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Abstract

In this paper, we develop a new model for recognizing

human actions. An action is modeled as a very sparse

sequence of temporally local discriminative keyframes –

collections of partial key-poses of the actor(s), depicting

key states in the action sequence. We cast the learning

of keyframes in a max-margin discriminative framework,

where we treat keyframes as latent variables. This allows

us to (jointly) learn a set of most discriminative keyframes

while also learning the local temporal context between

them. Keyframes are encoded using a spatially-localizable

poselet-like representation with HoG and BoW components

learned from weak annotations; we rely on structured SVM

formulation to align our components and mine for hard neg-

atives to boost localization performance. This results in

a model that supports spatio-temporal localization and is

insensitive to dropped frames or partial observations. We

show classification performance that is competitive with the

state of the art on the benchmark UT-Interaction dataset

and illustrate that our model outperforms prior methods in

an on-line streaming setting.

1. Introduction

It is compelling to think of an action, or interaction with

another person, as a sequence of keyframes – key-poses of

the actor(s), depicting key states in the action sequence.

This representation is compact and sparse, which is desir-

able computationally and for robustness, yet is rich and de-

scriptive. The sparsity and compactness come from the fact

that keyframes are, by definition, temporally very local, in

our case, each spanning just two frames (using the second

frame to compute optical flow).

It is worth noting that this use of local temporal informa-

tion is in sharp contrast to most research in video-based ac-

tion recognition where often long temporal trajectories [24]

or features computed on much larger temporal scale (20 or

100 frame segments [32]) are deemed necessary. Using a

sparse local keyframe representation, however, does have

certain benefits. First, it allows our model to focus on the
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Figure 1. Model framework: Image frames are encoded by pose-

let activation max-pooled over the spatial extent of each frame. An

action is modeled by a set of latent keyframes discriminatively se-

lected using a max-margin learning framework.

most distinct parts of the action and disregard frames that

are not discriminative or relevant. Second, it translates to

robustness to variation in action duration or dropped frames

because these changes minimally affect our representation.

Further, in perception, it has long been shown that certain

discriminant static images of humans engaged in activity

can convey dynamic information (an effect known as im-

plied motion [15]1). These studies, along with the success

of keyframe summaries as means of motion illustration [1]

and/or synthesis in computer graphics, motivate us to con-

sider local keyframes as sufficient for our task. However,

discovering such keyframe representations is challenging

because, intuitively, it requires having accurate pose infor-

mation for the entire video [30], which is both difficult and

computationally expensive.

Motivated by the success of poselets in human detection

[3] and pose estimation [35] we posit that representing a

keyframe as learned collection of poselets has a number

of significant benefits over the more holistic person/pose-

based representation [34]. The key benefit of poselets is

that they can capture discriminative action parts that carry

partial pose (and, in our case, motion) information; this is

extremely useful in complex environments where there is

clutter or the actor experiences severe occlusions. More-

over, poselets also allow for a semantic, spatially localiz-

able, mid-level representation of the keyframe.

1Further, it has been shown that the same parts of the brain that engage

in processing and analysis of motion are engaged in processing implied

motion in static images [15].
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For video-based action recognition, which is the goal of

this work, one keyframe may not be sufficient to adequately

characterize the action. How many distinct (key)frames

are needed to characterize a human activity [29]? For in-

stance, a handshake between two people can be summa-

rized using 3 distinctive keyframes: (i) the two persons

approach each other, (ii) they extend their hands towards

one another when near, and (iii) they touch and shake their

hands. While it may be sensible to specify the number of

keyframes to use in a representation; specifying the location

of such keyframes for many actions would be too tedious

and, frankly, prone to errors. Humans are notoriously bad

at the task, and semantic meaningfulness may not translate

well to discriminability.

