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Figure 1: Our method can create animatable avatars with realistic pose-dependent details from multi-view RGB videos.

ABSTRACT

Creating pose-driven human avatars is about modeling the mapping
from the low-frequency driving pose to high-frequency dynamic
human appearances, so an effective pose encoding method that can
encode high-fidelity human details is essential to human avatar
modeling. To this end, we present PoseVocab, a novel pose encoding
method that encourages the network to discover the optimal pose
embeddings for learning the dynamic human appearance. Given
multi-view RGB videos of a character, PoseVocab constructs key
poses and latent embeddings based on the training poses. To achieve
pose generalization and temporal consistency, we sample key ro-
tations in so(3) of each joint rather than the global pose vectors,
and assign a pose embedding to each sampled key rotation. These
joint-structured pose embeddings not only encode the dynamic
appearances under different key poses, but also factorize the global
pose embedding into joint-structured ones to better learn the ap-
pearance variation related to the motion of each joint. To improve
the representation ability of the pose embedding while maintain-
ing memory efficiency, we introduce feature lines, a compact yet

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH ’23 Conference Proceedings, August 6—10, 2023, Los Angeles, CA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0159-7/23/08.

https://doi.org/10.1145/3588432.3591490

effective 3D representation, to model more fine-grained details of
human appearances. Furthermore, given a query pose and a spatial
position, a hierarchical query strategy is introduced to interpolate
pose embeddings and acquire the conditional pose feature for dy-
namic human synthesis. Overall, PoseVocab effectively encodes the
dynamic details of human appearance and enables realistic and
generalized animation under novel poses. Experiments show that
our method outperforms other state-of-the-art baselines both qual-
itatively and quantitatively in terms of synthesis quality. Code is
available at https://github.com/lizhe00/PoseVocab.
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1 INTRODUCTION

Human avatar modeling, due to its potential value in holographic
conferences, Metaverse, game and movie industries, has been a pop-
ular topic in computer graphics and vision for decades. Animatable
human avatars usually take the skeletal pose as the driving signal
and output realistic human models with pose-dependent dynamic
details. Many human avatar techniques [Bagautdinov et al. 2021;
Liu et al. 2021; Peng et al. 2021a; Zheng et al. 2022] utilize neural
networks to model the mapping from the pose input to the dynamic
human appearance. However, how to effectively encode the pose
input into the network still remains a challenging problem.

Many previous works take SMPL-derived [Loper et al. 2015]
attributes like pose vectors [Li et al. 2022a; Saito et al. 2021; Zheng
et al. 2022] or SMPL positional maps [Ma et al. 2021b] as the con-
ditional pose features. Then a neural network, usually an MLP, is
trained to map 3D positions and the corresponding pose features
to a 3D representation, e.g., mesh, point cloud, signed distance
field (SDF), and radiance field (NeRF) [Mildenhall et al. 2020], to
model the dynamic human appearance. Unfortunately, the change
of the driving signal, i.e., SMPL-derived attributes, is low-frequency,
while the human appearance varies at a much higher frequency.
Therefore, it is challenging for MLPs to model the mapping due to
the low-frequency bias of MLPs [Tancik et al. 2020], thus yielding
blurry appearances without fine-grained garment wrinkles.

Previous works [Chen et al. 2022; Miiller et al. 2022; Yu et al.
2021] demonstrate that learnable latent embeddings at NeRF input
end can encode much more high-frequency details for static scene
rendering. To extend such embeddings to dynamic human mod-
eling, inspired by word embeddings in word2vec [Mikolov et al.
2013a,b], we propose PoseVocab that consists of pairs of key poses
and learnable pose embeddings, to encourage the network to dis-
cover the optimal embeddings for encoding high-frequency human
appearances under various poses. However, naively constructing
pairs of global poses and global latent codes like [Peng et al. 2021a]
yields poor generalization to unseen poses because the global pose
vector entangles the information from all the joints. What’s worse,
these global codes fail to encode fine-grained details of human ap-
pearances due to their limited representation capacity. Therefore,
we propose joint-structured pose embeddings by sampling key rota-
tions in so(3) of each joint and assigning them the corresponding
latent embeddings. These joint-structured pose embeddings are
distributed in the rotation domain of each joint, and serve as the
discrete samples of the continuous pose feature space for interpola-
tion. Furthermore, to guarantee both spatial capacity and memory
efficiency, each pose embedding is defined as three feature lines
along x, y and z axes. Similar to EG3D [Chan et al. 2022] and Ten-
soRF [Chen et al. 2022], the feature lines decompose a 3D volume
into three axes via orthogonal projections. Compared with a global
latent code, feature lines demonstrate a more powerful capacity for
encoding fine-grained dynamic details while maintaining memory
efficiency.

