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Abstract—Estimating the 6D pose of known objects is impor-
tant for robots to interact with the real world. The problem is
challenging due to the variety of objects as well as the complexity
of a scene caused by clutter and occlusions between objects. In
this work, we introduce PoseCNN, a new Convolutional Neural
Network for 6D object pose estimation. PoseCNN estimates the
3D translation of an object by localizing its center in the image
and predicting its distance from the camera. The 3D rotation
of the object is estimated by regressing to a quaternion repre-
sentation. We also introduce a novel loss function that enables
PoseCNN to handle symmetric objects. In addition, we contribute
a large scale video dataset for 6D object pose estimation named
the YCB-Video dataset. Our dataset provides accurate 6D poses
of 21 objects from the YCB dataset observed in 92 videos with
133,827 frames. We conduct extensive experiments on our YCB-
Video dataset and the OccludedLINEMOD dataset to show that
PoseCNN is highly robust to occlusions, can handle symmetric
objects, and provide accurate pose estimation using only color
images as input. When using depth data to further refine the
poses, our approach achieves state-of-the-art results on the chal-
lenging OccludedLINEMOD dataset. Our code and dataset are
available at https://rse-lab.cs.washington.edu/projects/posecnn/.

I. INTRODUCTION

Recognizing objects and estimating their poses in 3D has

a wide range of applications in robotic tasks. For instance,

recognizing the 3D location and orientation of objects is

important for robot manipulation. It is also useful in human-

robot interaction tasks such as learning from demonstration.

However, the problem is challenging due to the variety of

objects in the real world. They have different 3D shapes,

and their appearances on images are affected by lighting

conditions, clutter in the scene and occlusions between objects.

Traditionally, the problem of 6D object pose estimation is

tackled by matching feature points between 3D models and

images [20, 25, 8]. However, these methods require that there

are rich textures on the objects in order to detect feature

points for matching. As a result, they are unable to handle

texture-less objects. With the emergence of depth cameras,

several methods have been proposed for recognizing texture-

less objects using RGB-D data [13, 3, 2, 26, 15]. For template-

based methods [13, 12], occlusions significantly reduce the

recognition performance. Alternatively, methods that perform

learning to regress image pixels to 3D object coordinates in

order to establish the 2D-3D correspondences for 6D pose

estimation [3, 4] cannot handle symmetric objects.

In this work, we propose a generic framework for 6D object

pose estimation where we attempt to overcome the limitations
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Fig. 1. We propose a novel PoseCNN for 6D object pose estimation, where
the network is trained to perform three tasks: semantic labeling, 3D translation
estimation, and 3D rotation regression.

of existing methods. We introduce a novel Convolutional

Neural Network (CNN) for end-to-end 6D pose estimation

named PoseCNN. A key idea behind PoseCNN is to decouple

the pose estimation task into different components, which

enables the network to explicitly model the dependencies

and independencies between them. Specifically, PoseCNN

performs three related tasks as illustrated in Fig. 1. First, it

predicts an object label for each pixel in the input image.

Second, it estimates the 2D pixel coordinates of the object

center by predicting a unit vector from each pixel towards the

center. Using the semantic labels, image pixels associated with

an object vote on the object center location in the image. In

addition, the network also estimates the distance of the object

center. Assuming known camera intrinsics, estimation of the

2D object center and its distance enables us to recover its

3D translation T. Finally, the 3D Rotation R is estimated by

regressing convolutional features extracted inside the bounding

box of the object to a quaternion representation of R. As we

will show, the 2D center voting followed by rotation regression

to estimate R and T can be applied to textured/texture-less

objects and is robust to occlusions since the network is trained

to vote on object centers even when they are occluded.

Handling symmetric objects is another challenge for pose

estimation, since different object orientations may generate

identical observations. For instance, it is not possible to

uniquely estimate the orientation of the red bowl or the wood

block shown in Fig. 5. While pose benchmark datasets such as

the OccludedLINEMOD dataset [17] consider a special sym-

metric evaluation for such objects, symmetries are typically

ignored during network training. However, this can result in

bad training performance since a network receives inconsistent

https://rse-lab.cs.washington.edu/projects/posecnn/


loss signals, such as a high loss on an object orientation even

though the estimation from the network is correct with respect

to the symmetry of the object. Inspired by this observation, we

introduce ShapeMatch-Loss, a new loss function that focuses

on matching the 3D shape of an object. We will show that

this loss function produces superior estimation for objects with

shape symmetries.

