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Furthermore, the trusted party becomes a single point of failure,
thus both data and model privacy could be compromised by data
breaches, hacking, leaks, etc. Hence, solutions originating from the
cryptographic community replace and emulate the trusted party with a
group of computing servers. In particular, to enable privacy-preserving
training of NNs, several studies employ multiparty computation
(MPC) techniques and operate on the two [83], [28], three [82], [110],
[111], or four [26], [27] server models. Such approaches, however,
limit the number of parties among which the trust is split, often assume
an honest majority among the computing servers, and require parties
to communicate (i.e., secret share) their data outside their premises.
This might not be acceptable due to the privacy and confidentiality
requirements and the strict data protection regulations. Furthermore,
the computing servers do not operate on their own data or benefit from
the model training; hence, their only incentive is the reputation harm if
they are caught, which increases the possibility of malicious behavior.

A recently proposed alternative for privacy-preserving training of
NNs – without data outsourcing – is federated learning. Instead of
bringing the data to the model, the model is brought (via a coordinating
server) to the clients, who perform model updates on their local data.
The updated models from the parties are averaged to obtain the global
NN model [75], [63]. Although federated learning retains the sensitive
input data locally and eliminates the need for data outsourcing, the
model, that might also be sensitive, e.g., due to proprietary reasons,
becomes available to the coordinating server, thus placing the latter
in a position of power with respect to the remaining parties. Recent
research demonstrates that sharing intermediate model updates among
the parties or with the server might lead to various privacy attacks,
such as extracting parties’ inputs [53], [113], [120] or membership
inference [78], [86]. Consequently, several works employ differential
privacy to enable privacy-preserving exchanges of intermediate values
and to obtain models that are free from adversarial inferences in
federated learning settings [67], [101], [76]. Although differentially
private techniques partially limit attacks to federated learning, they de-
crease the utility of the data and the resulting ML model. Furthermore,
training robust and accurate models requires high privacy budgets, and
as such, the level of privacy achieved in practice remains unclear [55].
Therefore, a distributed privacy-preserving deep learning approach
requires strong cryptographic protection of the intermediate model
updates during the training, as well as of the final model weights.

Recent cryptographic approaches for private distributed learning,
e.g., [119], [42], not only have limited ML functionalities, i.e.,
regularized or generalized linear models, but also employ traditional
encryption schemes that make them vulnerable to post-quantum
attacks. This should be cautiously considered, as recent advances in
quantum computing [47], [87], [105], [116], increase the need for
deploying quantum-resilient cryptographic schemes that eliminate

Abstract—In this paper, we address the problem of privacy-
preserving training and evaluation of neural networks in an N-party, 
federated learning setting. We propose a novel system, POSEIDON, the 
first of its kind in the regime of privacy-preserving neural network 
training. It employs multiparty lattice-based cryptography to preserve 
the confidentiality of the training data, the model, and the evaluation 
data, under a passive-adversary model and collusions between up 
to N − 1 parties. To efficiently execute the secure backpropagation 
algorithm for training neural networks, we provide a generic packing 
approach that enables Single Instruction, Multiple Data (SIMD) 
operations on encrypted data. We also introduce arbitrary linear 
transformations within the cryptographic bootstrapping operation, 
optimizing the costly cryptographic computations over the parties, 
and we define a constrained optimization problem for choosing 
the cryptographic parameters. Our experimental results show that 
POSEIDON achieves accuracy similar to centralized or decentralized 
non-private approaches and that its computation and communication 
overhead scales linearly with the number of parties. POSEIDON trains 
a 3-layer neural network on the MNIST dataset with 784 features and 
60K samples distributed among 10 parties in less than 2 hours.

I. INTRODUCTION

In the era of big data and machine learning (ML), neural networks 
(NNs) are the state-of-the-art models, as they achieve remarkable 
predictive performance in various domains such as healthcare, finance, 
and image recognition [10], [77], [106]. However, training an accurate 
and robust deep learning model requires a large amount of diverse 
and heterogeneous data [121]. This phenomenon raises the need for 
data sharing among multiple data owners who wish to collectively 
train a deep learning model and to extract valuable and generalizable 
insights from their joint data. Nonetheless, data sharing among entities, 
such as medical institutions, companies, and organizations, is often 
not feasible due to the sensitive nature of the data [117], strict privacy 
regulations [2], [7], or the business competition between them [104]. 
Therefore, solutions that enable privacy-preserving training of NNs 
on the data of multiple parties are highly desirable in many domains.

A simple solution for collective training is to outsource the data of 
multiple parties to a trusted party that is able to train the NN model on 
their behalf and to retain the data and model’s confidentiality, based on 
established stringent non-disclosure agreements. These confidentiality 
agreements, however, require a significant amount of time to be 
prepared by legal and technical teams [72] and are very costly [60].
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potential risks for applications with long-term sensitive data. Froelicher
et al. recently proposed SPINDLE [41], a generic approach for the
privacy-preserving training of ML models in an N-party setting that
employs multiparty lattice-based cryptography, thus achieving post-
quantum security guarantees. However, the authors [41] demonstrate
the applicability of their approach only for generalized linear models,
and their solution lacks the necessary protocols and functions that
can support the training of complex ML models, such as NNs.

In this work, we extend the approach of SPINDLE [41] and build
POSEIDON, a novel system that enables the training and evaluation
of NNs in a distributed setting and provides end-to-end protection
of the parties’ training data, the resulting model, and the evaluation
data. Using multiparty lattice-based homomorphic encryption [84],
POSEIDON enables NN executions with different types of layers,
such as fully connected, convolution, and pooling, on a dataset that
is distributed among N parties, e.g., a consortium of tens of hospitals,
that trust only themselves for the confidentiality of their data and of the
resulting model. POSEIDON relies on mini-batch gradient descent and
protects, from any party, the intermediate updates of the NN model by
maintaining the weights and gradients encrypted throughout the train-
ing phase. POSEIDON also enables the resulting encrypted model to
be used for privacy-preserving inference on encrypted evaluation data.

We evaluate POSEIDON on several real-world datasets and various
network architectures such as fully connected and convolutional neural
network structures and observe that it achieves training accuracy
levels on par with centralized or decentralized non-private approaches.
Regarding its execution time, we find that POSEIDON trains a
2-layer NN model on a dataset with 23 features and 30,000 samples
distributed among 10 parties, in 8.7 minutes. Moreover, POSEIDON

trains a 3-layer NN with 64 neurons per hidden-layer on the MNIST
dataset [66] with 784 features and 60K samples shared between
10 parties, in 1.4 hours, and a NN with convolutional and pooling
layers on the CIFAR-10 [65] dataset (60K samples and 3,072 features)
distributed among 50 parties, in 175 hours. Finally, our scalability
analysis shows that POSEIDON’s computation and communication
overhead scales linearly with the number of parties and logarithmically
with the number of features and the number of neurons in each layer.

In this work, we make the following contributions:

• We present POSEIDON, a novel system for privacy-preserving,
quantum-resistant, federated learning-based training of and
inference on NNs with N parties with unbounded N , that relies
on multiparty homomorphic encryption and respects the confi-
dentiality of the training data, the model, and the evaluation data.
• We propose an alternating packing approach for the efficient

use of single instruction, multiple data (SIMD) operations on
encrypted data, and we provide a generic protocol for executing
NNs under encryption, depending on the size of the dataset and
the structure of the network.
• We improve the distributed bootstrapping protocol of [84]

by introducing arbitrary linear transformations for optimizing
computationally heavy operations, such as pooling or a large
number of consecutive rotations on ciphertexts.
• We formulate a constrained optimization problem for choosing

the cryptographic parameters and for balancing the number
of costly cryptographic operations required for training and
evaluating NNs in a distributed setting.
• POSEIDON advances the state-of-the-art privacy-preserving

solutions for NNs based on MPC [110], [83], [82], [12], [27],
[111], by achieving better flexibility, security, and scalability:
Flexibility. POSEIDON relies on a federated learning approach,
eliminating the need for communicating the parties’ confidential

data outside their premises which might not be always feasible
due to privacy regulations [2], [7]. This is in contrast to
MPC-based solutions which require parties to distribute their
data among several servers, and thus, fall under the cloud
outsourcing model.
Security. POSEIDON splits the trust among multiple parties,
and guarantees its data and model confidentiality properties
under a passive-adversarial model and collusions between up
to N−1 parties, for unbounded N . On the contrary, MPC-based
solutions limit the number of parties among which the trust is
split (typically, 2, 3, or 4 servers) and assume an honest majority
among them.
Scalability. POSEIDON’s communication is linear in the number
of parties, whereas MPC-based solutions scale quadratically.
• Unlike differential privacy-based approaches for federated

learning [67], [101], [76], POSEIDON does not degrade the utility
of the data, and the impact on the model’s accuracy is negligible.

To the best of our knowledge, POSEIDON is the first system that
enables quantum-resistant distributed learning on neural networks with
N parties in a federated learning setting, and that preserves the privacy
of the parties’ confidential data, the intermediate model updates, and
the final model weights.

II. RELATED WORK

Privacy-Preserving Machine Learning (PPML). Previous PPML
works focus exclusively on the training of (generalized) linear mod-
els [17], [57], [23], [34], [61], [62]. They rely on centralized solutions
where the learning task is securely outsourced to a server, notably
using homomorphic encryption (HE) techniques. As such, these works
do not solve the problem of privacy-preserving distributed ML, where
multiple parties collaboratively train an ML model on their data. To
address the latter, several works propose multi-party computation
(MPC) solutions where several tasks, such as clustering and regression,
are distributed among 2 or 3 servers [54], [25], [89], [43], [44], [13],
[100], [21], [31]. Although such solutions enable multiple parties to
collaboratively learn on their data, the trust distribution is limited to
the number of computing servers that train the model, and they rely on
assumptions such as non-collusion, or an honest majority among the
servers. There exist only a few works that extend the distribution of
ML computations to N parties (N≥4) and that remove the need for
outsourcing [33], [119], [42], [41]. For instance, Zheng et al. propose
Helen, a system for privacy-preserving learning of linear models that
combines HE with MPC techniques [119]. However, the use of the
Paillier additive HE scheme [90] makes their system vulnerable to
post-quantum attacks. To address this issue, Froelicher et al. introduce
SPINDLE [41], a system that provides support for generalized linear
models and security against post-quantum attacks. These works have
paved the way for PPML computations in the N-party setting, but none
of them addresses the challenges associated with the privacy-preserving
training of and inference on neural networks (NNs).

Privacy-Preserving Inference on Neural Networks. In this re-
search direction, the majority of works operate on the following setting:
a central server holds a trained NN model and clients communicate
their evaluation data to obtain predictions-as-a-service [45], [73], [59].
Their aim is to protect both the confidentiality of the server’s model
and the clients’ data. Dowlin et al. propose the use of a ring-based
leveled HE scheme to enable the inference phase on encrypted
data [45]. Other works rely on hybrid approaches by employing
two-party computation (2PC) and HE [59], [73], or secret sharing and
garbled circuits to enable privacy-preserving inference on NNs [92],
[97], [81]. For instance, Riazi et al. use garbled circuits to achieve
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constant round communication complexity during the evaluation of
binary neural networks [97], whereas Mishra et al. propose a similar
hybrid solution that outperforms previous works in terms of efficiency,
by tolerating a small decrease in the model’s accuracy [81].

Boemer et al. develop a deep-learning graph compiler for multiple
HE cryptographic libraries [19], [20], such as SEAL [1], HElib [49],
and Palisade [98]. Their work enables the deployment of a model,
which is trained with well-known frameworks (e.g., Tensorflow [9],
PyTorch [91]), and enables predictions on encrypted data. Dalskov et al.
use quantization techniques to enable efficient privacy-preserving infer-
ence on models trained with Tensorflow [9] by using MP-SPDZ [5] and
demonstrate benchmarks for a wide range of adversarial models [35].

All aforementioned solutions enable only privacy-preserving
inference on NNs, whereas our work focuses on both the privacy-
preserving training of and the inference on NNs, protecting the
training data, the resulting model, and the evaluation data.

Privacy-Preserving Training of Neural Networks. A number of
works focus on centralized solutions to enable privacy-preserving
learning of NNs [103], [8], [115], [109], [85], [51]. Some of them,
e.g., [103], [8], [115], employ differentially private techniques to
execute the stochastic gradient descent while training a NN in order to
derive models that are protected from inference attacks [102]. However,
they assume that the training data is available to a trusted party that
applies the noise required during the training steps. Other works,
e.g., [109], [85], [51], rely on HE to outsource the training of multi-
layer perceptrons to a central server. These solutions either employ cryp-
tographic parameters that are far from realistic [109], [85], or yield im-
practical performance [51]. Furthermore, they do not support the train-
ing of NNs in the N-party setting, which is the main focus of our work.