Based on the constructed PoseVocab, a hierarchical query strategy
is introduced for avatar animation. Our hierarchical query includes
three levels: the joint level, the key rotation level and and the spatial
level. Specifically, given a query body pose, we first decompose the
global pose vector into rotations of each joint. For each query joint
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rotation, we search for K nearest neighbors (KNN) key rotations and
interpolate the corresponding pose embeddings, i.e., feature lines. In
the spatial level, the pose feature of a query 3D position is sampled
by orthogonal projections on the interpolated feature lines. Finally,
the 3D position and the corresponding pose feature are fed into an
MLP to decode a neural radiance field (NeRF) [Mildenhall et al. 2020]
that represents the dynamic 3D character. The hierarchical query
in PoseVocab not only decomposes the effects of each joint rotation
on the dynamic appearance for better generalization to novel poses,
but also guarantees the temporally consistent animation benefiting
from the smooth KNN interpolation.
In summary, our technical contributions are below:

e Joint-structured pose embeddings that not only disentangle the
effects of different joints on the dynamic appearance, but also
encode high-frequency details for realistic avatar modeling.

e Feature lines, a new compact yet effective 3D representation that
improves the representation ability of pose embeddings while
maintaining memory efficiency.

o Ahierarchical query strategy in PoseVocab that interpolates joint-
structured pose embeddings in the joint, key-rotation and spatial
levels for generalized and temporally consistent animation.

Compared with other pose encoding methods, PoseVocab not
only has the ability to encode the high-frequency human dynamic
appearance, but also generalizes well to novel poses. Overall, our
method can automatically create a realistic animatable avatar rep-
resented by a pose-conditioned NeRF from multi-view videos, and
experiments show that our method outperforms other state-of-the-
art approaches both qualitatively and quantitatively.

2 RELATED WORK

Human avatar modeling is a popular research topic in the last
few years, and many methods have been proposed to reconstruct
animation-ready avatars from short videos [Alldieck et al. 2018,
2019; Feng et al. 2022; Jiang et al. 2022b,a,c; Peng et al. 2022a; Su et al.
2021; Te et al. 2022] or single images [He et al. 2021; Huang et al.
2022, 2020]. Unfortunately, they cannot synthesize pose-dependent
appearances like dynamic cloth wrinkles. In this paper, we aim
to model these pose-dependent appearance details, so we mainly
review the related methods that are able to achieve similar goals.

2.1 Pose Encoding in Avatar Modeling

Human pose encoding is widely explored, and many representa-
tions including pose vectors, 6D representations [Zhou et al. 2019]
and latent codes [Pavlakos et al. 2019] are proposed for pose priors
[Pavlakos et al. 2019; Tiwari et al. 2022] and motion generation
[Guo et al. 2022; Tevet et al. 2022]. How to effectively encode the
pose input into the network is also one of the core problems in
avatar modeling. Many works take SMPL-derived [Loper et al. 2015]
attributes to encode the pose input. In the geometric avatar model-
ing, given 3D scans or depth sequences of a character, SCANimate
[Saito et al. 2021], SNARF [Chen et al. 2021], Neural-GIF [Tiwari
et al. 2021], NASA [Deng et al. 2020], LEAP [Mihajlovic et al. 2021],
DSEN [Burov et al. 2021], PINA [Dong et al. 2022b] and Lapla-
cianFusion [Kim et al. 2022] adopted SMPL pose vectors or joint
rotations as the pose condition to learn the pose-dependent implicit
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surfaces or displacement fields. MetaAvatar [Wang et al. 2021] pro-
posed to learn an avatar from only a few depth images with the
meta-learned network as the initialization. SCALE [Ma et al. 2021a],
GeoTexAvatar [Li et al. 2022b], FITE [Lin et al. 2022] and CLoSET
[Zhang et al. 2023] took UV or rendered positional maps of posed
SMPL models as the pose condition to regress the pose-dependent
warping field. COAP [Mihajlovic et al. 2022] proposed a part-aware
neural network to condition the body shape on local SMPL point
clouds.