We evaluate our method on the OccludedLINEMOD

dataset [17], a benchmark dataset for 6D pose estimation.

On this challenging dataset, PoseCNN achieves state-of-the-

art results for both color only and RGB-D pose estimation

(we use depth images in the Iterative Closest Point (ICP)

algorithm for pose refinement). To thoroughly evaluate our

method, we additionally collected a large scale RGB-D video

dataset named YCB-Video, which contains 6D poses of 21

objects from the YCB object set [5] in 92 videos with a total

of 133,827 frames. Objects in the dataset exhibit different

symmetries and are arranged in various poses and spatial

configurations, generating severe occlusions between them.

In summary, our work has the following key contributions:

• We propose a novel convolutional neural network for 6D

object pose estimation named PoseCNN. Our network

achieves end-to-end 6D pose estimation and is very robust

to occlusions between objects.

• We introduce ShapeMatch-Loss, a new training loss func-

tion for pose estimation of symmetric objects.

• We contribute a large scale RGB-D video dataset for

6D object pose estimation, where we provide 6D pose

annotations for 21 YCB objects.

This paper is organized as follows. After discussing related

work, we introduce PoseCNN for 6D object pose estimation,

followed by experimental results and a conclusion.

II. RELATED WORK

6D object pose estimation methods in the literature can be

roughly classified into template-based methods and feature-

based methods. In template-based methods, a rigid template

is constructed and used to scan different locations in the input

image. At each location, a similarity score is computed, and

the best match is obtained by comparing these similarity scores

[12, 13, 6]. In 6D pose estimation, a template is usually

obtained by rendering the corresponding 3D model. Recently,

2D object detection methods are used as template matching

and augmented for 6D pose estimation, especially with deep

learning-based object detectors [28, 23, 16, 29]. Template-

based methods are useful in detecting texture-less objects.

However, they cannot handle occlusions between objects very

well, since the template will have low similarity score if the

object is occluded.

In feature-based methods, local features are extracted from

either points of interest or every pixel in the image and

matched to features on the 3D models to establish the 2D-

3D correspondences, from which 6D poses can be recovered

[20, 25, 30, 22]. Feature-based methods are able to handle

occlusions between objects. However, they require sufficient

textures on the objects in order to compute the local features.

To deal with texture-less objects, several methods are proposed

to learn feature descriptors using machine learning techniques

[32, 10]. A few approaches have been proposed to directly

regress to 3D object coordinate location for each pixel to

establish the 2D-3D correspondences [3, 17, 4]. But 3D

coordinate regression encounters ambiguities in dealing with

symmetric objects.

In this work, we combine the advantages of both template-

based methods and feature-based methods in a deep learning

framework, where the network combines bottom-up pixel-wise

labeling with top-down object pose regression. Recently, the

6D object pose estimation problem has received more attention

thanks to the competition in the Amazon Picking Challenge

(APC). Several datasets and approaches have been introduced

for the specific setting in the APC [24, 35]. Our network has

the potential to be applied to the APC setting as long as the

appropriate training data is provided.

III. POSECNN

Given an input image, the task of 6D object pose estimation

is to estimate the rigid transformation from the object coordi-

nate system O to the camera coordinate system C. We assume

that the 3D model of the object is available and the object

coordinate system is defined in the 3D space of the model.

The rigid transformation here consists of an SE(3) transform

containing a 3D rotation R and a 3D translation T, where R

specifies the rotation angles around the X-axis, Y -axis and Z-

axis of the object coordinate system O, and T is the coordinate

of the origin of O in the camera coordinate system C. In the

imaging process, T determines the object location and scale

in the image, while R affects the image appearance of the

object according to the 3D shape and texture of the object.