Contributions: We cast the learning in a max-margin dis-

criminative framework where we treat keyframes as latent

variables. This allows us to (jointly) learn a set of the

most discriminative keyframes while also learning the lo-

cal temporal context between them. Our model has ap-

pealing properties. First, it allows temporal localization of

actions and action parts by modeling actions as sequences

of keyframes. Second, it is tolerant to variations in ac-

tion duration, as our model only assumes partial ordering

between the keyframes. Third, it implicitly allows spa-

tial localization of actions within keyframes by represent-

ing the keyframes with poselets. Fourth, our formulation

is amenable to on-line inference for early detection [22].

Finally, our model generates semantic interpretations (sum-

marizations) of actions by modeling them as action stories –

contextual temporal orderings of discriminant partial poses.

1.1. Related Work

The problem of action recognition has been studied ex-

tensively in the literature. Given the significant literature in

the area, we focus only on the most relevant works.

Sequential models: Hidden semi-Markov Models

(HSMM) [10] , CRFs [31], and finite-state-machines [13]

have been used to model the temporal evolution of human

activities. Recently, Tang et al. [32] propose a conditional

variant of HSMM incorporating the max-margin framework

in the training phase. These works model entire video

sequence both its progression and the temporal duration of

each phase. As consequence, during training those models

need to also encode irrelevant to the action events, making

the learning procedure inherently challenging. Our model

is more flexible, selecting and modeling only a very sparse,

discriminative subset of the sequence.

Static image activity recognition: Most approaches in still

image action recognition assume a single actor and rely on

either explicit [8, 33] or implicit pose [36] information and,

often, bag-of-words (BoW) terms for background context

[8, 36]. For example, in [33] actions are represented by his-

tograms of pose primitives. Delaitre et al. [8] uses a more

traditional part-based pose model instead. These methods,

yet, implicitly inherit the problems of traditional pose es-

timation. Yang et al. [36] and Maji et al. [21] side-step

these problems by proposing to use poselets as a mid-level

representation for pose; in [21] poselet activation vectors

are used directly for recognition, whereas in [36] intermedi-

ate latent 3D pose is constructed to bootstrap performance.

We leverage a poselet-like mid-level representation for the

frames, but focus on a video scenario where multiple dis-

criminative frames must be selected to encode the action.

Key volumes: Recent video-based action recognition meth-

ods [12, 28] observed that limiting the bag of spatio-

temporal interest point representation [9, 17] in a tempo-

ral segment boosts recognition performance. Niebles et al.

[23] combines the BoW representation of the entire video

(global term) with sub-volumes that capture the temporal

composition of the action. However, the proposed model

lacks the ability to spatially localize action parts. More-

over, the model of [23], similar to [24], relies on global

terms, assuming that rough temporal segmentation is given.

In contrast, we propose an extremely local action model

geared towards analyzing longer image sequences. Bren-

del and Todorovic [4] introduce a generative model that

describes the spatio-temporal structure of the action as a

weighted directed graph defined on a spatio-temporal over-

segmentation of the video. Chen and Grauman [6] propose

an irregular sub-graph model in which local temporal topo-

logical changes are allowed.

While key volume methods focus on discriminative por-

tion of the video, their volumetric nature is susceptible to

variabilities present in the temporal execution of the ac-

tion. In contrast, our method decouples action represen-

tation from its exact temporal execution, focusing only on

temporally local keyframes that are less variable.

Keyframes: A number of approaches have proposed the

use of keyframes as a representation. Carlson et al. [5]

use a single, manually selected, keyframe and shape match-

ing to classify tennis strokes; [39] rank all frames based on

holistic information theoretic measure to select the top 25%
for classification using voting; [20] rely on spatio-temporal

localization as pre-processing and use AdaBoost to select

keyframes (making up from 13% to 20% of the sequence

length). Unlike [5], we automatically select keyframes and

return, not require as [20], spatial-temporal localization;

our keyframe representation is also more compact utilizing

fewer (up to 4, or 4% of the sequence) keyframes.

