NIR-VIS face database. The results
of CycleGAN and Pixel2Pixel are not satisfying. ADFL fails
to achieve fine-grained texture , poses and expressions con-
sistency. The results of CSH are acquired in [Lezama et al.,
2017]. The background information are lost. The poses and
expressions are not consistent with the original NIR ones.

We further evaluate our model on the BUAA NIR-VIS
Database. Table 2 shows the comparison between our
model with the prior HFR methods including KDSR[Huang
et al., 2013], TRIVET, IDR, ADFL and Light CNN. Our
method significantly outperforms the existing HFR method
in terms of Rank-1 Accuracy and verification rates. Our
proposed method improves the best Rank-1 Accuracy and
VR@FAR=0.1 from 96.5% to 98.3% and 86.7% to 92.44%
respectively. The improvement owes to our mutual infor-
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Method Rank-1 FAR=1% FAR=0.1%

KDSR 83 86.8 69.5
TRIVET 93.9 93.0 80.9

IDR 94.3 93.4 84.7
ADFL 95.2 95.3 88.0

Light CNN 96.5 95.4 86.7

PCFH w/o AWM 97.4 97.2 89.6
PCFH w/o MIC 98.2 97.6 91.3

PCFH 98.4 97.9 92.4

Table 3: Rank-1 accuracy and verification rate on the BUAA NIR-
VIS Database.

Method Rank-1 FAR=1% FAR=0.1%

KDSR 66.9 56.1 31.9
TRIVET 92.2 67.9 33.6

IDR 94.3 73.4 46.2
ADFL 95.5 83.0 60.7

Light CNN 96.9 93.7 79.4

PCFH w/o AWM 100.0 96.63 80.22
PCFH w/o MIC 100.0 97.63 85.99

PCFH 100.0 97.7 86.6

Table 4: Rank-1 accuracy and verification rate on the Oulu-CASIA
NIR-VIS Database.

mation constraint that explicitly narrows the domain gap be-
tween NIR and VIS images. Besides, the attention warping
module contributes to the performance by providing pixel-
level supervision.

We also compare the proposed method with various HFR
methods on the Oulu-CASIA NIR-VIS Database. It is aston-
ishing that 100% Rank-1 Accuracy is achieved by our model,
which improves the previous best Rank-1 Accuracy by 3.1%.
It indicates that every synthesized VIS images (probe) and
the VIS gallery are perfectly matched. To the best of our
knowledge, this is the first time that 100% Rank-1 Accuracy
is achieved on this dataset, which indicates the superior of
the proposed method. The VR@FAR=0.1 is relatively low
compared with the performance of the first two databases.
The reason is that a number of images in this database are
blurred, which brings difficulties to HFR. Besides, some faces
in this database are incomplete. However, our method im-
proves VR@FAR=0.1 by 7.2% compared with the previous
best performance.

4.4 Ablation Study

In this section, we evaluate the effectiveness of three main
components, adversarial cross-spectral face hallucination, at-
tention warping module (AWM) and mutual information con-
straint (MIC). The first module cannot be removed. There-
fore, we derive two variants, PCFH w/o AWM and PCFH w/o
MIC of our model, in which AWM and MIC are removed
respectively. In Table 1, 3 and 4, we show the quantitative
comparison between the two variants and PCFH. PCFH out-
performs the other variants on Rank-1 Accuracy and verifica-

Figure 5: Ablation study results. We show the visual effects of the
same identity with various poses and expressions. PCFH outper-
forms the other two variants by preserving the original poses and
expressions (256×256).

tion rate, which indicates the effectiveness of the two compo-
nents. It should be noted that AWM contributes more to the
quantitative results. Because AWM effectively alleviates the
data misalignment by providing pixel-wise supervision and
preserves the original poses and expressions, thus facilitating
HFR. Figure 5 compares the visual effects between different
variants. We also find AWM greatly boosts the visual effects
of the synthesized VIS images. However, MIC makes rela-
tively less contribution to the visual effect. Because AWM
can explicitly address the data misalignment. Above all, we
prove that both AWM and MIC contribute to the performance
of our framework.

5 Conclusion

In this paper, we have proposed PCFH for heterogeneous face
recognition following “recognition via generation”. In the
method, an auxiliary generator is trained to facilitate cross-
spectral face hallucination. We design an attention warping
module (AWM) to alleviate the data misalignment caused by
the sensing gap. This module introduces pixel-wise supervi-
sion and decreases the negative effects caused by the distor-
tion in the warped images. The original poses and expressions
are faithfully preserved in the synthesized images. More-
over, a mutual information constraint (MIC) is employed to
explicitly guide the synthesis process to preserve the corre-
lation across different domains. An identity-preserving loss
is imposed to ensure realistic results with identity informa-
tion well-retained. Experiments on three datasets show our
method achieves great improvements on recognition accuracy
and image quality over state-of-the-art HFR methods. In the
future, we intend to further explore the synthesis ability of
PCFH in data augmentation.

Acknowledgements

This work is partially funded by National Natural Science
Foundation of China (Grant No.61622310), Beijing Natural
Science Foundation (Grant No.JQ18017), Youth Innovation
Promotion Association CAS(Grant No.2015190).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1023



References

[Belghazi et al., 2018] Mohamed Ishmael Belghazi, Aristide
Baratin, Saj Rajeswar, Sherjil Ozair, Yoshua Bengio,
Aaron Courville, and R Devon Hjelm. Mine: Mutual in-
formation neural estimation. In NeurIPS, 2018.

[Brakel and Bengio, 2017] Philemon Brakel and Yoshua
Bengio. Learning independent features with adversarial
nets for non-linear ica. In ICML, 2017.