Since these two parameters have distinct visual properties,

we propose a convolutional neural network architecture that

internally decouples the estimation of R and T.

A. Overview of the Network

Fig. 2 illustrates the architecture of our network for 6D

object pose estimation. The network contains two stages. The

first stage consists of 13 convolutional layers and 4 max-

pooling layers, which extract feature maps with different reso-

lutions from the input image. This stage is the backbone of the

network since the extracted features are shared across all the

tasks performed by the network. The second stage consists of

an embedding step that embeds the high-dimensional feature

maps generated by the first stage into low-dimensional, task-

specific features. Then, the network performs three different

tasks that lead to the 6D pose estimation, i.e., semantic

labeling, 3D translation estimation, and 3D rotation regression,

as described next.

B. Semantic Labeling

In order to detect objects in images, we resort to semantic

labeling, where the network classifies each image pixel into an

object class. Compared to recent 6D pose estimation methods

that resort to object detection with bounding boxes [23, 16,
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Fig. 2. Architecture of PoseCNN for 6D object pose estimation.

29], semantic labeling provides richer information about the

objects and handles occlusions better.

The embedding step of the semantic labeling branch, as

shown in Fig. 2, takes two feature maps with channel dimen-

sion 512 generated by the feature extraction stage as inputs.

The resolutions of the two feature maps are 1/8 and 1/16 of

the original image size, respectively. The network first reduces

the channel dimension of the two feature maps to 64 using

two convolutional layers. Then it doubles the resolution of the

1/16 feature map with a deconvolutional layer. After that, the

two feature maps are summed and another deconvolutional

layer is used to increase the resolution by 8 times in order to

obtain a feature map with the original image size. Finally, a

convolutional layer operates on the feature map and generates

semantic labeling scores for pixels. The output of this layer

has n channels with n the number of the semantic classes. In

training, a softmax cross entropy loss is applied to train the

semantic labeling branch. While in testing, a softmax function

is used to compute the class probabilities of the pixels. The

design of the semantic labeling branch is inspired by the fully

convolutional network in [19] for semantic labeling. It is also

used in our previous work for scene labeling [34].

C. 3D Translation Estimation

As illustrated in Fig. 3, the 3D translation T =
(Tx, Ty, Tz)

T is the coordinate of the object origin in the

camera coordinate system. A naive way of estimating T is

to directly regress the image features to T. However, this

approach is not generalizable since objects can appear in

object coordinate

camera coordinate

Fig. 3. Illustration of the object coordinate system and the camera coordinate
system. The 3D translation can be estimated by localizing the 2D center of
the object and estimating the 3D center distance from the camera.

any location in the image. Also, it cannot handle multiple

object instances in the same category. Therefore, we propose

to estimate the 3D translation by localizing the 2D object

center in the image and estimating object distance from the

camera. To see, suppose the projection of T on the image

is c = (cx, cy)
T . If the network can localize c in the image

and estimate the depth Tz , then we can recover Tx and Ty

according to the following projection equation assuming a

pinhole camera:
[

cx

cy

]

=

[

fx
Tx

Tz

+ px

fy
Ty

Tz

+ py

]

, (1)

where fx and fy denote the focal lengths of the camera, and

(px, py)
T is the principal point. If the object origin O is the



Fig. 4. Illustration of Hough voting for object center localization: Each pixel
casts votes for image locations along the ray predicted from the network.

centroid of the object, we call c the 2D center of the object.

A straightforward way for localizing the 2D object center

is to directly detect the center point as in existing key point

detection methods [22, 7]. However, these methods would not

work if the object center is occluded. Inspired by the tradi-

tional Implicit Shape Model (ISM) in which image patches

vote for the object center for detection [18], we design our

network to regress to the center direction for each pixel in the

image. Specifically, for a pixel p = (x, y)T on the image, it

regresses to three variables:

(x, y) →
(

nx =
cx − x

‖c− p‖
, ny =

cy − y

‖c− p‖
, Tz

)

. (2)

Note that instead of directly regressing to the displacement

vector c−p, we design the network to regress to the unit length

vector n = (nx, ny)
T = c−p

‖c−p‖ , i.e., 2D center direction,

which is scale-invariant and therefore easier to be trained (as

we verified experimentally).