Vahdat et al. [34] propose a max-margin framework for

modeling interactions as sequences of key-poses performed

by a pair of actors. To model interactions, the approach

requires complete tracks of both actors across the entire se-

quence. In contrast, we rely on a collection of poselets to

characterize frames and hence can better deal with partial

occlusions, and we are not limited to interaction scenarios.
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In addition, since keyframes in [34] are built as associations

to full-body exemplars, the space of possible keyframes is

linear in those exemplars; with our distributed poselet repre-

sentation the space of possible keyframes is exponential in

the number of poselets, giving us a more expressive model.

Attributes: This class of methods incorporate rich human

knowledge to create mid-level representations that capture

intrinsic properties of atomic movements (e.g., “moving

lower body”, “still torso”). Liu et al. [19] generate a rep-

resentation of a given video based on the detected active

attributes. Kong et al. [14] construct similar but human-

centric–representations, assuming ideal person tracking in

each video. The attribute-based models do not capture the

spatio-temporal structure of the action, however, incorpo-

rate expert knowledge. Our model tries to close this gap by

building a localizable mid-level representation.

2. The Model

A graphical representation of our model is illustrated in

Fig. 1. This model has the ability to localize temporally and

spatially the discriminative action components. It performs

action classification and generates detailed spatial and tem-

poral reports for each component. The temporal context

of the action, such as the ordering of the action’s compo-

nents and their temporal correlations are explicitly modeled.

Moreover, the model implicitly performs spatial localiza-

tion of the image regions that are part of the action.

2.1. Model Formulation

Given a set of video sequences {x1, . . . ,xn} ⊂ X
and their associated annotations {y1, . . . , yn}, with yi ∈
{−1, 1}, our purpose is to learn a mapping f : X →
{−1, 1}. This mapping function will also enable the auto-

matic temporal annotation of unseen video sequences. Our

input variables are sequence of images xi = {x1
i , . . . , x

Ti

i },

where Ti is the length of the video. Our output variable

consists of a “global” label y indicating whether a particular

action occurs inside the video. Additionally, we introduce

auxiliary latent variables k ∈ K, where K = {ki ∈ Z+ :
ki < ki+1}. Those latent variables specify the subset of

frames that our model considers. Hence, our hypothesis y∗

is: y∗ = sign(f(x;w)) = sign(maxk∈K F (x,k;w)). Our

scoring function is written as the sum of unary and pairwise

terms:

F (x,k;w) =

|k|∑

i=1

〈wi, φ(x
ki)〉+

|k|−1∑

i=1

〈w(i,i+1), ψ(x
ki , xki+1)〉+ b .

(1)

Both unary and pairwise terms extract information from the

video sequence sparsely. Only the frames indicated by the

List of Poselets:

1.LegsExtended
2.HandDown
3.LegsStraight
4.BendHand
5.LegsOpen
6.Hand45°
7.Hand90°
8.LegHigh45°
9.HandExtension

23.Far Approaching Hands
24.Approaching Hands
25.Hands Contact
26.Person Approaching
27.Pushing Contact
28.LegHigh90°

.

.

.

Figure 2. Examples of annotated poselets.

latent variables k contribute to the scoring of the video.

3. Frame Descriptor

We formulate our frame descriptor based on the notion of

poselets [3] – localizable discriminant parts of the body or,

in our case, action. Based on a few weak annotations on a

sparse set of frames (Fig. 2), we build two types of poselets

using Histograms of Oriented Gradients (HoG) templates

[7] and BoW features. The original poselets [3], as well

as those used in static action recognition [21], rely purely

on HoG descriptors. HoG provides an effective, localizable

representation based on the (global) structure of the edge

information. This comes at a loss of fine (local) appearance

details that get washed away due to the rigid structure of

the template. Further, HoG templates do not model motion,

which is an important cue for action recognition.