On the other hand, given RGB videos of a character under vari-
ous poses, many textured avatar modeling methods also adopted
similar SMPL-derived attributes as the pose feature to represent the
dynamic human appearance. Specifically, [Zheng et al. 2022, 2023]
defined a set of local radiance fields attached to sampled SMPL
nodes, and learned the mapping from SMPL pose vectors to the
node residual and varying details of the human appearance. TAVA
[Li et al. 2022a] proposed to jointly model the non-rigid warping
field and shading effects directly conditioned on the pose vectors.
Besides, pose vector-based encoding is also adopted in animatable
hand modeling [Corona et al. 2022]. [Yoon et al. 2022] utilized SMPL
normal maps and velocities as pose conditions and took SMPL as a
3D proxy for deferred neural rendering [Thies et al. 2019]. DANBO
[Su et al. 2022] regressed human appearances from 6D representa-
tions [Zhou et al. 2019] of skeletal poses via GNN [Kipf and Welling
2016]. However, the above low-frequency SMPL-derived attributes
have a poor capacity to represent the high-fidelity dynamic hu-
man appearance, thus essentially limiting the synthesis quality of
avatars. Neural Actor [Liu et al. 2021] regressed texture maps from
normal maps by image-to-image translation with adversarial loss in
SMPL UV space, but such an encoding strategy constrains the per-
former to wear tight clothes for topological consistency with SMPL.
On the other end of the spectrum, Neural Body [Peng et al. 2021b],
Animatble NeRF [Peng et al. 2021a, 2022b], ARAH [Wang et al.
2022] and TotalSelfScan [Dong et al. 2022a] assigned a global latent
code for each training frame to compensate for the time-varying
dynamic appearance and learned these codes in an auto-decoding
fashion [Park et al. 2019]. Although these codes “offload” the net-
work representation power to themselves to encode varying details,
they fail to encode fine-grained appearance details due to their
limited representation capacity. Furthermore, global latent codes
entangle the information from all the body joints, exacerbating
their generalization capability to novel poses.

2.2 Avatars with Reconstruction, Tracking, or
Simulation

Many works aimed to combine hybrid technologies like dense re-
construction, non-rigid tracking, and cloth simulation for creating
more realistic avatars from multi-view videos. [Bagautdinov et al.
2021], [Xiang et al. 2021] and [Halimi et al. 2022] first reconstructed
and tracked 3D meshes of the whole body or garments, and then
learned the deformation and varying appearances with the dense
correspondences as a strong prior. [Xu et al. 2011] and [Habermann
et al. 2021] relied on a template mesh for blending textures from
the database or learning the deformation and textures, respectively.
Dressing Avatars [Xiang et al. 2022] utilized high-fidelity tracking
of dense geometry in the training stage, whereas in the animation
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this method applied a cloth simulator to generate more realistic
cloth dynamics. [Remelli et al. 2022] extended the driving signal
from skeletal poses to sparse images, and leveraged texel-aligned
features to synthesize more realistic details. Compared with these
hybrid methods, our method does not rely on any preprocessing
steps like reconstruction, tracking or simulation, and can be trained
in an end-to-end manner given the RGB videos and SMPL registra-
tions.

3 METHOD

Given multi-view RGB videos of a character with T frames captured
by N cameras, we denote the RGB sequencesas {I;,|1 <n < N, 1 <
t < T}. We assume that the body pose of each frame is known,
and denoted as ©! € R3YJ where J is the joint number of the
human body. The human avatar modeling problem is to model the
mapping from the body pose ©7 to the dynamic human appearance
described by the corresponding RGB images.

Similar to other avatar representations [Liu et al. 2021; Peng et al.
2021a], we first factor out the rigid skeletal motions by deforming
the 3D human from the posed space to the canonical one using linear
blend skinning (LBS). Then we represent the canonical 3D human
as a pose-conditioned neural radiance field (NeRF) [Mildenhall et al.
2020] that takes a canonical 3D position v, a view direction d and
the pose feature f(©?,v.) as input and returns a tuple of color ¢
and SDF s, i.e.,

g: (ve, d.£(8",v¢)) = (c,9). (1)

In our method, we follow VoISDF [Yariv et al. 2021] to convert SDF
to density for SDF-based volume rendering.