The center regression branch of our network (Fig. 2) uses

the same architecture as the semantic labeling branch, except

that the channel dimensions of the convolutional layers and

the deconvolutional layers are different. We embed the high-

dimensional features into a 128-dimensional space instead of

64-dimensional since this branch needs to regress to three

variables for each object class. The last convolutional layer in

this branch has channel dimension 3 × n with n the number

of object classes. In training, a smoothed L1 loss function is

applied for regression as in [11].

In order to find the 2D object center c of an object, a Hough

voting layer is designed and integrated into the network. The

Hough voting layer takes the pixel-wise semantic labeling

results and the center regression results as inputs. For each

object class, it first computes the voting score for every

location in the image. The voting score indicates how likely

the corresponding image location is the center of an object

in the class. Specifically, each pixel in the object class adds

votes for image locations along the ray predicted from the

network (see Fig. 4). After processing all the pixels in the

object class, we obtain the voting scores for all the image

locations. Then the object center is selected as the location

with the maximum score. For cases where multiple instances

of the same object class may appear in the image, we apply

non-maximum suppression to the voting scores, and then select

locations with scores larger than a certain threshold.

After generating a set of object centers, we consider the

pixels that vote for an object center to be the inliers of the

center. Then the depth prediction of the center, Tz , is simply

computed as the mean of the depths predicted by the inliers.

Finally, using Eq. 1, we can estimate the 3D translation T.

In addition, the network generates the bounding box of the

object as the 2D rectangle that bounds all the inliers, and the

bounding box is used for 3D rotation regression.

D. 3D Rotation Regression

The lowest part of Fig. 2 shows the 3D rotation regression

branch. Using the object bounding boxes predicted from the

Hough voting layer, we utilize two RoI pooling layers [11]

to “crop and pool” the visual features generated by the first

stage of the network for the 3D rotation regression. The pooled

feature maps are added together and fed into three Fully-

Connected (FC) layers. The first two FC layers have dimension

4096, and the last FC layer has dimension 4 × n with n the

number of object classes. For each class, the last FC layer

outputs a 3D rotation represented by a quaternion.

To train the quaternion regression, we propose two loss

functions, one of which is specifically designed to handle

symmetric objects. The first loss, called PoseLoss (PLOSS),

operates in the 3D model space and measures the average

squared distance between points on the correct model pose and

their corresponding points on the model using the estimated

orientation. PLOSS is defined as

PLOSS(q̃,q) =
1

2m

∑

x∈M

‖R(q̃)x−R(q)x‖2, (3)

where M denotes the set of 3D model points and m is

the number of points. R(q̃) and R(q) indicate the rotation

matrices computed from the the estimated quaternion and the

ground truth quaternion, respectively. This loss has its unique

minimum when the estimated orientation is identical to the

ground truth orientation 1. Unfortunately, PLOSS does not

handle symmetric objects appropriately, since a symmetric

object can have multiple correct 3D rotations. Using such a

loss function on symmetric objects unnecessarily penalizes the

network for regressing to one of the alternative 3D rotations,

thereby giving possibly inconsistent training signals.

While PLOSS could potentially be modified to handle

symmetric objects by manually specifying object symmetries

and then considering all correct orientations as ground truth

options, we here introduce ShapeMatch-Loss (SLOSS), a loss

function that does not require the specification of symmetries.

SLOSS is defined as

SLOSS(q̃,q) =
1

2m

∑

x1∈M

min
x2∈M

‖R(q̃)x1 −R(q)x2‖
2. (4)

As we can see, just like ICP, this loss measures the offset

between each point on the estimated model orientation and the

closest point on the ground truth model. SLOSS is minimized

when the two 3D models match each other. In this way, the

1It is very similar to a regression loss on the quaternions, as we have verified
experimentally. We use this formulation for consistency with the other loss.



Fig. 5. The subset of 21 YCB Objects selected to appear in our dataset.