To address the aforementioned limitations, we augment

HoG-based poselets with BoW poselets (both trained from

the same annotations). BoW features, quantized dense de-

scriptors (SIFT, Histogram of Optical Flow (HoF), and Mo-

tion Boundaries (HoMB)) [24], are most often used as holis-

tic descriptors of images or spatio-temporal volumes. In

contrast, we use BoW features to characterize poselets,

allowing us to have a spatially localizable representation

(similar to work in object detection [2], but with BoW com-

puted over appearance and motion). Our poselet represen-

tation gives us a flexible framework where we are able to

define semantic poselets that are generic (spanning multiple

activities) and are also action specific.

For describing a frame of a video, we collect the high-

est scores from each poselet classifier (both HoG and BoW

based) and form a poselet activation vector [21]. Finding the

bounding box with the highest score in the case of BoW rep-

resentation can be done very efficiently using branch-and-

bound techniques [16]. The HoG-based poselets are evalu-

ated in a scanning window fashion and the highest response

is stored. Our final feature representation φ(xti) ∈ R2M is

formed by concatenating the max-pooled [18, 27] M pose-

let activation scores. Consequently, each component of a

unary term wijφ(x
ki)j (Eq. 1) scores the compatibility of

the activation score of j-th poselets with the i-th keyframe

of the action model.
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Learning of poselets: Learning the poselet classifiers is a

challenging task, because in our framework, unlike in [3],

we do not assume good alignment of the annotations based

on the joint locations of the actors or provide an explicit

negative set. Instead, we rely on structured output learn-

ing, proposed by Blaschko and Lampert [2] for localizing

objects in an image, to mine for hard negatives and align

our weakly annotated poselet templates. This ensures that

learned poselets are effective for spatial localization.

Given a set of images {I1, . . . , In} and their annotations

{ŷ1, . . . , ŷn} ⊂ Y for a specific type of poselet, we wish to

find a mapping function that can localize the same poselet

in an unseen image. The structured output is the space of

bounding boxes or no bounding box in an image:

minimize
β,ξ

1

2
‖β‖2 + C

′
n∑

i=1

ξi (2)

s.t 〈β, θ(Ii, ŷi)〉 − 〈β, θ(Ii, ŷ)〉 ≥ ∆(ŷi, ŷ)− ξi, ∀ŷ ∈ Ŷ

ξi ≥ 0, ∀i

where ∆(ŷi, ŷ) is, for the positive images, a loss function

that encodes the amount of overlap the predicted bounding

box ŷ has with the ground truth ŷi. For the negative im-

ages, ∆(ŷ, ŷ) = 1, if the prediction indicates a poselet is

present. Moreover, we set θ(Ii, ŷi) = 0 for the negative im-

ages. As a result, a poselet is assumed present if its detec-

tion score 〈β, θ(Ii, ŷ)〉 is above zero. For the case of BoW

based poselets, the feature function θ(Ii, ŷ) represents the

concatenation of three histograms formed by the quantized

dense descriptors that are contained inside the bounding box

ŷ. For the case of the HoG template, the feature θ(Ii, ŷ) cor-

responds to the vectorized HoG template starting from the

upper left corner of the bounding box.

3.1. Pairwise Correlations

To model the temporal structure of the human activ-

ity, we encode the pairwise correlations between poselets

in consecutive keyframes. We capture presence/absence

of a poselet in one keyframe and the simultaneous pres-

ence/absence of another poselet in the next keyframe.

Therefore, we first augment each frame descriptor φ

(Sect. 3), decoupling the detection scores that indicate pres-

ence (positive) and absence (negative). A non-negative

sparse descriptor is created:

φ̂(xti) =[φ(xti)11[φ(xti )1>0],−φ(xti)11[φ(xti )1≤0], . . . ,

φ(xti)2M1[φ(xti )2M>0],−φ(xti)2M1[φ(xti )2M≤0]]

where 1[·] is the indicator function. By computing and

then vectorizing the outer product of those augmented de-

scriptors of two frames, we get our pairwise descriptor:

ψ(xti , xtj ) = vec(φ̂(xti)φ̂(xtj )
T

) ∈ R4M2

. Based on this

descriptor, we can quantify the fit to our action model of

the presence of the j-th poselet in the i-th keyframe and the

absence of the k-th poselet in the next keyframe by the pair-

wise component: w(i,i+1)[2j−1,2k]
ψ(xki , xki+1)[2j−1,2k].