A number of works that enable privacy-preserving distributed
learning of NNs employ MPC approaches where the parties’
confidential data is distributed among two [83], [12], three [82], [110],
[111], [52], [28], or four servers [26], [27] (2PC, 3PC, and 4PC, resp.).
For instance, in the 2PC setting, Mohassel and Zhang describe a system
where data owners process and secret-share their data among two
non-colluding servers to train various ML models [83], and Agrawal
et al. propose a framework that supports discretized training of NNs by
ternarizing the weights [12]. Then, Mohassel and Rindal extend [83] to
the 3PC setting and introduce new fixed-point multiplication protocols
for shared decimal numbers [82]. Wagh et al. further improve
the efficiency of privacy-preserving NN training on secret-shared
data [110] and provide security against malicious adversaries,
assuming an honest majority among 3 servers [111]. More recently,
4PC honest-majority malicious frameworks for PPML have been
proposed [26], [27]. These works split the trust between more servers
and achieve better round complexities than previous ones, yet they do
not address NN training among N-parties. Note that 2PC, 3PC, and
4PC solutions fall under the cloud outsourcing model, as the data of the
parties has to be transferred to several servers among which the majority
has to be trusted. Our work, however, focuses on a distributed setting
where the data owners maintain their data locally and iteratively update
the collective model, yet data and model confidentiality is ensured
in the existence of a dishonest majority in a semi-honest setting, thus
withstanding passive adversaries and up to N−1 collusions between
them. We provide a comparison with these works in Section VII-F.

Another widely employed approach for training NNs in a dis-
tributed manner is that of federated learning [75], [64], [63]. The main
idea is to train a global model on data that is distributed across multiple
clients, with the assistance of a server that coordinates model updates on
each client and averages them. This approach does not require clients

to send their local data to the central server, but several works show that
the clients’ model updates leak information about their local data [53],
[113], [120]. To counter this, some works focus on secure aggregation
techniques for distributed NNs, based on HE [93], [94] or MPC [22].
Although encrypting the gradient values prevents the leakage of parties’
confidential data to the central server, these solutions do not account for
potential leakage from the aggregate values themselves. In particular,
parties that decrypt the received model before the next iteration are able
to infer information about other parties’ data from its parameters [53],
[78], [86], [120]. Another line of research relies on differential privacy
(DP) to enable privacy-preserving federated learning for NNs. Shokri
and Shmatikov [101] apply DP to the parameter update stages, and Li
et al. design a privacy-preserving federated learning system for medical
image analysis where the parties exchange differentially private
gradients [67]. McMahan et al. propose differentially private federated
learning [76], by employing the moments accountant method [8], to
protect the privacy of all the records belonging to a user. Finally, other
works combine MPC with DP techniques to achieve better privacy
guarantees [56], [108]. While DP-based learning aims to mitigate
inference attacks, it significantly degrades model utility, as training
accurate NN models requires high privacy budgets [96]. As such, it
is hard to quantify the level of privacy protection that can be achieved
with these approaches [55]. To account for these issues, our work
employs multiparty homomorphic encryption techniques to achieve
zero-leakage training of NNs in a distributed setting where the parties’
intermediate updates and the final model remain under encryption.

III. PRELIMINARIES

We provide background information about NNs and the multiparty
homomorphic encryption (MHE) scheme on which POSEIDON relies
to achieve privacy-preserving training of and inference on NN models
in a federated N-party setting.

A. Neural Networks

Neural networks (NNs) are machine learning algorithms that
extract complex non-linear relationships between the input and output
data. Typical NNs are composed of a pipeline of layers where feed-
forward and backpropagation steps for linear and non-linear transfor-
mations (activations) are applied to the input data iteratively [48]. Each
training iteration consists of one forward pass and one backward pass,
and the term epoch refers to processing once all the samples in a dataset.

Multilayer perceptrons (MLPs) are fully-connected deep NN struc-
tures widely used in the industry [58]. MLPs are composed of an input
layer, one or more hidden layer(s), and an output layer; each neuron
is connected to all neurons in the following layer. At iteration k, the
weights between layers j and j+1, are denoted by a matrix Wk

j , and

the matrix Lj represents the activation of the neurons in the jth layer.
The forward pass first linearly combines each layer’s weights with the
activation values of the previous layer, i.e., Uj=Wk

j ×Lj−1. Then,

an activation function yields the values of each layer as Lj=ϕ(Uj).

Backpropagation, a gradient descent-based method, is then used to
update the weights in the backward pass. Here, we describe the update
rules for mini-batch gradient descent, where a random batch of sample
inputs of size B is used in each iteration. The aim is to minimize each
iteration’s error based on a cost function E and update the weights.
The update rule is Wk+1

j =Wk
j − η

B∇Wk
j , where η is the learning

rate and∇Wk
j denotes the gradient of the cost function with respect

to the weights and calculated as ∇Wk
j = ∂E

∂Wk
j

. Backpropagation

requires several transpose operations applied to matrices/vectors; we
denote the transpose of a matrix/vector as WT .
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Convolutional neural networks (CNNs) are trained similarly and
typically consist of convolutional (CV), pooling, and fully connected
(FC) layers. CV layer operations can be expressed as FC layer ones
by representing them as matrix multiplications; in our protocols, we
simplify CV layer operations with this representation [110], [3]. Finally,
pooling layers are downsampling layers where a kernel (a matrix that
moves over the input matrix with a stride of a) is convolved with the
current sub-matrix. For a kernel of size k×k, a pooling layer yields the
minimum, maximum, or average of each k×k sub-matrix of its input.

B. Distributed Deep Learning

We employ the well-known MapReduce abstraction to describe
the training of data-parallel NNs in a distributed setting where multiple
data providers hold their respective datasets [122], [32]. We rely on
parallel gradient descent [122], where each party performs b local
iterations and calculates each layer’s partial gradients. These gradients
are aggregated over all parties and the reducer updates the model with
their average [32]. This process is repeated for m global iterations. Av-
eraging the gradients from N parties is equivalent to performing batch
gradient descent with a batch size of b×N ; we differentiate between
the local batch size as b and the global batch size as B=b×N .

C. Multiparty Homomorphic Encryption (MHE)

Our system relies on the Cheon-Kim-Kim-Song (CKKS) [29]
variant of the MHE scheme proposed by Mouchet et al. [84]. In
this scheme, a public collective key is known by all parties while the
corresponding secret key is distributed among them. Thus, decryption
is only possible with the participation of all parties. We choose this
scheme as: (i) it is well suited for floating-point arithmetic, (ii) it
is based on the ring learning with errors (RLWE) problem [74],
making our system secure against post-quantum attacks [11], (iii)
it enables secure and flexible collaborative computations between
parties without sharing their respective secret key, and (iv) it enables
a secure collective key-switch functionality, that is, changing the
encryption key of a ciphertext without decryption. We provide a brief
description of the scheme’s functionalities that we use throughout
our protocols. The cyclotomic polynomial ring of dimensionN , with
N a power-of-two integer, defines the plaintext and ciphertext space

as RQL
=ZQL

[X]/(XN +1), with QL=
∏L

0 qi in our case. Each
qi is a unique prime, and QL is the ciphertext modulus at an initial
level L. A plaintext encodes a vector of up toN/2 values. Below, we
introduce the main functions used in our system in Scheme III.1. We
denote by c=(c0,c1)∈R2

QL
and p∈RQL

, a ciphertext (indicated as
boldface) and a plaintext, respectively. p̄ denotes an encoded (packed)
plaintext. We denote by Lc, Sc, L, and S, the current level of a
ciphertext c, the current scale of c, the initial level, and the initial scale
(precision) of a fresh ciphertext respectively, and we use the equivalent
notations for plaintexts. The functions (in Scheme III.1) that start with
’D’ are distributed, and executed among all the secret-key-holders,
whereas the others can be executed by anyone with the public key.

Res(·) is applied to a resulting ciphertext after each multiplication.
For a ciphertext at an initial level L, at most an L-depth circuit can
be evaluated. To enable more homomorphic operations, the ciphertext
must be re-encrypted to its original level L. This is done by the
bootstrapping functionality (DBootstrap(·)). Encode(·) enables us
to pack several values into one ciphertext and operate on them in
parallel. We differentiate between the functionality of the collective
key-switch (DKeySwitch(·)), that requires interaction between all the
parties, and a local key-switch (KS(·)) that uses a special public-key.
The former is used to decrypt the results or change the encryption
key of a ciphertext. The latter, which does not require interactivity, is

used during the local computation for slot rotations or relinearization
after each multiplication.

SecKeyGen(1λ): Returns the set of secret keys {ski},
i.e., ski for each party Pi, for security parameter λ.
DKeyGen({ski}): Returns the collective public key pk.
Encode(msg): Returns a plaintext p̄∈RQL

with scale S, encoding msg.
Decode(p̄) : For p̄∈RQLp

and scale Sp, returns the decoding of p.

DDecrypt(c,{ski}): For c∈R2
QLc

and scale Sc, returns the plaintext

p∈RQLc
with scale Sc.

Enc(pk,p̄): Returns cpk∈R
2
QL

with scale S such that
DDecrypt(cpk,{ski})≈ p̄.
Add(cpk,c

′

pk): Returns (c+c
′)pk at level min(Lc,Lc′)

and scale max(Sc,Sc′).
Sub(cpk,c

′

pk): Returns (c−c′)pk at level min(Lc,Lc′)
and scale max(Sc,Sc′).
Mulpt(cpk,p̄): Returns (cp)pk at level min(Lc,Lp), scale (Sc×Sp).
Mulct(cpk,c

′

pk): Returns (cc′)pk at level min(Lc,Lc′), scale (Sc×Sc′).
RotL/R(cpk,k): Homomorphically rotates cpk to the left/right by k times.
Res(cpk): Returns cpk with scale Sc/qLc at level Lc−1.
SetScale(cpk,S): Returns cpk with scale S at level Lc−1.

KS(cpk∈R
3): Returns cpk∈R

2.
DKeySwitch(cpk,pk

′,{ski}) : Returns cpk′ .
DBootstrap(cpk,Lc,Sc,{ski}): Returns cpk with initial level L, scale S.

Scheme III.1: Frequently used cryptographic operations.

IV. SYSTEM OVERVIEW

We introduce POSEIDON’s system and threat model, as well as
its objectives (Sections IV-A and IV-B). Moreover, we provide a high
level description of its functionality (Sections IV-C and IV-D).

A. System and Threat Model

We introduce POSEIDON’s system and threat model below.
System Model. We consider a setting where N parties, each locally
holding its own data Xi and a one-hot vector of labels yi, collectively
train a neural network (NN) model. At the end of the training process,
a querier – which can be one of the N parties or an external entity
– queries the model and obtains prediction results yq on its evaluation
data Xq. The parties involved in the training process are interested
in preserving the privacy of their local data, the intermediate model
updates, and the resulting model. The querier obtains prediction
results on the trained model and keeps its evaluation data confidential.
We assume that the parties are interconnected and organized in
a tree-network structure for communication efficiency. However,
our system is fully distributed and does not assume any hierarchy,
therefore remaining agnostic of the network topology, e.g., we can
consider a fully-connected network.

Threat Model. We consider a passive-adversary model with
collusions of up to N−1 parties: I.e., the parties follow the protocol
but up to N − 1 parties might share among them their inputs and
observations during the training phase of the protocol, to extract
information about the other parties’ inputs through membership
inference or federated learning attacks [78], [86], [53], [120], [113],
prevented by our work. Inference attacks on the model’s prediction
phase, such as membership [102] or model inversion [39], exploit
the final prediction result and are out-of-the-scope of this work.
We discuss complementary security mechanisms that can limit
the information a querier infers from the prediction results and an
extension to the active-adversary model in Appendix D-A.
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B. Objectives

POSEIDON’s main objective is to enable the privacy-preserving
training of and the evaluation on NNs in the above system and threat
model. During the training process, POSEIDON protects both the inter-
mediate updates and the final model weights — that can potentially leak
information about the parties’ input data [53], [78], [86], [120] — from
any party. In the inference step, the parties holding the protected model
should not learn the querier’s data, or the prediction results, and the
querier should not obtain the model’s weights. Therefore, POSEIDON’s
objective is to protect the parties’ and querier’s data confidentiality,
as well as the trained model confidentiality, as defined below:

• Data Confidentiality. During training and prediction, no party
Pi (including the querierPq) should learn more information about
the input data Xj of any other honest party Pj (j 6=i, including
the querier Pq), other than what can be deduced from its own
input data Xi,yi (or the input Xq and output yq, for the querier).