SLOSS will not penalize rotations that are equivalent with

respect to the 3D shape symmetry of the object.

IV. THE YCB-VIDEO DATASET

Object-centric datasets providing ground-truth annotations

for object poses and/or segmentations are limited in size by the

fact that the annotations are typically provided manually. For

example, the popular LINEMOD dataset [13] provides manual

annotations for around 1,000 images for each of the 15 objects

in the dataset. While such a dataset is useful for evaluation

of model-based pose estimation techniques, it is orders of

magnitude smaller than a typical dataset for training state-

of-the-art deep neural networks. One solution to this problem

is to augment the data with synthetic images. However, care

must be taken to ensure that performance generalizes between

real and rendered scenes.

A. 6D Pose Annotation

To avoid annotating all the video frames manually, we

manually specify the poses of the objects only in the first

frame of each video. Using Signed Distance Function (SDF)

representations of each object, we refine the pose of each

object in the first depth frame. Next, the camera trajectory

is initialized by fixing the object poses relative to one another

and tracking the object configuration through the depth video.

Finally, the camera trajectory and relative object poses are

refined in a global optimization step.

B. Dataset Characteristics

The objects we used are a subset of 21 of the YCB objects

[5] as shown in Fig. 5, selected due to high-quality 3D models

and good visibility in depth. The videos are collected using an

Asus Xtion Pro Live RGB-D camera in fast-cropping mode,

which provides RGB images at a resolution of 640x480 at 30

FPS by capturing a 1280x960 image locally on the device and

transmitting only the center region over USB. This results in

higher effective resolution of RGB images at the cost of a

TABLE I
STATISTICS OF OUR YCB-VIDEO DATASET

Number of Objects 21
Total Number of Videos 92

Held-out Videos 12
Min Object Count 3
Max Object Count 9
Mean Object Count 4.47
Number of Frames 133,827

Resolution 640 x 480

Fig. 6. Left: an example image from the dataset. Right: Textured 3D
object models (provided with the YCB dataset) rendered according
to the pose annotations for this frame.

lower FOV, but given the minimum range of the depth sensor

this was an acceptable trade-off. The full dataset comprises

133,827 images, two full orders of magnitude larger than the

LINEMOD dataset. For more statistics relating to the dataset,

see Table I. Fig. 6 shows one annotation example in our dataset

where we render the 3D models according to the annotated

ground truth pose. Note that our annotation accuracy suffers

from several sources of error, including the rolling shutter

of the RGB sensor, inaccuracies in the object models, slight

asynchrony between RGB and depth sensors, and uncertainties

in the intrinsic and extrinsic parameters of the cameras.

V. EXPERIMENTS

A. Datasets

In our YCB-Video dataset, we use 80 videos for training,

and test on 2,949 key frames extracted from the rest 12

test videos. We also evaluate our method on the Occluded-

LINEMOD dataset [17]. The authors of [17] selected one

video with 1,214 frames from the original LINEMOD dataset

[13], and annotated ground truth poses for eight objects in

that video: Ape, Can, Cat, Driller, Duck, Eggbox, Glue and

Holepuncher. There are significant occlusions between objects

in this video sequence, which makes this dataset challenging.

For training, we use the eight sequences from the original

LINEMOD dataset corresponding to these eight objects. In

addition, we generate 80,000 synthetic images for training on

both datasets by randomly placing objects in a scene.

B. Evaluation Metrics

We adopt the average distance (ADD) metric as proposed

in [13] for evaluation. Given the ground truth rotation R and

translation T and the estimated rotation R̃ and translation

T̃, the average distance computes the mean of the pairwise

distances between the 3D model points transformed according



to the ground truth pose and the estimated pose:

ADD =
1

m

∑

x∈M

‖(Rx+T)− (R̃x+ T̃)‖, (5)

where M denotes the set of 3D model points and m is the

number of points. The 6D pose is considered to be correct if

the average distance is smaller than a predefined threshold. In

the OccludedLINEMOD dataset, the threshold is set to 10%

of the 3D model diameter. For symmetric objects such as the

Eggbox and Glue, the matching between points is ambiguous

for some views. Therefore, the average distance is computed

using the closest point distance:

ADD-S =
1

m

∑

x1∈M

min
x2∈M

‖(Rx1 +T)− (R̃x2 + T̃)‖. (6)

Our design of the loss function for rotation regression is

motivated by these two evaluation metrics. Using a fixed

threshold in computing pose accuracy cannot reveal how a

method performs on these incorrect poses with respect to that

threshold. Therefore, we vary the distance threshold in eval-

uation. In this case, we can plot an accuracy-threshold curve,

and compute the area under the curve for pose evaluation.