Having our action model, we now describe two main algo-

rithmic steps: i) selection of the optimal keyframes, and ii)

learning the model parameters from training data.

4. Model Inference

Given a video sequence xi and activity model w

(Sect. 2.1) the classification process involves the maximiza-

tion of our scoring function over the latent variables k. Our

model has a temporal ordering constraint on the set of key-

frames selected from the image sequence, stating that the

latent variables are a strictly increasing sequence of positive

integers k1 < k2 < . . . < k|k| (Sect. 2.1). These constraints

enable the optimal keyframe selection to be computed by

dynamic programming (DP).

Let D(n,m) be the optimal value of the scoring func-

tion Eq. 1 in the case that the last of the n keyframes to be

selected is the m-th frame of the image sequence. Then,

based on the monotonicity constraints, we can define the

following DP-equations: D(1,m) = 〈w1, φ(x
m)〉,

D(n,m) = max
n−1≤p<m

{D(n− 1, p) + 〈w(n−1,n), ψ(x
p
, x

m)〉}

+ 〈wn, φ(x
m)〉.

The optimal solution is given by Eq. 3, and the indices for

the keyframe are retrieved with backtracking.

F (xi,k
∗;w) = max

|k|≤k|k|≤Ti

D(|k|, k|k|). (3)

The computation cost of the dynamic programming is

O(|k|Ti + T 2
i ) = O(T 2

i ). The dominant computational

cost term is the evaluation of the T 2
i pairwise potentials.

However, the evaluation of all the pairwise potentials is not

required during testing. The maximum temporal distance

between two successive keyframes can be computed during

training, and a loose upper bound τ < Ti can be defined for

each learned action model, leading to a more efficient infer-

ence algorithm O(τTi). Moreover, note that the dynamic

programming inference algorithm can be used efficiently in

a streaming scenario, see Sect. 6.2.

5. Learning

Our scoring function F for a video xi is the inner product

〈w,Ψ(xi,k)〉 of the high-level features Ψ(xi,k) and the

parameter vector w, where

w = [w1, . . . , w|k|, w(1,2), . . . , w(|k|−1,|k|), b],

Ψ(xi,k) = [φ(xk1), . . . , φ(xk|k|), ψ(xk1 , xk2), . . . ,

ψ(xk|k|−1 , xk|k|), 1].

(4)
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Our goal is to compute the model parameters w that mini-

mize the regularized risk defined here:

minimize
w,ξ

1

2
‖w‖2 + C

n∑

i=1

ξi

s.t yi〈w,Ψ(xi,k
∗
i (w))〉 ≥ 1− ξi, ∀i,

ξi ≥ 0, ∀i.

(5)

Optimizing Eq. 5 and finding the global minimum is a

hard problem, because it is not a convex objective function

due to the dependency of the latent variables k∗
i (w) on w.

However, we can find a local minimum by employing an

alternation optimization, similar to Felzenszwalb et al. [11].

More specifically, we adapt the following approach:

1. Given w: For each video, the latent variables are up-

dated, k∗
i = argmaxk F (xi,k;w) (Sect. 4). For the

positive samples, we fix their latent variables to k
∗
i .

For the negative samples, we update their growing list

of possible latent variables.

2. Given the updated set of the latent variables k∗
i : Opti-

mize Eq. 5 over w.

For initialization, we randomly initialize the unary

weights wi and set the pairwise weights wi,j to zero. Due

to the non-convexity of the problem, our learning algorithm

can get trapped in poor local optima. Therefore, we repeat

the training procedure a number of times and select as the

final solution the model parameters that lead to the small-

est objective function. In practice, we repeated the training

phase with 4 different random initializations.