• Model Confidentiality. During training and prediction, no
party Pi (including the querier Pq) should gain more information
about the trained model weights, other than what can be deduced
from its own input data Xi,yi (or Xq,yq for the querier).

C. Overview of POSEIDON

POSEIDON achieves its objectives by using the MHE scheme
described in Section III-C. In particular, the model weights are kept
encrypted, with the parties’ collective public key, throughout the
training process. The operations required for the communication-
efficient training of NNs are enabled by the scheme’s computation
homomorphic properties, which enables the parties to perform
operations between their local data and the encrypted model weights.
To enable oblivious inference on the trained model, POSEIDON utilizes
the scheme’s key-switching functionality that allows the parties to col-
lectively re-encrypt the prediction results with the querier’s public key.

POSEIDON employs several packing schemes to enable SIMD op-
erations on the weights of various NN layers and uses approximations
that enable the evaluation of multiple activation functions (e.g., Sig-
moid, Softmax, ReLU) under encryption. Furthermore, to account for
the complex operations required during the training of a neural network,
POSEIDON uses the scheme’s distributed (collective) bootstrapping
capability that enables us to refresh ciphertexts. In the following sub-
section, we provide a high-level description of POSEIDON’s phases, the
cryptographic operations and optimizations are described in Section V.

Throughout the paper, we present POSEIDON as a synchronous
distributed learning protocol. An extension to asynchronous distributed
NNs is presented in Appendix D-B.

D. High-Level Protocols

To describe the distributed training of and evaluation on NNs, we
employ the extended MapReduce abstraction for privacy-preserving
ML computations introduced in SPINDLE [41]. The overall learning
procedure is composed of four phases: PREPARE, MAP, COM-
BINE, and REDUCE. Protocol 1 describes the steps required for the
federated training of a neural network with N parties. The bold terms
denote encrypted values and W

k
j,i represents the weight matrix of the

jth layer, at iteration k, of the party Pi. When there is no ambiguity or
when we refer to the global model, we replace the sub-index i with ·
and denote weights by W k

j,·. Similarly, we denote the local gradients at

party Pi by ∇W
k
j,i, for each network layer j and iteration k. Through-

out the paper, the nth row of a matrix that belongs to the ith party is
represented by Xi[n] and its encoded (packed) version as X̄i[n].

Protocol 1 Collective Training

Inputs: Xi,yi for i∈{1,2,...,N}
Outputs: W

m
1,·,W

m
2,·,...,W

m
ℓ,·

PREPARE:
1: Parties collectively agree on ℓ,h1,...,hℓ,η,ϕ(·),m,b
2: Each Pi generates ski←SecKeyGen(1λ)
3: Parties collectively generate pk←DKeyGen({ski})
4: Each Pi encodes its local data as X̄i, ȳi
5: P1 initializes W 0

1,·,W
0
2,·,...,W

0
ℓ,·

6: for k=0→m−1 do
MAP:

7: P1 sends W k
1,·,W

k
2·,...,W

k
ℓ,· down the tree

8: Each Pi does:
9: Local Gradient Descent Computation:

10: ∇W
k
1,i,∇W

k
2,i,...,∇W

k
ℓ,i

COMBINE:
11: Parties collectively aggregate: ∇W

k
1,·,...,∇W

k
ℓ,·←∑N

i=1
∇W

k
1,i,...,∇W

k
ℓ,i

12: P1 obtains ∇W
k
1,·,∇W

k
2,·,...,∇W

k
ℓ,·

REDUCE (performed by P1) :
13: for j=1→ℓ do

14: W
k+1

j,· +=η
∇W

k
j,·

b×N

15: end for
16: end for

1) PREPARE: In this offline phase, the parties collectively agree on
the learning parameters: the number of hidden layers (l), the number of
neurons (hj) in each layer j,∀j∈{1,2,...,l}, the learning rate (η), the
number of global iterations (m), the activation functions to be used in
each layer (ϕ(·)) and their approximations (see Section V-B), and the
local batch size (b). Then, the parties generate their secret keys ski and
collectively generate the public key pk. Subsequently, they collectively
normalize or standardize their input data with the secure aggregation
protocol described in [42]. Each Pi encodes (packs) its input data
samples Xi and output labels yi (see Section V-A) as X̄i,ȳi. Finally,
the root of the tree (P1) initializes and encrypts the global weights.

Weight Initialization. To avoid exploding or vanishing gradients, we
rely on commonly used techniques: (i) Xavier initialization for the
sigmoid or tanh activated layers: Wj=r×hj−1 where r is a random
number sampled from a uniform distribution in the range [−1,1] [46],
and (ii) He initialization [50] for ReLU activated layers, where the
Xavier-initialized weights are multiplied twice by their variance.

2) MAP: The root (P1) communicates the current encrypted weights,
to every other party for their local gradient descent (LGD) computation.

LGD Computation: Each Pi performs b forward and backward
passes to compute and aggregate the local gradients, by processing
each sample of its respective batch. Protocol 2 describes the LGD
steps performed by each party Pi, at iteration k; ⊙ represents an
element-wise product and ϕ′(·) the derivative of an activation function.
As the protocol refers to one local iteration for a specific party, we
omit k and i from the weight and gradient indices. This protocol
describes the typical operations for the forward and backward pass
using gradient descent with the L2 loss (see Section III). We note
that the operations in this protocol are performed over encrypted data.

3) COMBINE: In this phase, each party communicates its encrypted
local gradients to their parent, and each parent homomorphically sums
the received gradients with their own ones. At the end of this phase,
the root of the tree (P1) receives the globally aggregated gradients.

4) REDUCE: P1 updates the global model weights by using the
averaged aggregated gradients. The averaging is done with respect
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Protocol 2 Local Gradient Descent (LGD) Computation

Inputs: W
k
1,·,W

k
2,·,...,W

k
ℓ,·

Outputs: ∇W
k
1,i,∇W

k
2,i, ... ,∇W

k
ℓ,i. Note that i and k indices are

omitted in this protocol.
1: for t=1→b do ⊲ Forward Pass
2: L0=X̄[t]
3: for j=1→ℓ do
4: Uj=Lj−1×Wj

5: Lj=ϕ(Uj)
6: end for
7: Eℓ= ȳ[t]−Lℓ ⊲ Backpropagation
8: Eℓ=ϕ′(Uℓ)⊙Eℓ

9: ∇Wℓ+=L
T

ℓ−1×Eℓ

10: for j=ℓ−1→1 do
11: Ej=Ej+1×W

T

j+1

12: Ej=ϕ′(Uj)⊙Ej

13: ∇Wj+=L
T

j−1×Ej

14: end for
15: end for

to the global batch size |B|=b×N , as described in Section III-B.

Training Termination: In our system, we stop the learning process
after a predefined number of epochs. However, we note that several
early-stop techniques [95] for the NN training termination can be
straightforwardly integrated to POSEIDON.

Prediction: At the end of the training phase, the model is kept in
an encrypted form such that no individual party or the querier can
access the model weights. To enable oblivious inference, the querier
encrypts its evaluation data Xq with the parties’ collective key. We
note that an oblivious inference is equivalent to one forward pass (see
Protocol 2), except that the first plaintext multiplication (Mulpt(·))
of L0 with the first layer weights is substituted with a ciphertext
multiplication (Mulct(·)). At the end of the forward pass, the parties
collectively re-encrypt the result with the querier’s public key by using
the key-switch functionality of the underlying MHE scheme. Thus,
only the querier is able to decrypt the prediction results. Note that any
party Pi can perform the oblivious inference step, but the collaboration
between all the parties is required to perform the distributed bootstrap
and key-switch functionalities.

V. CRYPTOGRAPHIC OPERATIONS AND OPTIMIZATIONS

We first present the alternating packing (AP) approach that we use
for packing the weight matrices of NNs (Section V-A). We then explain
how we enable activation functions on encrypted values (Section V-B)
and introduce the cryptographic building blocks and functions
employed in POSEIDON (Section V-C), together with their execution
pipeline and their complexity (Sections V-D and V-E). Finally, we for-
mulate a constrained optimization problem that depends on a cost func-
tion for choosing the parameters of the cryptoscheme (Section V-F).

A. Alternating Packing (AP) Approach

For the efficient computation of the steps in Protocol 2, we rely
on the packing capabilities of the cryptoscheme that enables SIMD
operations on ciphertexts. Packing enables coding a vector of values
in a ciphertext and parallelizing the computations across its different
slots, thus significantly improving the overall performance.

Existing packing strategies that are commonly used for ML opera-
tions on encrypted data [41], e.g., the row-based [61] or diagonal [49],

require a high number of rotations for the execution of the matrix-
matrix multiplications and matrix transpose operations, performed dur-
ing the forward and backward pass of the local gradient descent compu-
tation (see Protocol 2). We here remark that the number of rotations has
a significant effect on the overall training time of a NN on encrypted
data, as they require costly key-switch operations (see Section V-E).
As an example, the diagonal approach scales linearly with the size of
the weight matrices, when it is used for batch-learning of NNs, due
to the matrix transpose operations in the backpropagation. We follow a
different packing approach and process each batch sample one by one,
making the execution embarrassingly parallelizable. This enables us to
optimize the number of rotations, to eliminate the transpose operation
applied to matrices in the backpropagation, and to scale logarithmically
with the dimension and number of neurons in each layer.

We propose an "alternating packing (AP) approach" that combines
row-based and column-based packing, i.e., rows or columns of the
matrix are vectorized and packed into one ciphertext. In particular, the
weight matrix of every FC layer in the network is packed following
the opposite approach from that used to pack the weights of the
previous layer. With the AP approach, the number of rotations
scales logarithmically with the dimension of the matrices, i.e., the
number of features (d), and the number of hidden neurons in each
layer (hi). To enable this, we pad the matrices with zeros to get
power-of-two dimensions. In addition, the AP approach reduces the
cost of transforming the packing between two consecutive layers.

Protocol 3 describes a generic way for initializing the encrypted
weights for an ℓ-layer MLP by P1 and for encoding the input matrix
(Xi) and labels (yi) of each party Pi. It takes as inputs the NN parame-
ters: The dimension of the data (d) that describes the shape of the input
layer, the number of hidden neurons in the jth layer (hj), and the num-
ber of outputs (hℓ). We denote by gap a vector of zeros, and by |·| the
size of a vector or the number of rows of a matrix. Replicate(v,k,gap)
returns a vector that replicates v, k times with a gap in between each
replica. Flatten(W,gap,dim), flattens the rows or columns of a matrix
W into a vector and introduces gap in between each row/column. If
a vector is given as input to this function, it places gap in between all
of its indices. The argument dim indicates flattening of rows (’r’) or
columns (’c’) and dim=’·’ for the case of vector inputs.

We observe that the rows (or columns) packed into one ciphertext,
must be aligned with the rows (or columns) of the following layer for
the next layer multiplications in the forward pass and for the alignment
of multiplication operations in the backpropagation, as depicted in
Table I (e.g., see steps F1, F6, B3, B5, B6). We enable this alignment
by adding gap between rows or columns and using rotations, described
in the next section. Note that these steps correspond to the weight
initialization and to the input preparation steps of the PREPARE
(offline) phase.