Instead of computing distances in the 3D space, we can

project the transformed points onto the image, and then

compute the pairwise distances in the image space. This metric

is called the reprojection error that is widely used for 6D pose

estimation when only color images are used.

C. Implementation Details

PoseCNN is implemented using the TensorFlow library [1].

The Hough voting layer is implemented on GPU as in [31]. In

training, the parameters of the first 13 convolutional layers in

the feature extraction stage and the first two FC layers in the

3D rotation regression branch are initialized with the VGG16

network [27] trained on ImageNet [9]. No gradient is back-

propagated via the Hough voting layer. Stochastic Gradient

Descent (SGD) with momentum is used for training.

D. Baselines

3D object coordinate regression network. Since the state-

of-the-art 6D pose estimation methods mostly rely on re-

gressing image pixels to 3D object coordinates [3, 4, 21],

we implement a variation of our network for 3D object

coordinate regression for comparison. In this network, instead

of regressing to center direction and depth as in Fig. 2, we

regress each pixel to its 3D coordinate in the object coordinate

system. We can use the same architecture since each pixel still

regresses to three variables for each class. Then we remove

the 3D rotation regression branch. Using the semantic labeling

results and 3D object coordinate regression results, the 6D

pose is recovered using the pre-emptive RANSAC as in [4].

Pose refinement. The 6D pose estimated from our network

can be refined when depth is available. We use the Iterative

Closest Point (ICP) algorithm to refine the 6D pose. Specif-

ically, we employ ICP with projective data association and a

point-plane residual term. We render a predicted point cloud

PLoss (non-symmetry) SLoss (symmetry)

PLoss (non-symmetry) SLoss (symmetry)

wood block

large clamp

Fig. 7. Comparison between the PLOSS and the SLOSS for 6D pose
estimation on three symmetric objects in the YCB-Video dataset.

given the 3D model and an estimated pose, and assume that

each observed depth value is associated with the predicted

depth value at the same pixel location. The residual for each

pixel is then the smallest distance from the observed point

in 3D to the plane defined by the rendered point in 3D and

its normal. Points with residuals above a specified threshold

are rejected and the remaining residuals are minimized using

gradient descent. Semantic labels from the network are used

to crop the observed points from the depth image. Since

ICP is not robust to local minimums, we refinement multiple

poses by perturbing the estimated pose from the network, and

then select the best refined pose using the alignment metric

proposed in [33].

E. Analysis on the Rotation Regress Losses

We first conduct experiments to analyze the effect of the two

loss functions for rotation regression on symmetric objects.

Fig. 7 shows the rotation error histograms for two symmetric

objects in the YCB-Video dataset (wood block and large

clamp) using the two loss functions in training. The rotation

errors of the PLOSS for the wood block and the large clamp

span from 0 degree to 180 degree. The two histograms indicate

that the network is confused by the symmetric objects. While

the histograms of the SLOSS concentrate on the 180 degree

error for the wood block and 0 degree and 180 degree for

the large clamp, since they are symmetric with respect to 180

degree rotation around their coordinate axes.

F. Results on the YCB-Video Dataset

Table II and Fig. 8(a) presents detailed evaluation for all the

21 objects in the YCB-Video dataset. We show the area under

the accuracy-threshold curve using both the ADD metric and

the ADD-S metric, where we vary the threshold for the average

distance and then compute the pose accuracy. The maximum

threshold is set to 10cm.