The pose feature f(©,v,) in Eq. 1 plays an important role in
modeling detailed dynamic human appearance. Previous methods
usually represent the pose feature as low-frequency SMPL-derived
attributes (like pose vectors [Zheng et al. 2022] or SMPL positional
maps [Ma et al. 2021b]). However, it is difficult for the network
to map these low-frequency driving signals to high-frequency hu-
man appearances. To overcome this challenge, we propose Pose-
Vocab, a novel pose encoding method for realistic human avatar
modeling. Inspired by word embeddings [Mikolov et al. 2013a],
we construct a pose vocabulary, dubbed PoseVocab, which con-
sists of joint-structured key rotations and their corresponding pose
embeddings. PoseVoab encourages the network to discover the
optimal pose embeddings to encode the high-frequency dynamic
appearance of the character. Fig. 2 demonstrates an overview of the
representation of PoseVocab. Given the multi-view RGB videos of a
character under various poses, we first construct PoseVocab based
on the training poses. The constructed PoseVocab consists of key
rotation samples in so(3) of each joint and the corresponding pose
embeddings. The joint-structured pose embeddings are designed
to disentangle the effects of different joints on the pose-dependent
dynamic details for better generalization to novel poses. Given a
query pose vector, we first decompose it into rotations of each joint.
For each query joint rotation, we interpolate joint-structured pose
embeddings represented by feature lines through KNN searching
and blending. Finally, the pose-dependent feature of a 3D position
is acquired by sampling on the interpolated feature lines for avatar
rendering. Next, we will introduce PoseVocab in detail.
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Figure 2: Overview of the representation of PoseVocab. PoseVocab is constructed based on the training poses by sampling
the key rotations in so(3) of each joint and assigning a pose embedding for each key rotation. These joint-structured pose
embeddings encode the dynamic appearance of the character under various poses. Given a query pose and 3D position, we
hierarchically interpolate pose embeddings in joint, key-rotation and spatial levels to acquire the conditional pose feature,
which is fed into an MLP to decode the radiance field, eventually synthesizing the high-fidelity human avatar via volume

rendering.

3.1 Joint-structured Pose Embeddings

The desirable properties of a pose encoding method are effective-
ness and generalization. To this end, we propose joint-structured
pose embeddings to disentangle the effects of different joints on the
dynamic human appearance. In other words, we sample key rota-
tions and assign pose embeddings for each joint. To be more specific,
given the training poses (rotations) {9§.|9§. €50(3),1 <t <T}of
the j-th joint, we first sample M key rotations via farthest point
sampling. The distance metric between two rotations is calculated
as [Huynh 2009; Tiwari et al. 2022]:

d(01,02) =1-|a(61)"q(82)| € [0,1], )

where q(-) is a function that maps an axis-angle vector to a unit
quaternion, and 61 and 62 are two axis-angle vectors. The sampled
key rotations {é;n|1 < m < M} cover most of the seen poses in the
training dataset. Then we assign a learnable pose embedding for
each key rotation.

To improve the representation ability of the pose embedding, a
possible solution is to represent each pose embedding as volumes
[Fridovich-Keil et al. 2022; Miiller et al. 2022] or tri-planes [Chan
et al. 2022] (Fig. 3 (a, b)). Unfortunately, the memory usage will be
unaffordable because the number of pose embeddings is over 5000
in total. To balance the spatial capacity and memory efficiency, our
pose embedding is represented as three feature lines on the x, y
and z axes. The structure of feature lines is illustrated in Fig. 3 (c),
and three feature lines are denoted as

F7 e RROD B e RRP F e RXD, 3)

where Ry, Ry and R; are the resolutions of x, y and z feature lines,
respectively, and D is the feature dimension. Similar to tri-planes
[Chan et al. 2022], the fetched feature of a 3D point v, = (x¢, Y, 2z¢)
is the concatenation of the projected features on the three lines:

.rm m m
b (ves P FI P

(4)
=0 (Lerp(xc; F;’fx), Lerp(yc; F;'?y), Lerp(zc; F;"Z)) ,

where @ is the concatenation operation, and Lerp(-) represents
linear interpolation on the feature line given a 1D query coordinate.

So far, for each joint, we have constructed M key-value pairs, i.e.,
key rotations and corresponding pose embeddings, based on the
training poses. These joint-structured pose embeddings assemble
the PoseVocab, and serve as discrete samples in the continuous pose
feature space for the following query in PoseVocab.