Convolutional Layer Packing. To optimize the SIMD operations
for CV layers, we decompose the nth input sample Xi[n] into t
smaller matrices according to the kernel size h= f ×f . We pack
these decomposed flattened matrices into one ciphertext, with a gap in
between each matrix that is defined based on the number of neurons
in the next layer (h2−h1), similarly to the AP approach. The weight
matrix is then replicated t times with the same gap between each
replica. If the next layer is another convolutional or downsampling
layer, the gap is not needed and the values in the slots are re-
arranged during the training execution (see Section V-C). Lastly, we
introduce the average-pooling operation to our bootstrapping function
(DBootstrapALT(·), see Section V-C), and we re-arrange almost for
free the slots for any CV layer that comes after average-pooling.
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Protocol 3 Alternating Packing (AP) Protocol

Inputs: Xi,yi,d,{h1,h2,...,hℓ},ℓ
Outputs: W

0
1,·,W

0
2,·,...,W

0
ℓ,·,X̄i,ȳi

1: for i=1→N each Pi do
2: Initialize |gap|=max(h1−d,0) ⊲ Input Preparation
3: for n=1→|Xi| do
4: Xi[n]=Replicate(Xi[n],h1,gap)
5: X̄i[n]=Encode(Xi[n])
6: end for
7: if ℓ%2!=0 then ⊲ Labels Preparation
8: Initialize |gap|=hℓ

9: yi=Flatten(yi,gap,’·’)
10: end if
11: ȳi=Encode(yi)
12: if i==1 then ⊲ P1 performs Weight Initialization:
13: Initialize W0

1,·,W
0
2,·,...,W

0
ℓ,·

14: for j=1→ℓ do
15: if j%2==0 then ⊲ Row Packing
16: if hj−2>hj then
17: Initialize |gap|=hj−2−hj

18: end if
19: W0

j,·=Flatten(W0
j,·,gap,’r’)

20: W
0
j,·=Enc(pk,W0

j,·)
21: else ⊲ Column Packing
22: if hj+1>hj−1 then
23: Initialize |gap|=hj+1−hj−1

24: end if
25: W0

j,·=Flatten(W0
j,·,gap,’c’)

26: W
0
j,·=Enc(pk,W0

j,·)
27: end if
28: end for
29: end if
30: end for

We note that high-depth kernels, i.e., layers with a large number
of kernels, require a different packing optimization. In this case, we
alternate row and column-based packing (similar to the AP approach),
replicate the decomposed matrices, and pack all kernels in one
ciphertext. This approach introduces k multiplications in the MAP
phase, where k is the number of kernels in that layer, and comes with
reduced communication overhead; the latter would be k times larger
for COMBINE, MAP, and DBootstrap(·), if the packing described
in the previous paragraph was employed.

Downsampling (Pooling) Layers. As there is no weight matrix for
downsampling layers, they are not included in the offline packing phase.
The cryptographic operations for pooling are described in Section V-D.

B. Approximated Activation Functions

For the encrypted evaluation of non-linear activation functions,
such as Sigmoid or Softmax, we use least-squares approximations and
rely on the optimized polynomial evaluation that, as described in [41],
consumes ⌈log(da+1)⌉ levels for an approximation degree da. For the
piece-wise function ReLU, we approximate the smooth approximation
of ReLU, softplus (SmoothReLU), ϕ(x) = ln(1 + ex) with least-
squares. Lastly, we use derivatives of the approximated functions.

To achieve better approximation with the lowest possible degree,
we apply two approaches to keep the input range of the activation
function as small as possible, by using (i) different weight initialization
techniques for different layers (i.e., Xavier or He initialization), and
(ii) collective normalization of the data by sharing and collectively
aggregating statistics on each party’s local data in a privacy-preserving
way [42]. Finally, the interval and the degree of the approximations

are chosen based on the heuristics on the data distribution in a
privacy-preserving way, as described in [51].

C. Cryptographic Building Blocks

We present each cryptographic function that we employ in
POSEIDON. We also discuss the optimizations employed to avoid
costly transpose operations in the encrypted domain.
Rotations. As we rely on packing capabilities, computation of the

inner-sum of vector-matrix multiplications and transpose operation
implies a restructuring of the vectors, that can only be achieved by
applying slot rotations. Throughout the paper, we use two types of
rotation functions: (i) Rotate For Inner Sum (RIS(c,p,s)) is used to
compute the inner-sum of a packed vector c by homomorphically
rotating it to the left with RotL(c, p) and by adding it to itself
iteratively log2(s) times, and (ii) Rotate For Replication (RR(c,p,s))
replicates the values in the slots of a ciphertext by rotating the
ciphertext to the right with RotR(c, p) and by adding to itself,
iteratively log2(s) times. For both functions, p is multiplied by two
at each iteration, thus both yield log2(s) rotations. As rotations are
costly cryptographic functions (see Table II), and the matrix operations
required for NN training require a considerable amount of rotations,
we minimize the number of rotations by leveraging a modified
bootstrapping operation, that performs some of the rotations.

Distributed Bootstrapping with Arbitrary Linear Transforma-
tions. To execute the high-depth homomorphic operations, bootstrap-
ping is required several times to refresh a ciphertext, depending on the
initial level L. In POSEIDON, we use a distributed version of bootstrap-
ping [84], [24], as it is several orders of magnitude more efficient than
the traditional centralized bootstrapping. Then we modify it, leveraging
on the interaction to automatically perform some of the rotations, or
pooling operations, embedded as transformations in the bootstrapping.

Mouchet et al. replace the expensive bootstrap circuit by a one-
round protocol where the parties collectively switch a Brakerski/Fan-
Vercauteren (BFV) [38] ciphertext to secret-shares in Z

N
t . We adapt

their protocol to a re-encryption process that extends the ciphertext
modulus from Qℓ back to QL. Because a modular reduction of the
plaintext mod Qℓ would result in an incorrect re-encryption, we instead
collectively switch the ciphertext to a secret-shared plaintext guaran-
teeing statistical indistinguishability during the re-encryption process.

We define this protocol as DBootstrapALT(·) (Protocol 4) that
takes as inputs a ciphertext cpk at level ℓ encrypting a message msg
and returns a ciphertext c′pk at level L encrypting φ(msg), where φ(·)
is a linear transformation over the field of complex numbers. We denote
by ||a|| the infinity norm of the vector or polynomial a. As the security
of the RLWE is based on computational indistinguishability, switching
to the secret-shared domain does not hinder security. We refer to
Appendix B for technical details and the security proof of our protocol.

Optimization of the Vector-Transpose Matrix Product. The
backpropagation step of the local gradient computation at each
party requires several multiplications of a vector (or matrix) with the
transposed vector (or matrix) (see Lines 11-13 of Protocol 2). The
naïve multiplication of a vector v with a transposed weight matrix
W

T that is fully packed in one ciphertext, requires converting W

of size g×k, from column-packed to row-packed. This is equivalent
to applying a permutation of the plaintext slots, that can be expressed
with a plaintext matrix Wgk×gk and homomorphically computed by
doing a matrix-vector multiplication. As a result, a naïve multiplication
requires

√
g×k rotations followed by log2(k) rotations to obtain the

inner sum from the matrix-vector multiplication. We propose several
approaches to reduce the number of rotations when computing the
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AP Approach Representation

PREPARE:

1.
Each Pi prepares
Xi[n],yi[n]

Encode Xi[n], yi[n]→X̄i[n], ȳi[n]
L̄0=X̄i[n]

ℎ!

Bootstrap DBootstrapALT

"#

"$, "&

"'

SetScale (Division)

("[*] =

-"[*] =

.# =

=

/! =

0! =

/$ =

/$ =

0$ =

1$ =

2’(/$) =

1$ =

1! =

1! =

1! =

1! =

ℎ!

ℎ$

|" − ℎ!|

d

|" − ℎ!||ℎ!|

/! =

/! =

2’(/!) =

1$ =

"6

"7

"8

"9, ":, "#;

B#

B$ B&

B'

B6

B7

B8

B9, B: B#;

B##, B#$, B#&

B#'
U1

U1

U2, U3

U2, U3

2. P1 initializes W1,·
Vectorize columns, pack with |gap|=0
W

0
1,·=Flatten(W0

1,·,gap,’c’)

3. P1 initializes W2,·
Vectorize rows, pack with |gap|=d−hℓ

W
0
2,·=Flatten(W0

2,·,gap,’r’)

4.
Each Pi generates
masks m̄1,m̄2

m̄1=[1,0,0,0,1,0,0,0,1,0,0,0,1,...]
m̄2=[1,1,0,0,0,0,0,0,0,0,0,0,0,...]

Forward Pass (Each Pi):

1. U1=L̄0×W1,·

2. L1=ϕ(U1)

F1. U1=Mulpt(L̄0,W1,·), Res(U1)
F2. U1=RIS(U1,1,d)
F3. U1=Mulpt(U1,m̄1), Res(U1)
F4. U1=RR(U1,1,hℓ)
F5. L1=ϕ(U1)

3. U2=L1×W2,·

4. L2=ϕ(U2)

F6. U2=Mulct(L1,W2,·), Res(L2)
F7. U2=RIS(U1,d,h1)
F8. L2=Mulpt(L2,m̄2), Res(L2)
F9. DBootstrap(U2)
F10. L2=ϕ(U2)

Backpropagation (Each Pi):
1. E2= ȳi[n]−L2 B1. E2=Sub(ȳi[n],L2)

2. E2=(ϕ′(U2))⊙E2

B2. d=ϕ′(U2)
B3. E2=Mulct(E2,d), Res(E2)
B4. E2=RR(E2,d,h1)

3. ∇W2,i=L
T

1 ×El B5. ∇W2,i=Mulct(L1,E2), Res(∇W2,i)

4. E1=E2×W
T

2,·
B6. E1=Mulct(E2,W2,i), Res(E1)
B7. E1=RIS(E1,1,hℓ)

5. E1=(ϕ′(U1)⊙E1)

B8. d=ϕ′(U1)
B9. d=Mulpt(d,m̄1)
B10. E1=Mulct(E1,d), Res(E1)
B11. DBootstrapALT(E1)

6. ∇W1,i=L̄T
0 ×E1

B12. E1=Mulpt(E1,m̄1), Res(E1)
B13. E1=RR(E1,1,d)
B14. ∇W1,i=Mulpt(L̄0,E1), Res(∇W1,i)

Update (at P1):

1. Wj,·+=η
∇Wj,·

b×N

∀j∈{1,2,..,l}

U1. SetScale(∇Wj,·,S∇Wj,·
×(b×N))/η)

U2. Wj,·=Add(Wj,·,∇Wj,·)
U3. DBootstrap(Wj,·)

TABLE I: Execution pipeline for a 2-layer MLP network with Alternating Packing (AP). Orange steps indicate the operations embedded in DBootstrapALT(·).

multiplication of a packed matrix (to be transposed) and a vector: (i)
For the mini-batch gradient descent, we do not perform operations
on the batch matrix. Instead, we process each batch sample in parallel,
because having separate vectors (instead of a matrix that is packed
into one ciphertext) enables us to reorder them at a lower cost. This
approach translates ℓ matrix transpose operations to be transposes in
vectors (the transpose of the vectors representing each layer activations
in the backpropagation, see Line 13, Protocol 2), (ii) Instead of taking
the transpose of W , we replicate the values in the vector that will
be multiplied with the transposed matrix (for the operation in Line 11,
Protocol 2), leveraging the gaps between slots with the AP approach.
That is, for a vector v of size k and the column-packed matrix W

of size g×k, v has the form [a,0,0,0. . . ,b,0,0,0,. . . ,c,0,0,0,. . . ] with
at least k zeros in between values (due to Protocol 3). Hence, any

resulting ciphertext requiring the transpose of the matrix that will be
subsequently multiplied, will also include gaps in between values.
We apply RR(v,1,k) that consumes log2(k) rotations to generate
[a,a,a, ...0...,b,b,b, ..,0...,c,c,c, ...,0, ...]. Finally, we compute the
productP=Mulct(v,W ) and apply RIS(P,1,g) to get the inner sum
with log2(g) rotations, and (iii) We further optimize the performance
by using DBootstrapALT(·) (Protocol 4): If the ciphertext before the
multiplication must be bootstrapped, we embed the log2(k) rotations
as a linear transformation performed during the bootstrapping.

D. Execution Pipeline

Table I depicts the pipeline of the operations for processing one
sample in LGD computation for a 2-layer MLP. These steps can be
extended to an ℓ-layer MLP by following the same operations for
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Protocol 4 DBootstrapALT(·)
Inputs: cpk=(c0,c1)∈R

2
Qℓ

encryptingmsg, λ a security parameter,φ(·) a
linear transformation over the field of complex numbers, a a common ref-
erence polynomial, si the secret-key of each party Pi, χerr a distribution
over R, where each coefficient is independently sampled from Gaussian
distribution with the standard deviation σ=3.2, and bound ⌊6σ⌋.
Constraints: Qℓ>(N+1)·||msg||·2λ.