6. Experimental Results

We validate the proposed model on the UT-Interaction

Set #1 benchmark dataset [26] using the segmented and

the continuous execution versions of the dataset for the

classification and temporal detection experiments, respec-

tively. This dataset contains 10 video sequences (720 ×
480, 30fps) that are continuous executions of 6 classes

of person-person interactions: “handshaking”, “hugging”,

“kicking”, etc. These high-level complex actions involve

combinations of discriminative atomic movements as well

as interactions between humans. Therefore, holistic BoW

representations of the video perform poorly [26] relative to

high-level description-based methods [4, 14, 34] (Table 1).

Our model2 is evaluated based on the 10-fold leave-one-out

cross-validation previously proposed in [26].

We annotated the UT-Interaction dataset with 598
bounding boxes of poselets. Fig. 2 shows examples of

the annotations provided for training our poselet models

2The poselet learning framework follows the same experimental setup

and never sees any of the test data.

(Sect. 3). Our annotations contain M = 28 types of generic

and action specific poselets, e.g., “legs extended”, “hand

extended 90◦”, “hug”, “handshake contact”, etc. Generic

poselets like a “legs extended” poselet may not have one-to-

one correspondences with a specific action. However, their

co-occurrence with other poselets captures salient informa-

tion for action discrimination. During training phases, the

number of positive samples for each poselet type varies be-

tween 10 and 65. This limited amount of samples, in com-

bination with weakly aligned annotations (Sect. 3), makes

mining of hard negatives [11] a crucial step of the training

procedure.

Experimental Details: The penalty parameter C of the la-

tent SVM objective (Eq. 5) is selected with 3-fold cross-

validation in each of the training sets. In contrast, the

penalty parameter C ′ of the structure SVM objectives

(Eq. 4) is set to 10 for both the HoG template and the BoW

for the poselet classifiers. The vocabulary size for the dense

SIFT, HoF and HoMB descriptors is set to 500.

6.1. Action Recognition

For each action class, we train our model using the same

number of keyframes |k|. A multi-class linear SVM is used

to combine the scores obtained from the 6 action models to

compensate for the different bias of each model. Using only

4 keyframes, our model achieves an average recognition

rate of 93.3% (Fig. 3 (a)). Table 2 summarizes the results of

different variations of our model along with two baseline al-

gorithms: we use RBF-χ2 SVM classifiers a) on a volumet-

ric max-pooled poselet feature representation of the entire

video, following [27] and b) on a BoW representation of the

video based on our quantized dense descriptors. The vol-

umetric max-pooled poselet representation directly builds

on our high-level features, except that it lacks the ability to

capture fine temporal information about the action. We note

that our model significantly outperforms the latter approach

by more than 15% in average accuracy. Even using only a

single keyframe (Fig. 3 (b)), a 3% increase in accuracy is

observed. Moreover, our results indicate a significant boost

in performance using the combination of HoG template and

BoW based poselets, proving their complimentary detec-

tion performance. Fig. 3 (b) shows the performance of our

framework using the full model and only unary terms while

varying the number of latent variables |k|. We attribute the

slight drop in performance using 5 keyframes to over-fitting

during the training phase as the number of parameters in our

model grows linearly with the numbers of keyframes.

Additionally, comparisons with other recent approaches

are shown in Table 1. Our approach outperforms most

other approaches and its performance is comparable with

the state-of-the-art method [38]. In contrast with Vahdat

et al. [34], our approach does not require accurate human

tracking. Moreover, our model is not constructed explic-
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itly to model person-to-person interactions. The perfor-

mance of our method is lower than the bag of higher or-

der co-occurrence of spatio-temporal features proposed by

[38]. This can be attributed to the use of a linear classifica-

tion scheme compared to non-linear kernels. Although, we

note that holistic representations of video [9, 17, 25, 27, 38]

cannot provide spatial localization. Furthermore, the latter

schemes can only be used in an inefficient sliding window

approach [38] for temporal localization.