[Bulat and Tzimiropoulos, 2017] Adrian Bulat and Georgios
Tzimiropoulos. How far are we from solving the 2d and
3d face alignment problem? (and a dataset of 230,000 3d
facial landmarks). In ICCV, 2017.

[Chen et al., 2009] Jie Chen, Dong Yi, Jimei Yang, Guoying
Zhao, Stan Z. Li, and Matti Pietikainen. Learning map-
pings for face synthesis from near infrared to visual light
images. In CVPR, 2009.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In NeurIPS, 2014.

[He et al., 2017] Ran He, Xiang Wu, Zhenan Sun, and Tieniu
Tan. Learning invariant deep representation for nir-vis face
recognition. In AAAI, 2017.

[He et al., 2018] Ran He, Xiang Wu, Zhenan Sun, and Tieniu
Tan. Wasserstein cnn: Learning invariant features for nir-
vis face recognition. IEEE Trans on PAMI, 2018.

[Hjelm et al., 2019] R Devon Hjelm, Alex Fedorov, Samuel
Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representa-
tions by mutual information estimation and maximization.
In ICLR, 2019.

[Huang et al., 2012] D Huang, J Sun, and Y Wang. The
buaa-visnir face database instructions. Tech. Rep. IRIP-
TR-12-FR-001, July 2012.

[Huang et al., 2013] X Huang, Z Lei, M Fan, X Wang, and
Li S.Z. Regularized discriminative spectral regression
method for heterogeneous face matching. IEEE Trans on
IP, 2013.

[Huang et al., 2017] Rui Huang, Shu Zhang, Tianyu Li, and
Ran He. Beyond face rotation: Global and local perception
gan for photorealistic and identity preserving frontal view
synthesis. In ICCV, 2017.

[Isola et al., 2017] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou,
and Alexei A. Efros. Image-to-image translation with con-
ditional adversarial networks. In CVPR, 2017.

[Johnson et al., 2016] Justin Johnson, Alahi Alexandre, and
Fei-Fei Li. Perceptual losses for real-time style transfer
and super-resolution. In ECCV, 2016.

[Kristan et al., 2014] P. Gurton Kristan, J. Yuffa Alex, and
W. Videen Gorden. Enhanced facial recognition for ther-
mal imagery using polarimetric imaging. Optics Letters,
2014.

[Lezama et al., 2017] Jose Lezama, Qiu Qiang, and Sapiro
Guillermo. Not afraid of the dark: Nir-vis face recognition

via cross-spectral hallucination and low-rank embedding.
In CVPR, 2017.

[Li et al., 2013] Stan Z. Li, Dong Yi, Zhen Lei, and Sheng-
cai Liao. The casia nir-vis 2.0 face database. In CVPR
Workshops, 2013.

[Liu et al., 2016] Xiaoxiang Liu, Lingxiao Song, Xiang Wu,
and Tieniu Tan. Transferring deep repre- sentation for nir-
vis heterogeneous face recognition. In ICB, 2016.

[Parkhi et al., 2015] Omkar M. Parkhi, Andrea Vedaldi, and
Andrew Zisserman. Deep face recognition. In BMVC,
2015.

[Peng et al., 2019] Chunlei Peng, Gao Xinbo, Wang Nannan,
and Li Jie. Sparse graphical representation based discrim-
inant analysis for heterogeneous face recognition. Signal
Processing, 2019.

[Riggan et al., 2016] Benjamin S. Riggan, Nathanial J.
Short, Shuowen Hu, and Heesung Kwon. Estimation of
visible spectrum faces from polarimetric thermal faces.
ICBTAS, 2016.

[Ruprecht and Muller, 1995] D. Ruprecht and H. Muller. Im-
age warping with scattered data interpolation. IEEE CGA,
1995.

[Song et al., 2018] Lingxiao Song, Zhang Man, Wu Xiang,
and He Ran. Adversarial discriminative heterogeneous
face recognition. AAAI, 2018.

[Tang and Wang, 2003] Xiaoou Tang and Xiaogang Wang.
Face sketch synthesis and recognition. In ICCV, 2003.

[Wang et al., 2009] Rui Wang, Jimei Yang, Dong Yi, and
Stan Z. Li. An analysis-by-synthesis method for hetero-
geneous face biometrics. In ICB, 2009.

[Wu et al., 2018] Xiang Wu, Ran He, Zhenan Sun, and Tie-
niu Tan. A light cnn for deep face representation with
noisy labels. IEEE Trans on IFS, 2018.

[Yin et al., 2017] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming
Liu, and Manmohan Chandraker. Towards large-pose face
frontalization in the wild. In ICCV, 2017.

[Youssef et al., 2018] Mejjati Youssef, Alami, Richardt
Christian, Tompkin James, Cosker Darren, and Kim
Kwang, In. Unsupervised attention-guided image-to-
image translation. In NeurIPS, 2018.

[Zhang et al., 2017] He Zhang, Vishal M. Patel, Benjamin S.
Riggan, and Shuowen Hu. Generative adversarial
network-based synthesis of visible faces from polarimetrie
thermal faces. IJCB, 2017.

[Zhang et al., 2018] Yizhe Zhang, Galley Michel, Gao Jian-
feng, Gan Zhe, Li Xiujun, Brockett Chris, and Dolan
Bill. Generating informative and diverse conversational
responses via adversarial information maximization. In
NeurIPS, 2018.

[Zhu et al., 2017] Jun-Yan Zhu, Taesung Park, Phillip Isola,
and Alexei A. Efros. Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks. In ICCV,
2017.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1024