Outputs: c
′
pk=(c′0,c

′
1)∈R

2
QL

1: for all Pi do
2: Mi←R||msg||·2λ , e0,i,e1,i←χerr

3: M ′
i←Encode(φ(Decode(Mi)))

4: h0,i←sic1+Mi+e0,i modQℓ

5: h1,i←−sia−Mi+e1,i modQL

6: end for
7: h0←

∑
h0,i,h1←

∑
h1,i

8: c′0←Encode(φ(Decode(c0+h0 modQℓ)))
9: return c

′
pk=(c′0+h1 modQL,a)∈R

2
QL

multiple layers. The weights are encoded and encrypted using the
AP approach, and the shape of the packed ciphertext for each step
is shown in the representation column. Each forward and backward
pass on a layer in the pipeline consumes one Rotate For Inner Sum
(RIS(·)) and one Rotate For Replication (RR(·)) operation, except
for the last layer, as the labels are prepared according to the shape
of the ℓth layer output. In Table I, we assume that the initial level
L=7. When a bootstrapping function is followed by a masking (that
is used to eliminate unnecessary values during multiplications) and/or
several rotations, we perform these operations embedded as part
of the distributed bootstrapping (DBootstrapALT(·)) to minimize
their computational cost. The steps highlighted in orange are the
operations embedded in the DBootstrapALT(·). The complexity of
each cryptographic function is analyzed in Section V-E.
Convolutional Layers. As we flatten, replicate, and pack the kernel

in one ciphertext, a CV layer follows the exact same execution pipeline
as an FC layer. However, the number of RIS(·) operations for a CV
layer is smaller than for an FC layer. That is because the kernel size is
usually smaller than the number of neurons in an FC layer. For a kernel
of size h= f×f , the inner sum is calculated by log2(f) rotations.
Note that when a CV layer is followed by an FC layer, the output of
the ith CV layer (Li) already gives the flattened version of the matrix
in one ciphertext. We apply RR(Li,1,hi+1) for the preparation of the
next layer multiplication. When a CV layer is followed by a pooling
layer, however, the RR(·) operation is not needed, as the pooling layer
requires a new arrangement of the slots of Li. We avoid this costly
operation by passing Li to DBootstrapALT(·), and by embedding
both the pooling and its derivative in DBootstrapALT(·).
Pooling Layers. We evaluate our system based on average pooling

as it is the most efficient type of pooling that can be evaluated
under encryption [45]. To do so, we exploit our modified collective
bootstrapping to perform arbitrary linear transformations. The average
pooling is a linear function, and so is its derivative (as opposed to max
pooling). Therefore, in the case of a CV layer followed by a pooling
layer, we apply DBootstrapALT(·) and use it both to rearrange the
slots, to compute the convolution of the average pooling, and its
derivative, that is used later in the backward pass. For a h= f×f
kernel size, this saves log2(h) rotations and additions (RIS(·)) and
one level if masking is needed. For max/min pooling, which are
non-linear functions, we refer the reader to Appendix A and highlight
that evaluating these functions under encryption remains unpractical.

E. Complexity Analysis

Table II displays the communication and worst-case computational
complexity of POSEIDON’s building blocks. This includes the MHE

primitives, thus facilitating the discussion on the parameter selection in
the following section. We define the complexity in terms of key-switch
KS(·) operations and recall that this is a different operation than
DKeySwitch(·), as explained in Section III-C. We note that KS(·)
and DBootstrap(·) are 2 orders of magnitude slower than an addition
operation, rendering the complexity of an addition negligible.

We observe that POSEIDON’s communication complexity depends
solely on the number of parties (N), the number of total ciphertexts
sent in each global iteration (z), and the size of one ciphertext (|c|). The
building blocks that do not require communication are indicated as−.

In Table II, forward and backward passes represent the per-layer
complexity for FC layers, so they are an overestimate for CV layers.
Note that the number of multiplications differs in a forward pass
and a backward pass, depending on the packing scheme, e.g., if the
current layer is row-packed, it requires 1 less Mulct(·) in the backward
pass, and we have 1 less Mulpt(·) in several layers, depending on the
masking requirements. Furthermore, the last layer of forward pass
and the first layer of backpropagation take 1 less RR(·) operation that
we gain from packing the labels in the offline phase, depending on
the NN structure (see Protocol 3). Hence, we save 2log2(hℓ) rotations
per one LGD computation.

In the MAP phase, we provide the complexity of the local
computations per Pi, depending on the total number of layers ℓ. In the
COMBINE phase, each Pi performs an addition for the collective
aggregation of the gradients in which the complexity is negligible.
To update the weights, REDUCE is done by one party (P1) and
divisions do not consume levels when performed with SetScale(·).
The complexity of an activation function (ϕ(·)) depends on the
approximation degree da. We note that the derivative of the activation
function (ϕ′(·)) has the same complexity as ϕ(·) with degree da−1.

For the cryptographic primitives represented in Table II, we rely on
the CKKS variant of the MHE cryptosystem in [84], and we report the
dominating terms. The distributed bootstrapping takes 1 round of com-
munication and the size of the communication scales with the number
of parties (N) and the size of the ciphertext (see [84] for details).

F. Parameter Selection

We first discuss how to optimize the number of Res(·) operations
and give a cost function which is computed by the complexities
presented in Table II. Finally, relying on this cost function we formulate
an optimization problem for choosing POSEIDON’ parameters.

As discussed in Section III-C, we assume that each multiplication
is followed by a Res(·) operation. The number of Res(·) operations,
however, can be reduced by checking the scale of the ciphertext. When
the initial scaleS is chosen such thatQ/S=r for a ciphertext modulus
Q, the ciphertext is rescaled after r multiplications. This reduces the
level consumption and is integrated into our cost function hereinafter.

Cryptographic Parameters Optimization. We define the overall
complexity of an ℓ-layer MLP aiming to formulate a constrained
optimization problem for choosing the cryptographic parameters.
We first introduce the total number of bootstrapping operations
(B) required in one forward and backward pass, depending on the
multiplicative depth as

B= ℓ(5+⌈log2(da+1)+⌈log2(da)⌉)
(L−τ)r ,

where r = Q/S. The number of total bootstrapping operations is
calculated by the total number of consumed levels (numerator), the
level requiring a bootstrap (L−τ) and r which denotes how many
consecutive multiplications are allowed before rescaling (denominator).
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Computational Complexity #Levels Used Communication Rounds

FORWARD P. (FP) (log2(hi−1)+log2(hi+1))·KS+Mulct+Mulpt+ϕ 2+⌈log2(da+1)⌉ − −

BACKWARD P. (BP) (log2(hi−1)+log2(hi+1))·KS+2Mulct+Mulpt+ϕ′ 3+⌈log2(da)⌉ − −

MAP ℓ(FP+BP)−2log2(hℓ) ℓ(5+⌈log2(da+1)+⌈log2(da)⌉) z(N−1)|c| 1/2

COMBINE − − z(N−1)|c| 1/2

REDUCE ℓ(Mulpt+DB) − − −

DBootstrap (DB) Nlog2(N)(L+1)+Nlog2(N)(Lc+1) − (N−1)|c| 1

Mul Plaintext (Mulpt) 2N(Lc+1) 1 − −

Mul Ciphertext (Mulct) 4N(Lc+1)+KS 1 − −

Approx. Activation Function (ϕ) (2κ+m−κ−3+⌈(da+1)/2κ⌉)·Mulct ⌈log2(da+1)⌉ − −

RIS(c,p,s), RR(c,p,s) log2(s)·KS − − −

Key-switch (KS) O(N log2(N)Lcβ) − − −

TABLE II: Complexity analysis of POSEIDON’s building blocks.N ,α,L,Lc,da stand for the cyclotomic ring size, the number of secondary moduli used
during the key-switching, maximum level, current level, and the approximation degree, respectively. β=⌈Lc+1/α⌉, m=⌈log(da+1)⌉, κ=⌊m/2⌋.

The initial level of a fresh ciphertext L has an effect on the design of
the protocols, as the ciphertext should be bootstrapped before the level
Lc reaches a number (L−τ) that is close to zero, where τ depends on
the security parameters. For a cyclotomic ring sizeN , the initial level
of a ciphertext L, and for the fixed NN parameters such as the number
of layers ℓ, the number of neurons in each layer h1,h2,...,hℓ, and for
the number of global iterations m, the overall complexity is defined as

C(N ,L)=m(

ℓ
∑

i=1

{(2log2(hi−1)+log2(hi+1))·KS

+3Mulct+2Mulpt+ϕ+ϕ′}−2log2(hℓ)+B·DB).
Note that the complexity of each KS(·) operation depends on the
level of the ciphertext that it is performed on (see Table II), but we
use the initial level L in the cost function for the sake of clarity. The
complexity of Mulct,Mulpt,DB, and KS is defined in Table II. Then,
the optimization problem for a fixed scale (precision) S and a security
level λ, which defines the security parameters, can be formulated as

min
N ,L

C(N ,L) (1)

subject to mc={q1,...,qL};L= |mc|;Q=
L
∏

i=1

qi;Q=kS, k∈R+;

QL−τ >2λ|plaintext|N ;N←postQsec(Q,λ),
where postQsec(Q,L,λ) gives the necessary cyclotomic ring size
N , depending on the ciphertext modulus (Q) and on the desired
security level (λ), according to the homomorphic encryption standard
whitepaper [14]. Eq. (1) gives the optimalN and L for a given NN
structure. We then pack each weight matrix into one ciphertext. We
note that the solution might give anN that has fewer slots than the
required number to pack the big weight matrices. In this case, we use
a multi-cipher approach where we divide the flattened weight vector
into multiple ciphertexts and carry out the NN operations on them in
parallel. E.g., for a weight matrix of size 1,024×64 andN/2=4,096
slots, we divide the weight matrix into 1,024×64/4,096=16 ciphers.

VI. SECURITY ANALYSIS

We demonstrate that POSEIDON achieves the Data and Model
Confidentiality properties defined in Section IV-B, under a passive-
adversary model with up to N−1 colluding parties. We follow the
real/ideal world simulation paradigm [70] for the confidentiality proofs.

The semantic security of the CKKS scheme is based on the
hardness of the decisional RLWE problem [29], [74], [71]. The
achieved practical bit-security against state-of-the-art attacks can be
computed using Albrecht’s LWE-Estimator [14], [15]. The security

of the used distributed cryptographic protocols, i.e., DKeyGen(·) and
DKeySwitch(·), relies on the proofs by Mouchet et al. [84]. They
show that these protocols are secure in a passive-adversary model with
up to N−1 colluding parties, under the assumption that the underlying
RLWE problem is hard [84]. The security of DBootstrap(·), and its
variant DBootstrapALT(·) is based on Lemma 1, that we state and
prove in Appendix B.

Remark 1. Any encryption broadcast to the network in Protocol 1 is
re-randomized to avoid leakage about parties’ confidential data by two
consecutive broadcasts. We omit this operation in Protocol 1 for clarity.

Proposition 1. Assume that POSEIDON’s encryptions are generated
using the CKKS cryptosystem with parameters (N ,QL,S) ensuring
a post-quantum security level of λ. Given a passive adversary
corrupting at most N − 1 parties, POSEIDON achieves Data and
Model Confidentiality during training.

Proof (Sketch). Let us assume a real-world simulator St that
simulates the view of a computationally-bounded adversary corrupting
N−1 parties, as such having access to the inputs and outputs of N−1
parties. As stated above, any encryption under CKKS with parameters
that ensure a post-quantum security level of λ is semantically secure.
During POSEIDON’s training phase, the model parameters that are
exchanged in between parties are encrypted, and all phases rely on the
aforementioned CPA-secure-proven protocols. Moreover, as shown in
Appendix B, the DBootstrap(·) and DBootstrapALT(·) protocols
are simulatable. Hence,St can simulate all of the values communicated
during POSEIDON’s training phase by using the parameters (N ,QL,S)
to generate random ciphertexts such that the real outputs cannot be
distinguished from the ideal ones. The sequential composition of
all cryptographic functions remains simulatable by St due to using
different random values in each phase and due to Remark 1. As such,
there is no dependency between the random values that an adversary
can leverage on. Moreover, the adversary is not able to decrypt the
communicated values of an honest party because decryption is only
possible with the collaboration of all the parties. Following this,
POSEIDON protects the data confidentiality of the honest party/ies.

Analogously, the same argument follows to prove that POSEIDON

protects the confidentiality of the trained model, as it is a function
of the parties’ inputs, and its intermediate and final weights are always
under encryption. Hence, POSEIDON eliminates federated learning
attacks [53], [78], [86], [120], that aim at extracting private information
about the parties from the intermediate parameters or the final model.
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Proposition 2. Assume that POSEIDON’s encryptions are generated
using the CKKS cryptosystem with parameters (N ,QL,S) ensuring
a post-quantum security level of λ. Given a passive adversary
corrupting at most N − 1 parties, POSEIDON achieves Data and
Model Confidentiality during prediction.