3.2 Hierarchical Query in PoseVocab

Based on the constructed PoseVocab that consists of joint-structured
key rotations {é;n} and pose embeddings {F;.”’x}, {F;’}y}, {FTZ},
we can interpolate these embeddings to acquire the pose feature
given an arbitrary pose © = [0—1'—, ...0T]T (J is the joint number)
and a 3D position. The query procedure includes three hierarchical
levels: joint, key-rotation and spatial levels as shown in Fig. 2.

Joint Level. Specifically, given a query pose vector © = [01—, 0}—] T,

we first split it into rotations of each joint {6;|1 < j < J}.
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Figure 3: Illustrations of volume (a), tri-planes (b) and fea-
ture lines (c). Given a query coordinate (x,y, z), the volume
directly returns the feature voxel, tri-planes return the con-
catenation of three projected features on (x,y), (y,z) and
(z,x) planes, and feature lines return the concatenation of
three projected features on x, y and z axes.

Key-rotation Level. For the query rotation of the j-th joint, 6,

~k
we search for the K nearest key rotations {6 }Ik<:1 using Eq. 2 as the
distance metric, and interpolate corresponding pose embeddings
(i.e., feature lines) as a weighted sum:

~k

SE, (0, 0))F%,
Fje= —— —
2K, w(8;.6))

where w(6,8%) = 1 - d(8;,85) is the blending weight. F; , and
F;j , are similarly calculated as Eq. 5.

: ®)

Spatial Level. Given a canonical 3D position v, we linearly sam-
ple its pose feature h(v¢; Fjx, Fj g, Fj2) by Eq. 4 on the interpo-
lated pose embeddings, i.e., three feature lines I x, Fj , and Fj ..
Moreover, following SCANimate [Saito et al. 2021], we also ap-
ply a skinning weight awared attention scheme on the feature of
each joint to limit the effects of irrelevant joints to reduce spurious
correlations.

Finally, we concatenate the features queried by all the joint
rotations together as the whole pose feature:

J
[0, ve) =P (0(ve. /) - h(ve; Fjw Fjy Fiz),  (6)
Jj=1
where w(ve, j) is the predefined influence weight of the j-th joint
on v, [Saito et al. 2021]. Eventually, the canonical 3D position and
its corresponding pose feature are fed into Eq. 1 to decode NeRF
for avatar rendering.

3.3 Discussion on PoseVocab Designs

Our PoseVocab representation is designed for effective and general-
ized pose encoding based on the following insights:

First of all, it remains difficult for many previous methods [Li et al.
2022a; Zheng et al. 2022] to directly map SMPL-derived attributes
like pose vectors to high-frequency dynamic human appearances
using MLPs because of the low-frequency variation of driving poses
and low-frequency bias of MLPs [Tancik et al. 2020]. In contrast,
in our method, the low-frequency pose only plays roles of queries
and keys, while the conditional pose feature is the learnable pose

SIGGRAPH ’23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

embedding. We promote the network to discover these pose em-
beddings to encode high-frequency dynamic human appearances
under various poses, and then input these embeddings containing
appearance information into the conditional NeRF MLP.

Secondly, if we naively construct pairs of global training poses
and latent embeddings like [Peng et al. 2021a; Wang et al. 2022], it
still remains difficult to model fine-grained details and generalize to
novel poses as shown in Fig. 6, because the global pose vector entan-
gles the control of all the joints on the dynamic human appearance.
So we propose joint-structured pose embeddings to disentangle the
effects of different body joints for modeling fine-grained details
and generalization ability to novel poses.

Thirdly, representing each pose embedding as a global latent code
yields low-quality avatar appearances without fine-grained patterns
of garments as shown in Fig. 5, so we introduce features lines, an
effective and compact 3D representation for both representation
ability and memory efficiency.

Finally, the hierarchical query in PoseVocab interpolates joint-
structured pose embeddings successively in the joint, key-rotation
and spatial levels. The joint level decomposes the control of different
joint motions on the dynamic appearance for better generalization
to novel poses. The key-rotation level guarantees temporally consis-
tent animation via the smooth KNN blending. Last but not least, the
spatial level provides the spatial distinction of different positions
to encode more fine-grained details.

3.4 Training

The learnable variables of our network include the joint-structure
pose embeddings {F;"x} {F;{‘y}, {F;’?z} and the parameters of the
NeRF MLP in Eq. 1. The training losses include a color loss, a
perceptual loss, a mask loss, the Eikonal loss [Gropp et al. 2020]

and a total variation loss on feature lines:

L = AcolorLeolor + AperceptuaILPerceptual
+ Amask Lmask + Aeikonal Leikonal + ATv LTV,

(7)

where As are loss weights.