TABLE II
AREA UNDER THE ACCURACY-THRESHOLD CURVE FOR 6D POSE EVALUATION ON THE YCB-VIDEO DATASET. RED COLORED OBJECTS ARE SYMMETRIC.

RGB RGB-D

3D Coordinate PoseCNN 3D Coordinate 3D Coordinate+ICP PoseCNN+ICP

Object ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

002 master chef can 12.3 34.4 50.9 84.0 61.4 90.1 72.7 95.7 69.0 95.8

003 cracker box 16.8 40.0 51.7 76.9 57.4 77.4 82.7 91.0 80.7 91.8

004 sugar box 28.7 48.9 68.6 84.3 85.5 93.3 94.6 97.5 97.2 98.2

005 tomato soup can 27.3 42.2 66.0 80.9 84.5 92.1 86.1 94.5 81.6 94.5

006 mustard bottle 25.9 44.8 79.9 90.2 82.8 91.1 97.6 98.3 97.0 98.4

007 tuna fish can 5.4 10.4 70.4 87.9 68.8 86.9 76.7 91.4 83.1 97.1

008 pudding box 14.9 26.3 62.9 79.0 74.8 89.3 86.0 94.9 96.6 97.9

009 gelatin box 25.4 36.7 75.2 87.1 93.9 97.2 98.2 98.8 98.2 98.8

010 potted meat can 18.7 32.3 59.6 78.5 70.9 84.0 78.9 87.8 83.8 92.8

011 banana 3.2 8.8 72.3 85.9 50.7 77.3 73.5 94.3 91.6 96.9

019 pitcher base 27.3 54.3 52.5 76.8 58.2 83.8 81.1 95.6 96.7 97.8

021 bleach cleanser 25.2 44.3 50.5 71.9 74.1 89.2 87.2 95.7 92.3 96.8

024 bowl 2.7 25.4 6.5 69.7 8.7 67.4 8.3 77.9 17.5 78.3

025 mug 9.0 20.0 57.7 78.0 57.1 85.3 67.0 91.1 81.4 95.1

035 power drill 18.0 36.1 55.1 72.8 79.4 89.4 93.2 96.2 96.9 98.0

036 wood block 1.2 19.6 31.8 65.8 14.6 76.7 21.7 85.2 79.2 90.5

037 scissors 1.0 2.9 35.8 56.2 61.0 82.8 66.0 88.3 78.4 92.2

040 large marker 0.2 0.3 58.0 71.4 72.4 82.8 74.1 85.5 85.4 97.2

051 large clamp 6.9 14.6 25.0 49.9 48.0 67.6 54.6 74.9 52.6 75.4

052 extra large clamp 2.7 14.0 15.8 47.0 22.1 49.0 25.2 56.4 28.7 65.3

061 foam brick 0.6 1.2 40.4 87.8 40.0 82.4 46.5 89.9 48.3 97.1

ALL 15.1 29.8 53.7 75.9 64.6 83.7 74.5 90.1 79.3 93.0

(a) YCB-Video Results (b) OccludedLINEMOD Results

Fig. 8. (a) Detailed results on the YCB-Video dataset. (b) Accuracy-threshold curves with reprojectin error on the OccludedLINEMOD dataset.

We can see that i) By only using color images, our network

significantly outperforms the 3D coordinate regression net-

work combined with the pre-emptive RANSAC algorithm for

6D pose estimation. When there are errors in the 3D coordinate

regression results, the estimated 6D pose can drift far away

from the ground truth pose. While in our network, the center

localization helps to constrain the 3D translation estimation

even if the object is occluded. ii) Refining the poses with ICP

significantly improves the performance. PoseCNN with ICP

achieves superior performance compared to the 3D coordinate

regression network when using depth images. The initial pose

in ICP is critical for convergence. PoseCNN provides better

initial 6D poses for ICP refinement. iii) We can see that some

objects are more difficult to handle such as the tuna fish

can that is small and with less texture. The network is also

confused by the large clamp and the extra large clamp since

they have the same appearance. The 3D coordinate regression

network cannot handle symmetric objects very well such as

the banana and the bowl.