Proof (Sketch). (a) Let us assume a real-world simulator Sp that
simulates the view of a computationally-bounded adversary corrupting
N −1 computing nodes (parties). The Data Confidentiality of the
honest parties and Model Confidentiality is ensured following the
arguments of Proposition 1, as the prediction protocol is equivalent
to a forward-pass performed during a training iteration by a computing
party. Following similar arguments to Proposition 1, the encryption
of the querier’s input data (with the parties common public key pk)
can be simulated by Sp. The only additional function used in the
prediction step is DKeySwitch(·) that is proven to be simulatable
by Sp [84]. Thus, POSEIDON ensures Data Confidentiality of the
querier. (b) Let us assume a real-world simulator S′p that simulates
a computationally-bounded adversary corrupting N−2 parties and the
querier. Data Confidentiality of the querier is trivial, as it is controlled
by the adversary. The simulator has access to the prediction result as
the output of the process for Pq, so it can produce all the intermediate
(indistinguishable) encryptions that the adversary sees (based on
the simulatability of the key-switch/collective decrypt protocol
[84]). Following this and the arguments of Proposition 1, Data and
Model Confidentiality are ensured during prediction. We remind
here that the membership inference [102] and model inversion [39]
are out-of-the-scope attacks (see Appendix D-A for complementary
security mechanisms against these attacks).

VII. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate POSEIDON’s
performance and present our empirical results. We also compare
POSEIDON to other state-of-the-art privacy-preserving solutions.

A. Implementation Details

We implement POSEIDON in Go [6], building on top of the Lattigo
lattice-based library [79] for the multiparty cryptographic operations.
We make use of Onet [4] and build a decentralized system where the
parties communicate over TCP with secure channels (TLS).

B. Experimental Setup

We use Mininet [80] to evaluate POSEIDON in a virtual network
with an average network delay of 0.17ms and 1Gbps bandwidth. All
the experiments are performed on 10 Linux servers with Intel Xeon
E5-2680 v3 CPUs running at 2.5GHz with 24 threads on 12 cores and
256 GB RAM. Unless otherwise stated, in our default experimental
setting, we instantiate POSEIDON with N =10 and N =50 parties.
As for the parameters of the cryptographic scheme, we use a precision
of 32 bits, number of levels L = 6, and N = 213 for the datasets
with d<32 or 32×32 images, andN =214 for those with d>32,
following the multi-cipher approach (see Section V-F).

C. Datasets

For the evaluation of POSEIDON’s performance, we use the following
real-world and publicly available datasets: (a) the Breast Cancer Wis-
consin dataset (BCW) [18] with n=699,d=9,hℓ=2, (b) the hand-
written digits (MNIST) dataset [66] with n=70,000,d=28×28,hℓ=
10, (c) the Epileptic seizure recognition (ESR) dataset [37] with n=
11,500,d=179,hℓ=2, (d) the default of credit card clients (CREDIT)
dataset [114] with n=30,000,d=23,hℓ=2, (d) the street view house
numbers (SVHN) dataset [88] with colored images (3 channels), n=

Dataset Accuracy Execution time (s)
C1 C2 L D POSEIDON Training Inference

BCW 97.8% 97.4% 93.9% 97.4% 96.9% 91.06 0.21

ESR 93.6% 91.2% 89.9% 91.1% 90.4% 851.84 0.30

CREDIT 81.4% 80.9% 79.6% 80.6% 80.2% 516.61 0.26

MNIST 92.1% 91.3% 87.8% 90.6% 89.9% 5,283.1 0.38

TABLE III: POSEIDON’s accuracy and execution times for N=10 parties.
The model accuracy is compared to several non-private approaches.

600,000,d=3×32×32,hℓ=10, and (e) the CIFAR-10 and CIFAR-
100 [65] datasets with colored images (3 channels), n=60,000,d=
3× 32× 32, hℓ = 10, and hℓ = 100, respectively. Recall that hℓ
represents the number of neurons in the last layer of a neural network
(NN), i.e., the number of output labels. We convert SVHN to gray-scale
to reduce the number of channels. Moreover, since we pad with zeros
each dimension of a weight matrix to the nearest power-of-two (see Sec-
tion V-A), for the experiments using the CREDIT, ESR, and MNIST
datasets, we actually perform the NN training with d=32, 256, and
1,024 features, respectively. For SVHN, the number of features for a
flattened gray-scale image is already a power-of-two (32×32=1,024).
To evaluate the scalability of our system, we generate synthetic datasets
and vary the number of features or samples. Finally, for our experiments
we evenly and randomly distribute all the above datasets among the
participating parties. We note that the data and label distribution
between the parties, and its effects on the model accuracy is orthogonal
to this paper (see Appendix D-B for extensions related to this issue).

D. Neural Network Configuration

For the BCW, ESR, and CREDIT datasets, we deploy a 2-layer fully
connected NN with 64 neurons per layer, and we use the same NN
structure for the synthetic datasets used to test POSEIDON’s scalability.
For the MNIST and SVHN datasets, we train a 3-layer fully connected
NN with 64 neurons per-layer. For the CIFAR-10, we train two models:
(i) a CNN with 2 CV and 2 average-pooling with a kernel size of 2×2,
and 2 FC layers with 128 neurons and 10 neurons, labeled as N1, and
(ii) a CNN with 4 CV with a kernel size of 3×4, 2 average-pooling with
kernel size of 2×2 and 2 FC layers with 128 and 10 neurons labeled
as N2. For CIFAR-100, we train a CNN with 6 CV with a kernel size
of 3×4, 2 average-pooling with a kernel size of 2×2 and 2 FC layers
with 128 neurons each. For all CV layers, we vary the number of filters
between 3 to 16. We use the approximated sigmoid, SmoothReLU, or
tanh activation functions (see Section V-B), depending on the dataset.
We train the above models for 100, 600, 500, 1,000, 18,000, 25,000,
16,800, and 54,000 global iterations for the BCW, ESR, CREDIT,
MNIST, SVHN, CIFAR-10-N1, CIFAR-10-N2, and CIFAR100
datasets, respectively. For the SVHN and CIFAR datasets, we use
momentum-based gradient descent or Nesterov’s accelerated gradient
descent, which introduces an additional multiplication to the update
rule (in the MAP phase). Finally, we set the local batch size b to 10
and, as such, the global batch size isB=100 in our default setting with
10 parties and B=500 with 50 parties. For a fixed number of layers,
we choose the learning parameters by grid search with 3-fold cross-
validation on clear data with the approximated activation functions. In
a practical FL setting, however, the parties can collectively agree on
these parameters by using secure statistics computations [42], [40].

E. Empirical Results

We experimentally evaluate POSEIDON in terms of accuracy of
the trained model, execution time for both training and prediction
phases, and communication overhead. We also evaluate POSEIDON’s
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scalability with respect to the number of parties N , as well as the
number of data samples n and features d in a dataset. We further
provide microbenchmark timings and communication overhead for the
various functionalities and operations for FC, CV, and pooling layers
in Appendix C that can be used to extrapolate POSEIDON’ execution
time for different NN structures.

Model Accuracy. Tables III and IV display POSEIDON’s accuracy
results on the used real-world datasets with 10 and 50 parties, respec-
tively. The accuracy column shows four baselines with the following
approaches: two approaches where the data is collected to a central
party in its clear form: centralized with original activation functions
(C1), and centralized with approximated activation functions (C2); one
approach where each party trains the model only with its local data (L),
and a decentralized approach with approximated activation functions
(D), where the data is distributed among the parties, but the learning is
performed on cleartext data, i.e., without any protection of the gradients
communicated between the parties. For all baselines, we use the same
NN structure and learning parameters as POSEIDON, but adjust the
learning rate (η) or use adaptive learning rate to ensure the range of the
approximated activation functions is minimized, i.e., a smaller interval
for an activation-function approximation requires smaller η to prevent
divergence while bigger intervals make the choice of η more flexible.
These baselines enable us to evaluate POSEIDON’s accuracy loss due to
the approximation of the activation functions, distribution, encryption,
and the impact of privacy-preserving federated learning. We exclude
the (D) column from Table IV for the sake of space; the pattern is
similar to Table III and POSEIDON’s accuracy loss is negligible. To
obtain accuracy results for the CIFAR-10 and CIFAR-100 datasets, we
simulate POSEIDON in Tensorflow [9] by using its approximated activa-
tion functions and a fixed-precision. We observe that the accuracy loss
between C1, C2, D, and POSEIDON is 0.9−3%when 32-bits precision
is used. For instance, POSEIDON achieves 90.4% training accuracy on
the ESR dataset, a performance that is equivalent to a decentralized (D)
non-private approach and only slightly lower compared to centralized
approaches. Note that the accuracy difference between non-secure solu-
tions and POSEIDON can be further reduced by increasing the number
of training iterations, however, we use the same number of iterations
for the sake of comparison. Moreover, we remind that CIFAR-100 has
100 class labels (i.e., a random guess baseline of 1% accuracy) and
is usually trained with special NN structures (ResNet) or special layers
(batch normalization) to achieve higher accuracy than the reported
ones: we leave these NN types as future work (see Appendix D-B).
We use relatively simpler NNs for CIFAR-10 and CIFAR-100 which
is the reason for achieving low accuracy on these datasets.

We compare POSEIDON’s accuracy with that achieved by one
party using its local dataset (L), that is 1/10 (or 1/50) of the overall
data, with exact activation functions. We compute the accuracy for
the (L) setting by averaging the test accuracy of the 10 and 50 locally
trained models (Tables III and IV, respectively). We observe that
even with the accuracy loss due to approximation and encryption,
POSEIDON still achieves 1−3% increase in the model accuracy due
to privacy-preserving collaboration (Table III). This increase is more
significant when the data is partitioned across 50 parties (Table IV)
as the number of training samples per-party is further reduced and
is not sufficient to learn an accurate model.

Execution Time. As shown on the right-hand side of Table III,
POSEIDON trains the BCW, ESR, and CREDIT datasets in less than
15 minutes and the MNIST in 1.4 hours, when each dataset is evenly
distributed among 10 parties. Note that POSEIDON’s overall training
time for MNIST is less than an hour when the dataset is split among 20
parties that use the same local batch size. We extrapolate the training

Dataset Accuracy Execution time (hrs)
C1 C2 L POSEIDON One-GI Training Inference

SVHN 68.4% 68.1% 35.1% 67.8% 0.0034 61.2 8.89×10−5

CIFAR-10-N1 54.6% 52.1% 26.8% 51.8% 0.007 175 0.001

CIFAR-10-N2 63.6% 62.0% 28.0% 61.1% 0.011 184.8 0.004

CIFAR-100 43.6% 41.8% 8.2% 41.1% 0.026 1404 0.006

TABLE IV: POSEIDON’s accuracy and execution times for N=50 parties
(extrapolated). One-GI indicates the execution time of one global iteration.

times of POSEIDON on more complex datasets and architectures for
one global iteration (one-GI) in Table IV; these can be used to estimate
the training times of these structures with a larger number of global
iterations. For instance, CIFAR-10 is trained in 175 hours with 2CV, 2
pooling, 2 FC layers and with dropouts (adding one more multiplication
in the dropout layer). Note that it is possible to increase the accuracy
with higher run-time or fine-tuned architectures, but we aim at finding
a trade-off between accuracy and run-time. For example, POSEIDON’s
accuracy on SVHN reaches 75% by doubling the training epochs and
thus its execution time. The per-sample inference times presented in
Tables III and IV include the forward pass, the DKeySwitch(·) oper-
ations that re-encrypt the result with the querier’s public key, and the
communication among the parties. We note that as all the parties keep
the model in encrypted form, any of them can process the prediction
query. Hence, taking the advantage of parallel query executions and
multi-threading, POSEIDON achieves a throughput of 864,000 predic-
tions per hour on the MNIST dataset with the chosen NN structure.

Scalability. Figure 1a shows the scaling of POSEIDON with the
number of features (d) when the one-cipher and multi-cipher with paral-
lelization approaches are used for a 2-layer NN with 64 hidden neurons.
The runtime refers to one epoch, i.e., a processing of all the data from
N=10 parties, each having 2,000 samples, and employing a batch size
of b=10. For small datasets with a number of features between 1 and
64, we observe no difference in execution time between the one-cipher
and multi-cipher approaches. This is because the weight matrices
between layers fit in one ciphertext withN =213. However, we ob-
serve a larger runtime of the one-cipher approach when the number of
features increases further. This is because each power-of-two increase
in the number of features requires an increase in the cryptographic
parameters, thus introducing overhead in the arithmetic operations.