Table 1. Performance comparison on the UT-Interaction Dataset.

The second and third columns report the recognition rate using the

first half and the entire video, respectively. The annotation (Best)

indicates the highest performance that the particular method can

achieve using optimum parameters and visual vocabulary. (Avg.)

indicates the average performance of the method using several dif-

ferent visual vocabularies.

Method
Accuracy w. Accuracy w.

half videos full videos

Our Model 73.3% 93.3%

Ryoo [25] (Avg.) 61.8% 76.7%

Ryoo [25] (Best) 70% 85%

Cuboid+SVMs (Avg.) [9, 26] 25.3% 78%

Cuboid+SVMs (Best) [9, 26] 31.7% 85%

BP+SVM (Avg.) [25] 57.7% 75.9%

BP+SVM (Best) [25] 65% 83.3%

Yao et al. [37] – 88%

Vahdat et al. [34] – 93.3%

Zhang et al. [38] – 95%

Kong et al. [14] – 88.3%

Spatial Localization. As mentioned, our model is

transparent and fully interpretable. By analyzing each

keyframe’s unary term and the pairwise terms, the most pos-

itively contributed poselets and pairs of poselets can be es-

timated. This analysis can lead to insightful information

regarding the action: which keyframe is the most discrim-

inative and which poselet or pair of poselets is the most

distinctive. More specifically, the contribution of the pres-

ence (φ(xki
)j > 0) or absence of the j-th poselet in the

i-th keyframe can be easily identified as wijφ(xki
)j ; a term

of our scoring function (Eq. 1). Similarly, the contribution

of the pairwise correlations between poselets of successive

keyframes are computed. Fig. 4 shows visualization of this

analysis for several test sequences. The bounding boxes of

detected poselets that have most positive contributions to

the scoring function of the action model are plotted. Fur-

ther, the absent poselets that contribute positively via either

the unary terms or the pairwise terms are annotated at the

top right corner of each keyframe. Following this analysis,

our model offers fine-level spatial localization of the action.

To evaluate the relevance of the selected detected pose-

lets to the performed action, we define the localization score

as 1
|k|

∑|k|
i=1

1
Pi

∑Pi

j=1

Bj∩Gki

Bj
, where Pi is the total num-

ber of detected poselets with positive contributions in a

keyframe, Bj is the corresponding bounding box, Gki
is

the ground truth bounding box enclosing the entire region

of interest of the action. Considering each action model as

a 1-vs-all classifier, we construct ROC curves based on the

scores of each test sequence. A test sample is considered

as positive prediction if its score is above a given threshold

and its localization score above a threshold σ. The latter

threshold defines the minimum average overlap of poselet’s

bounding boxes to consider them as part of the action. The

average localization performance of all the action classes is

shown in Fig. 5 (a). Our model achieves a 79% true positive

rate at a 20% false positive rate with the threshold set to 0.5.
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Figure 3. (a) Confusion Matrix for UT-Interaction dataset. (b) Av-

erage classification accuracy for different numbers of keyframes.

6.2. Early Detection or Streaming

Our framework will not lose its discriminative power

even if most of the frames of the test video are “dropped”.

The information that our model’s scoring function extracts

from a given image sequence is temporally sparse. There-

fore, our framework is also suitable for human activity pre-

diction in a streaming video scenario [25] without any spe-

cific modification. In order to investigate its quantitive

performance on the latter task, we conducted experiments

where the algorithm only had access to a fraction of the

frames of the video. Similar to the experimental setting pro-

posed by Ryoo [25], we tested our 4 keyframes action mod-

els using 10 different observation ratios. Fig. 5 (a) compares

our model with existing methods. Our algorithm signif-

icantly outperforms the state-of-the-art method “Dynamic

Cuboid BoW” [25] that was specifically developed for on-

line activity prediction. Accessing only the first 70% of the

test data frames, an average classification performance of

93.3% is acquired, which equals our performance observ-

ing the full videos (Sect. 6.1). Table 1 also lists the classifi-

cation accuracy after having observed only the first half of

the test video sequences.