Fig. 9 displays some 6D pose estimation results on the

YCB-Video dataset. We can see that the center prediction is

quite accurate even if the center is occluded by another object.

Our network with color only is already able to provide good

6D pose estimation. With ICP refinement, the accuracy of the

6D pose is further improved.

G. Results on the OccludedLINEMOD Dataset

The OccludedLINEMOD dataset is challenging due to sig-

nificant occlusions between objects. We first conduct experi-

ments using color images only. Fig. 8(b) shows the accuracy-

threshold curves with reprojection error for 7 objects in the

dataset, where we compare PoseCNN with [29] that achieves

the current state-of-the-art result on this dataset using color im-

ages as input. Our method significantly outperforms [29] by a

large margin, especially when the reprojection error threshold

is small. These results show that PoseCNN is able to correctly

localize the target object even under severe occlusions.

By refining the poses using depth images in ICP, our method



TABLE III
6D POSE ESTIMATION ACCURACY ON THE OCCLUDEDLINEMOD DATASET. RED COLORED OBJECTS ARE SYMMETRIC. ALL METHODS USE DEPTH

EXCEPT FOR POSECNN COLOR.

Method Michel et al. [21] Hinterstoisser et al. [14] Krull et al. [17] Brachmann et al. [3] Ours PoseCNN Color Ours PoseCNN+ICP

Ape 80.7 81.4 68.0 53.1 9.6 76.2

Can 88.5 94.7 87.9 79.9 45.2 87.4

Cat 57.8 55.2 50.6 28.2 0.93 52.2

Driller 94.7 86.0 91.2 82.0 41.4 90.3

Duck 74.4 79.7 64.7 64.3 19.6 77.7

Eggbox 47.6 65.5 41.5 9.0 22.0 72.2

Glue 73.8 52.1 65.3 44.5 38.5 76.7

Holepuncher 96.3 95.5 92.9 91.6 22.1 91.4

MEAN 76.7 76.3 70.3 56.6 24.9 78.0

Input

Image

Labeling

& Centers

PoseCNN

ICP

PoseCNN

Color

YCB-Video Dataset OccludedLINEMOD Dataset

Fig. 9. Examples of 6D object pose estimation results on the YCB-Video dataset from PoseCNN.

also outperforms the state-of-the-art methods using RGB-

D data as input. Table III summarizes the pose estimation

accuracy on the OccludedLINEMOD dataset. The most im-

provement comes from the two symmetric objects “Eggbox”

and “Glue”. By using our ShapeMatch-Loss for training,

PoseCNN is able to correctly estimate the 6D pose of the two

objects with respect to symmetry. We also present the result

of PoseCNN using color only in Table III. These accuracies

are much lower since the threshold here is usually smaller

than 2cm. It is very challenging for color-based methods to

obtain 6D poses within such small threshold when there are

occlusions between objects. Fig. 9 shows two examples of the

6D pose estimation results on the OccludedLINEMOD dataset.

VI. CONCLUSIONS

In this work, we introduce PoseCNN, a convolutional neural

network for 6D object pose estimation. PoseCNN decouples

the estimation of 3D rotation and 3D translation. It estimates

the 3D translation by localizing the object center and predict-

ing the center distance. By regressing each pixel to a unit

vector towards the object center, the center can be estimated

robustly independent of scale. More importantly, pixels vote

the object center even if it is occluded by other objects.

The 3D rotation is predicted by regressing to a quaternion

representation. Two new loss functions are introduced for

rotation estimation, with the ShapeMatch-Loss designed for

symmetric objects. As a result, PoseCNN is able to handle

occlusion and symmetric objects in cluttered scenes. We also

introduce a large scale video dataset for 6D object pose

estimation. Our results are extremely encouraging in that they

indicate that it is feasible to accurately estimate the 6D pose of

objects in cluttered scenes using vision data only. This opens

the path to using cameras with resolution and field of view that

goes far beyond currently used depth camera systems. We note

that the SLOSS sometimes results in local minimums in the

pose space similar to ICP. It would be interesting to explore

more efficient way in handle symmetric objects in 6D pose

estimation in the future.
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