We further analyse POSEIDON’s scalability with respect to the num-
ber of parties (N) and the number of total samples in the distributed
dataset (n), for a fixed number of features. Figures 1b and 1c display
POSEIDON’s execution time, when the number of parties ranges from 3
to 24, and one training epoch is performed, i.e., all the data of the parties
is processed once. For Figure 1b, we fix the number of data samples per
party to 200 to study the effect of an increasing number of members in
the federation. We observe that POSEIDON’s execution time is almost
independent of N and is affected only by increasing communication
between the parties. When we fix the global number of samples (n),
increasingN results in a runtime decrease, as the samples are processed
by the parties in parallel (see Figure 1c). Then, we evaluate POSEI-
DON’s runtime with an increasing number of data samples and a fixed
number of parties N=10, in Figure 1d. We observe that POSEIDON

scales linearly with the number of data samples. Finally, we remark that
POSEIDON also scales proportionally with the number of layers in the
NN structure, if these are all of the same type, i.e, FC, CV, or pooling,
and if the number of neurons per layer or the kernel size is fixed.
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Figure 1: POSEIDON’s training execution time and communication overhead with increasing number of parties, features, and samples, for 1 training epoch.

F. Comparison with Prior Work

A quantitative comparison of our work with the state-of-the-art
solutions for privacy-preserving NN executions is a non-trivial task.
Indeed, the most recent cryptographic solutions for privacy-preserving
machine learning in the N-party setting, i.e., Helen [119] and
SPINDLE [41], support the functionalities of only regularized [119]
and generalized [41] linear models respectively. We provide a detailed
qualitative comparison with the state-of-the-art privacy-preserving deep
learning frameworks in Table V in Appendix and expand on it here.

POSEIDON operates in a federated learning setting where the par-
ties maintain their data locally. This is a substantially different setting
compared to that envisioned by MPC-based solutions [83], [82], [110],
[111], [26], [27], for privacy-preserving NN training. In these solutions,
the parties’ data has to be communicated (i.e., secret-shared) outside
their premises, and the data and model confidentiality is preserved as
long as there exists an honest majority among a limited number of
computing servers (typically, 2 to 4, depending on the setting). Hence,
a similar experimental setting is hard to achieve. Nonetheless, we
compare POSEIDON to SecureML [83], SecureNN [110], and FAL-
CON [111], when training a 3-layer NN with 128 neurons per layer for
15 epochs, as described in [83], on the MNIST dataset. We setN=3 to
simulate a similar setting and use POSEIDON’s approximated activation
functions. POSEIDON trains MNIST in 73.1 hours whereas SecureML
with 2-parties, SecureNN and FALCON with 3-parties, need 81.7, 1.03,
and 0.56 hours, respectively. Depending on the activation functions,
SecureML yields 93.1− 93.4% accuracy, SecureNN 93.4%, and
FALCON 97.4%. POSEIDON achieves 92.5% accuracy with the
approximated SmoothReLU and 96.2% with approximated tanh acti-
vation functions. We remind that POSEIDON operates under a different
system (federated learning-based) and threat model, it supports more
parties, and scales linearly with N whereas MPC solutions are based
on outsourced learning with limited number of computing servers.

Federated learning approaches based on differential privacy (DP),
e.g., [67], [101], [76], train a NN while introducing some noise to
the intermediate values to mitigate adversarial inferences. However,
training an accurate NN model with DP requires a high privacy bud-
get [96], hence it remains unclear what privacy protection is obtained in
practice [55]. We note that DP-based approaches introduce a different
tradeoff than POSEIDON: they tradeoff privacy for accuracy, while
POSEIDON decouples accuracy from privacy and tradeoffs accuracy
for complexity (i.e., execution time and communication overhead).
Nonetheless and as an example, we compare POSEIDON’s accuracy
results with those reported by Shokri and Shmatikov [101] on the
MNIST dataset. We focus on their results with the distributed selective
SGD configured such that participants download/upload all the parame-
ters from/to the central server in each training iteration. We evaluate the
same CNN structure used in [101], but with POSEIDON’s approximated

activation functions and average-pooling instead of max-pooling. We
compare the accuracy results presented in [101, Figure 13] with
N=30,N=90, and N=150 participants. In all settings, POSEIDON

yields >94% accuracy whereas [101] achieves similar accuracy only
when the privacy budget per parameter is≥10. For more private solu-
tions, where the privacy budget is 0.001, 0.01 or 0.1, [101] achieves
≤90% accuracy; smaller ǫ yields better privacy but degrades utility.

Finally, existing HE-based solutions [51], [85], [109], focus on a
centralized setting where the NN learning task is outsourced to a central
server. These solutions, however, employ non-realistic cryptographic
parameters [109], [85], and their performance is not practical [51]
due to their costly homomorphic computations. Our system, focused
on a federated learning-based setting and a multiparty homomorphic
encryption scheme, improves the response time 3 to 4 orders of mag-
nitude. The execution times produced by Nandakumar et al. [85] for
processing one batch of 60 samples in a single thread and 30 threads for
a NN structure with d=64, h1=32, h2=16, h3=2, are respectively
33,840s and 2,400s. When we evaluate the same setting, but with
N = 10 parties, we observe that POSEIDON processes the same
batch in 6.3s and 1s, respectively. We also achieve stronger security
guarantees (128 bits) than [85] (80 bits). Finally, for a NN structure
with 2-hidden layers of 128 neurons each, and the MNIST dataset,
CryptoDL [51] processes a batch with B=192 in 10,476.3s, whereas
our system in the distributed setting processes the same batch in 34.7s.

Therefore, POSEIDON is the only solution that performs both
training and inference of NNs in an N-party setting, yet protects data
and model confidentiality withstanding collusions up to N−1 parties.

VIII. CONCLUSION

In this work, we presented POSEIDON, a novel system for zero-
leakage privacy-preserving federated neural network learning among
N parties. Based on lattice-based multiparty homomorphic encryption,
our system protects the confidentiality of the training data, of the model,
and of the evaluation data, under a passive adversary model with
collusions of up to N−1 parties. By leveraging on packing strategies
and an extended distributed bootstrapping functionality, POSEIDON is
the first system demonstrating that secure federated learning on neural
networks is practical under multiparty homomorphic encryption. Our
experimental evaluation shows that POSEIDON significantly improves
on the accuracy of individual local training, bringing it on par with
centralized and decentralized non-private approaches. Its computation
and communication overhead scales linearly with the number of
parties that participate in the training, and is between 3 to 4 orders
of magnitude faster than equivalent centralized outsourced approaches
based on traditional homomorphic encryption. This work opens up the
door of practical and secure federated training in passive-adversarial
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settings. Future work involves extensions to other scenarios with active
adversaries and further optimizations to the learning process.
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APPENDIX A
APPROXIMATION

OF THE MAX/MIN POOLING AND ITS DERIVATIVE

For the sake of clarity, we describe the max-pooling operation.
Given a vector x=(x[0],...,x[n−1]) the challenge is to compute y
with y[0≤ i<n]=max(x). To approximate the index of max(x),
which can then be used to extract the max value of x, we follow an
algorithm similar to that presented in [30], described below.

Given two real values a,b, with 0 ≤ a,b ≤ 1, we observe the
following: If a>b, then a−b<ad−bd for d>1, i.e., with increasing
d, smaller values converge to zero faster and the ratio between the
maximum value and other values increases. The process can be
repeated to increase the ratio between a and b but, unless a=1, both
values will eventually converge to zero. To avoid this, we add a second
step that consists in renormalizing a and b by computing a=a/(a+b)
and b=b/(a+b). Thus, we ensure that after each iteration, a+b=1
and since b will eventually converge to zero, a will tend towards 1.
If a=b, both values will converge to 0.5. This algorithm can be easily
generalized to vectors: Given a vector x=(x[0],...,x[n−1]), at each

iteration it computes x[i] = x[i]d/
∑n−1

j=0 x[j]
d, and multiplies the

result with the original vector to extract the maximum value.

This max-pooling algorithm is a time-consuming procedure as it
requires computing an expensive inverse function, especially if a high
accuracy is desired or if the input values are very small. Instead, we em-

ploy a direct approach using max(a,b)= 1
2(a+b+

√

(a−b)2), where
the square-root can be approximated by a polynomial. To compute
the maximum value for a kernel f =k×k, we iterate log(f) times
ci+1=max(ci,RotL2i(ci)). As each iteration consumes all levels, we
use DBootstrap(·) log(f) times. Hence, we suggest using the average-
pooling instead, which is more efficient and precise, e.g., Dowlin et
al. [45] show that low-degree approximations of max-pooling will
converge to a scalar multiple of the mean of k values. We provide
microbenchmarks of both max and average-pooling in Appendix C.

APPENDIX B
TECHNICAL DETAILS OF DISTRIBUTED BOOTSTRAPPING WITH

ARBITRARY LINEAR TRANSFORMATIONS (DBOOTSTRAPALT(·))
A linear transformation φ(·) over a vector of n elements can

be described by a n×n matrix. The evaluation of a matrix-vector
multiplication requires a number of rotations proportional to the
square-root of its non-zero diagonals, thus, this operation becomes
prohibitive when the number of non-zero diagonals is large.

Such a linear transformation can be, however, efficiently carried
out locally on a secret-shared plaintext, as φ(msg+M)=φ(msg)+

φ(M) due to the linearity of φ(·). Moreover, because of the magnitude
of msg+M (100 to 200 bits), arbitrary precision complex arithmetic
with sufficient precision should be used for Encode(·), Decode(·),
and φ(·) to preserve the lower bits. The collective bootstrapping
protocol in [84] is performed through a conversion of an encryption to
secret-shared values and a re-encryption in a refreshed ciphertext. We
leverage this conversion to perform the aforementioned linear transfor-
mation in the secret-shared domain, before the refreshed ciphertext is
reconstructed. This is our DBootstrapALT(·) protocol (Protocol 4).

When the linear transformation is simple, i.e., it does not involve
a complex permutation or requires a small number of rotations, the
Encode(·) and Decode(·) operations in Line 8, Protocol 4 can be
skipped. Indeed, those two operations are carried out using arbitrary
precision complex arithmetic. In such cases, it is more efficient to
perform the linear transformation directly on the encoded plaintext.

Security Analysis of DBootstrapALT(·). This protocol is a
modification of the DBootstrap(·) protocol of Mouchet et al. [84],
with the difference that it includes a product of a public matrix.
Both DBootstrap(·) and DBootstrapALT(·) for CKKS differ
from the BFV version proposed in [84] in which the shares are not
unconditionally hiding, but statistically or computationally hiding due
to the incomplete support of the used masks. Therefore, the proof
follows analogously the passive adversary security proof of the BFV
DBootstrap(·) protocol in [84], with the addition of Lemma 1 which
guarantees the statistical indistinguishablity of the shares in C. While
the RLWE problem and Lemma 1 do not rely on the same security
assumptions, the first one being computational and the second one
being statistical, given the same security parameter, they share the same
security bounds. Hence, DBootstrap(·) and DBootstrapALT(·)
provide the same security as the original protocol of Mouchet et al. [84].

Lemma 1. Given the distribution P0 = (a+ b) and P1 = c with
0≤a<2δ and 0≤b,c<2λ+δ and b, c uniform, then the distributions
P0 and P1 are λ-indistinguishable; i.e., a probabilistic polynomial
adversaryA cannot distinguish between them with probability greater
than 2−λ: |Pr[A→1|P=P1]−Pr[A→1|P=P0]|≤2−λ.

We refer to Algesheimer et. al [16, Section 3.2], and
Schoenmakers and Tuyls [99, Appendix A], for the proof of the
statistical λ-indistinguishability.

We recall that an encoded messagemsg ofN/2 complex numbers
with the CKKS scheme is an integer polynomial of Z[X]/(XN+1).
Given that ||msg||<2δ, and a second polynomial M of N integer
coefficients with each coefficient uniformly sampled and bounded
by 2λ+δ − 1 for a security parameter λ, Lemma 1 suggests that
Pr[||msg(i)+M(i)||≥2λ+δ]≤2−λ, for 0≤ i<N and where i de-
notes the ith coefficient of the polynomial. That is, the probability of a
coefficient of msg+M to be distinguished from a uniformly sampled
integer in [0,2λ+δ) is bounded by 2−λ. Hence, during Protocol 4 each
party samples its polynomial mask M with uniform coefficients in
[0,2λ+δ). The parties, however, should have an estimate of the magni-
tude of msg to derive δ, and a probabilistic upper-bound for the magni-
tude can be computed by the circuit and the expected range of its inputs.