6.3. Temporal Detection on Continuous Execution

We also examine the temporal localization ability of the

proposed method. For this purpose, we focus our analy-

sis on the unsegmented UT-Interaction sequences. The 10
videos have an average length of 3000 frames and con-

tain executions of all 6 actions in random sequences while
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Table 2. Performance comparison of different components of our framework.

Method Our BoW+SVM

Volumetric Max-Pooled Unary Only Unary Only Unary Only Pairwise+Unary Pairwise+Unary

HoG+BoW Based HoG Based BoW Based HoG+BoW BoW Based HoG+BoW

Poselets+SVM Poselets Poselets Based Poselets Poselets Based Poselets

Accuracy 73.3% 77.0% 82.0% 70.0% 90% 77.0% 93.3%
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Figure 4. Keyframe Interpretations. Each row shows the 4 keyframes selected by our model from one of the test sequences; 4 out of a total

60 sequences illustrated. Detected or absent poselets and pairs of poselets contributing the most to our scoring function are automatically

annotated. The bounding boxes of the detected poselets along with their name and score is plotted (the prefix ‘b’ points to BoW based

detection). The ones absent and contributing positively are marked at the top left corner of each image. The pairs of poselet associated with

our pairwise terms are also marked at the top right corner with their two corresponding strings. The first indicates the current keyframe

poselet’s name and the prefix (++ or −−) of the second string indicates if this particular poselet is present or absent at the next keyframe.

Based on those annotations an “action script” can be automatically created. For instance the action in the second row can be described:

“We first observe the poselets “LegExtended”, “bLegsOpen” and “bTwoHandsOpen”, followed by the poselet “Hug”. A strong pairwise

relationship appears due to absence of “HandBend” at the second keyframe and the presence of “Hug” at the third, etc.”

also containing “background” activities. During our eval-

uation, an action class prediction is considered correct if

it has a score above -1 and a percentage θ of the corre-

sponding keyframes are contained inside the ground truth

temporal segments. The average performance for all of the

action classes is summarized in Table 3. We note that the

4 keyframes action models trained on the segmented videos

(Sect. 6.1) were re-used in this experiment. During infer-

ence, the temporal distance between possible successive

keyframes is constrained by the maximum temporal dis-

tance τ observed during the training phase (Sect. 4), e.g.,

for the action “kicking” τ = 23; for “hugging”, τ = 55.

This constraint greatly improves the computation efficiency

of our algorithm (linear with respect the number of frames)

but also slightly boosts our detection performance. Over-

all our model attains a temporal detection accuracy of 80%,

having predicted all the keyframes inside the correct tem-

poral segment of the video (86.7% with a looser overlap

threshold).
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Figure 5. (a) Classification accuracy with respect to the percent-

age of streamed frames observed. Our model (blue line) performs

consistently above 80% after observing 60% of the video frames.

The most important result, however, is that with less than half of

the video observed, the classification performance is above 60%.

(b) Spatial Localization of our model: ROC curves correspond-

ing to 5 different localization score thresholds σ.

Table 3. Detection on continuous execution videos.
Temporal Overlap θ 0.25 0.5 0.75 1

Detection Accuracy 86.7% 86.7% 83.3% 80.0%

7. Discussion

We propose a new model for action recognition that com-

bines a powerful mid-level representation, in the form of

HoG and BoW poselets, with discriminative keyframe se-

lection. The proposed approach has a number of important

benefits, including the ability to spatially and temporally

localize the action and deal with partial video observation

(streaming). It also provides semantically interpretable out-

put in the form of contextual temporal orderings of discrim-

inant partial poses. In addition, the proposed model is easily

extendable to incorporate more action parts, keyframes, or

even generic objects for context.
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