In Protocol 4, the masks Mi are added to the ciphertext of RQℓ

during the decryption to the secret-shared domain. To avoid a modular
reduction of the masks in RQℓ

and ensure a correct re-encryption in
RQL

, the modulus Qℓ should be large enough for the additions of
N masks. Therefore, the ciphertext modulus size should be greater
than (N+1)·||M || when the bootstrapping is called. For example,
for N =10, a QL composed of a 60 bits modulus, a message msg
with ||msg|| < 255 (taking the scaling factor ∆ into account) and
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[97]

Gazelle

[59]

Blaze

[92]

MiniONN

[73]

ABY3

[82]

SecureML

[83]

SecureNN

[110]

FALCON

[111]

FLASH

[26]

TRIDENT

[27]

CryptoNets

[45]

CryptoDL

[51]
[85] POSEIDON

MPC Setup 2PC 2PC 3PC 2PC 3PC 2PC 3PC 3PC 4PC 4PC 1PC 1PC 1PC N-Party

Private Infer. ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Private Train. ✗ ✗ ✗ ✗ ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✔ ✔ ✔

Data Conf.

Adversarial Model*

Collusion*

1 P 1 P 1 A 1 P 1 A/P 1 P 1 A/P 1 A/P 1 A 1 A/P 1 P’ 1 P’ 1 P’ N−1 P

No No No No No No No No No No NA NA NA N−1

Techniques GC,SS HE,GC,SS GC,SS HE,GC,SS GC,SS HE,GC,SS SS SS SS GC,SS HE HE HE HE

Supported

Layers

Linear ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Conv. ✔ ✔ ✗ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✗ ✔

Pooling ✔ ✔ ✗ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✗ ✔

TABLE V: Qualitative comparison of private deep learning frameworks. Conf. stands for confidentiality. A and P respectively stand for active and passive adversar-
ial capabilities. GC, SS, HE denote garbled-circuits, secret sharing, and homomorphic encryption. Adversarial model* and collusion* take into account the servers
responsible for the training/inference. 1 P’ denotes our interpretation, as [45], [85], and [51] do not present an adversarial model. NA stands for not applicable.

λ=128, we should have ||Mi||≥2183 and Qℓ>11·2183. Hence, the
bootstrap should be called at Q3 because Q2≈2180 and Q3≈2240.
Although the aforementioned details suggest that DBootstrapALT(·)
is equivalent to a depth 3 to 4 circuit, depending on the parameters,
it is still compelling, as it enables us to refresh a ciphertext and apply
an arbitrary complex linear transformation at the same time. Thus,
its cost remains negligible compared to a centralized bootstrapping
where any transformation is applied via rotations.

APPENDIX C
MICROBENCHMARKS

We present microbenchmark timings for the various functionalities
and sub-protocols of POSEIDON in Table VI. These are measured
in an experimental setting with N = 10 parties, a dimension of
d=32 features, h=64 neurons in a layer or kernel size k=3×3,
and degree da=3 for the approximated activation functions for FC,
CV, FC backpropagation, CV backpropagation, and average-pooling
benchmarks. These benchmarks represent the processing of 1 sample
per party, thus b=1. For max-pooling, we achieve a final precision of
7 bits with a square-root approximated by a Chebyshev interpolant of
degree da=31. We observe that max-pooling is 6 times slower than
average-pooling, has a lower precision, and needs more communication
due to the large number of DBootstrap(·) operations. For 12-bits
precision, max-pooling takes 4.72s. This supports our choice of using
average-pooling instead of max-pooling in the encrypted domain. The
communication column shows the overall communication between
the parties in MB. As several HE-based solutions [45], [59], [51],
use square activation functions, we also benchmark them and compare
them with the approximated activation functions with da=3.

We note that PREPARE stands for the offline phase and it incorpo-
rates the collective generation of the encryption, decryption, evaluation,
and rotation keys based on the protocols presented in [84]. Most of the
time and bandwidth are consumed by the generation of the rotation
keys needed for the training protocol. We refer the reader to [84], [79]
for more information about the generation of these keys. Although we
present the PREPARE microbenchmark to hint about the execution
time and communication overhead of this offline phase, we note that it
is a non-trivial task to extrapolate its costs for a generic neural network
structure. REDUCE indicates the reducing step for 1 weight matrix
(updating the weight matrix in root) and collectively refreshing it.

We show how to use these microbenchmarks to roughly estimate
the online execution time and communication overhead of one global
iteration for a chosen neural network structure. We combine the results
of Table VI for layers/kernels with specific size, fixed N , da, and

Functionality Execution time (s) Comm. (MB)

ASigmoid/ASmoothRelu 0.050 -

ASigmoidD/ASmoothReluD 0.022 -

Square / SquareD 0.01 / 0.006 -

ASoftmax 0.07 -

DBootstrap(·) 0.09 6.5

DBootstrapALT(·) (log2(h) rots) 0.18 6.5

DBootstrapALT(·) with Average Pool 0.33 6.5

MaxPooling 2.08 19.5

FC layer / FC layer-backprop 0.09 / 0.13 -

CV layer / CV layer-backprop 0.03 / 0.046 -

DKeySwitch 0.07 23.13

PREPARE (offline) 18.19 3.8k

MAP (only communication) 0.03 18.35

COMBINE 0.09 7.8

REDUCE 0.1 6.5

TABLE VI: Microbenchmarks of different functionalities for N=10 parties,
d=32, h=64,N=213, da=3, k=3×3.

N , with those of Table II that show POSEIDON’s linear scalability
with N for the operations requiring communication, linear scalability
with N , and logarithmic scalability with d. We scale the execution
time of each functionality for the various parameters depending on
the theoretical complexity. Here exemplify the time for computing
one global iteration with N = 50 parties, for a CNN with 32×32
input images, 1 CV layer with kernel size k=6×6, 1 average-pooling
layer with k = 3× 3, and 1 FC layer with h = 128 neurons. We
observe that the number of parties N is 5 times bigger than the setting
of Table VI, thus yields one round of communication of MAP and
COMBINE as 0.03×5=0.15s and 0,09×5=0.45s, respectively.
The REDUCE microbenchmark is calculated for 1 weight matrix,
thus with 2 weight matrices, REDUCE will consume 0.2s. For the
LGD computation, we start with the CV layer with k=6×6 kernel
size. We remind that CV layers are represented by FC layers, thus
the kernel size affects the run-time logarithmically; we multiply the
CV layer execution time by 2 (0.03× 2 = 0.06) followed by an
activation execution time of 0.05s. For more than 1 filter per CV layer,
this number should be multiplied by the number of filters (assuming
no parallelization). Then, we use DBootstrapALT(·) with average
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pooling to refresh the ciphertext, compute the pooling together with
the backpropagation values yielding an execution time of 0.33s scaled
to 50 parties as 0.33× 5 = 1.65s. Lastly, since its execution time
scales logarithmically with the number of neurons, the FC layer will
be executed in 0.09/ log2(64) ∗ log2(128) = 0.105s followed by
another activation of 0.05s. A similar approach is then used for the
backward pass and with FC layer-backprop, CV layer-backprop, and
using the derivatives of the activation functions. The microbenchmarks
are calculated using 1 sample per-party; thus, to extrapolate the time
for b>1 without any parallelization, the total time for the forward and
backward passes should be multiplied by b. Finally, as this example is
a CNN, we already refresh the ciphertexts after each CV layer both in
the forward and backward pass, to compute pooling or to re-arrange the
slots. To extrapolate the times for MLPs, the number of bootstrappings
are calculated as described in Section V-F and this is multiplied by the
DBootstrap(·) benchmark. Extrapolating the communication over-
head for a global iteration is straightforward: As the communication
scales linearly with the number of parties, we scale the overheads
given in Table VI with N . For example, with N=50 parties, MAP
and COMBINE consume 18.32×5=91.6MB and 7.8×5=39MB,
respectively. Similarly, the total number of DBootstrap(·), and its
variants, should be multiplied by 5. Lastly, in this example, the weight
or kernel matrices fit in one ciphertext (N/2=4,096 slots); if more
than 1 cipher per weight matrix is needed, the aforementioned numbers
should be multiplied by the number of ciphertexts.

APPENDIX D
EXTENSIONS

We introduce here several security, learning, and optimization
extensions that can be integrated to POSEIDON.

A. Security Extensions

Active Adversaries. POSEIDON preserves the privacy of the parties
under a passive-adversary model with up to N − 1 colluding
parties, motivated by the cooperative federated learning scenario
presented in Sections I and IV-A.Our work could be extended to an
active-adversarial setting by using standard verifiable computation
techniques, e.g., resorting to zero-knowledge proofs and redundant
computation. This would, though, come at the cost of an increase in
the computational complexity, that will be analyzed as future work.

Out-of-the-Scope Attacks. We briefly discuss here out-of-the-scope
attacks and countermeasures. By maintaining the intermediate values
of the learning process and the final model weights under encryption,
during the training process, we protect data and model confidentiality.
As such, POSEIDON protects against federated learning attacks [86],
[78], [53], [120], [113]. Nonetheless, there exist inference attacks
that target the outputs of the model’s predictions, e.g., membership
inference [102], model inversion [39], or model stealing [107]. Such
attacks can be mitigated via complementary countermeasures that can
be easily integrated to POSEIDON: (i) limiting the number of prediction
queries for the queriers, and (ii) adding noise to the prediction’s output
to achieve differential privacy guarantees. The choice of the differential
privacy parameters in this setting remains an interesting open problem.

B. Learning Extensions

Availability, Data Distribution, and Asynchronous Distributed
Neural Networks. In this work, we rely on a multiparty cryptographic
scheme that assumes that the parties are always available. We here note
that POSEIDON can support asynchronous distributed neural network
training [36] without waiting for all parties to send the local gradients.
As such, a time threshold could be used for updating the global model.

However, we note that the collective cryptographic protocols (e.g.,
DBootstrap(·) and DBootstrapALT(·)) require that all the parties
be available. Changing POSEIDON’s distributed bootstrapping with
a centralized one that achieves a practical security level would require
increasing the size of the ciphertexts and result in higher computation
and communication overhead.

For the evaluation of POSEIDON, we evenly distribute the dataset
across the parties; we consider the effects of uneven distributions or
the asynchronous gradient descent to the model accuracy — which
are studied in the literature [69], [36], [112] — orthogonal to this
work. However, a preliminary analysis with the MNIST dataset and
the NN structure defined in our evaluation (see Section VII) shows
that asynchronous learning decreases the model accuracy between
1 and 4% when we assume that a server is down with a failure
probability between 0.4 and 0.8, i.e., when there is between 40 and
80% chance of not receiving the local gradients from a server in a
global iteration. Finally, we find that the uneven distribution of the
MNIST dataset for N =10 parties with one party holding 90% of
the data results to a 6% decrease in the model accuracy. Lastly, we
note that the non-iid distribution of the data in federated learning
settings causes weight/parameter divergence [68], [118]. The proposed
mitigation techniques, however, do not change the working principle
of POSEIDON and can be seamlessly integrated, e.g., by adjusting
hyperparameters [68] or creating and globally sharing a set of data
with uniform distribution among the participants [118].

Other Neural Networks. In this work, we focus on the training of
MLPs and CNNs and present our packing scheme and cryptographic
operations for these neural networks. For other structures, e.g., long
short-term memory (LSTM), recurrent neural networks (RNN), and
residual neural networks (ResNet), POSEIDON requires modifications
of the LGD-computation phase according to their forward and
backward pass operations and of the packing scheme. For example,
ResNet has skip connections to jump over some layers, thus the shape
of the packed ciphertext after a layer skip should be aligned according
to the weight matrix that it is multiplied with. This can be ensured
by using the DBootstrapALT(·) functionality (to re-arrange the slots
of the ciphertext). We note that POSEIDON’s packing protocols are
tailored to MLPs and CNNs and might require adaptation for other
neural network structures.

C. Optimization Extensions

Optimizations for Convolutional Neural Networks. We present a
scheme for applying the convolutions on the slots, similar to FC layers,
by representing them with a matrix multiplication. Convolution on a
matrix, however, can be performed with a simple polynomial multi-
plication by using the coefficients of the polynomial. This operation
requires a Fast-Fourier Transform (FFT) from slots (Number Theoretic
Transform (NTT)) to coefficients domain, and vice versa (inverseFFT)
for switching between CV to pooling or FC layers. Although it achieves
better performance for CV layers, domain-switching is expensive. In
the case of multiple CV layers before an FC layer, this operation could
be embedded into the distributed bootstrapping (DBootstrapALT(·))
for efficiency. The evaluation of the trade-off between the two solutions
for larger matrix dimensions is an interesting direction for future work.
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