Color Loss. The color loss is an L1 loss between the volume-
rendered [Yariv et al. 2021] color image and the ground truth:

Leolor = ) lC@) = C* 0], (8)

reR

where R is the set of sampled rays from the rendered view, and
C(r) and C*(r) are the rendered and true pixel colors, respectively.

Perceptual Loss. The perceptual loss [Zhang et al. 2018] is con-
ducted on a local patch of rendered and ground-truth images, and
penalizes them to be close in the feature map level. We choose VGG
as the backbone to compute the learned perceptual image patch
similarity (LPIPS):

Lperceptual = Z ”VGG(C(p)) - VGG(C* (p))Hg s )
peP

where P is the set of sampled patches from the rendered view, and
C(p) and C*(p) are the rendered and true patches, respectively.
The perceptual loss has been widely used in the NeRF training [Gao
et al. 2022; Weng et al. 2022] to improve the reconstructed details.
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Mask Loss. The mask loss constrains the rendered mask to be
consistent with the ground truth:

Lmask = ., M@) - M @], (10)
reR
where M(r) and M* (r) are volume-rendered and ground-truth mask
values, respectively. The mask loss enforces the modeled human
geometry to be consistent with the 2D body mask.

Eikonal Loss. The Eikonal loss [Gropp et al. 2020] is an implicit
geometric regularization that enforces the norm of the gradient of
the SDF field equal to 1:

Leikonal = E (IVus(v. @ v)IIE - 1), (11)

where s(-) is the MLP-based function that maps a 3D position v
and its conditional pose feature f(©, v) to the SDF value.

Total Variation Loss. The total variation (TV) loss regularizes the
continuity of the feature lines along the spatial dimension:

trv= 3 3 e v -sn o leres -l
jm i

+ HF;.'}Z(Z- +1)— F;'}z(i)Hz) ,
(12)

where i is the index on the spatial dimension of feature lines.

4 EXPERIMENTS

Dataset. We use 5 multi-view sequences for the experiments:
3 sequences with 24 views from THuman4.0 dataset [Zheng et al.
2022], 1 sequence with 11 views from DeepCap dataset [Habermann
et al. 2020] and 1 sequence with 23 views from ZJU-MoCap dataset
[Peng et al. 2021b]. All the sequences provide SMPL [Loper et al.
2015] or SMPL-X [Pavlakos et al. 2019] registrations of the character.
We split each sequence into two continuous chunks for training and
testing, and the training chunk accounts for 50% ~ 80%. Novel
poses are from the testing chunk or another sequence.

Metric. We utilize Peak Signal-to-Noise Ratio (PSNR), Structure
Similarity Index Measure (SSIM) [Wang et al. 2004], Learned Per-
ceptual Image Patch Similarity (LPIPS) [Zhang et al. 2018] and
Frechet Inception Distance (FID) [Heusel et al. 2017] as metrics for
quantitative comparisons and evaluations.

4.1 Results

We train the avatar network for each subject individually and
demonstrate results animated by novel poses in Fig. 1 and Fig. 9.
Our results show realistic dynamic details varying with the driving
pose. Please refer to the supplemental video for more visualization
of the animatable avatars.

4.2 Comparison

We mainly compare our method against 5 state-of-the-art approaches
including Structured Local NeRF (SLRF) [Zheng et al. 2022], TAVA

[Li et al. 2022a], ARAH [Wang et al. 2022], Animatable NeRF (Ani-
NeRF) [Peng et al. 2021a] and Neural Actor (NA) [Liu et al. 2021]

on the quality of animated avatars.
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Table 1: Quantitative comparison against SLRF, Ani-NeRF,
TAVA and ARAH on “subject00” sequence of THuman4.0
dataset. Metrics are computed on both training and testing
poses.

Pose Method PSNRT SSIMT LPIPS| FID|
Ours 34.226 0.986 0.014 23.957

Training SLRF 25.270 0.971 0.024 44.492
Ani-NeRF  23.188 0.966 0.033 85.449
TAVA 23.934 0.967 0.029 75.464
ARAH 22.017 0.963 0.033 74.308
Ours 30.972 0.977 0.017 37.239

Novel SLRF 26.152 0.969 0.024 110.651
Ani-NeRF  22.532 0.964 0.034 102.233
TAVA 26.607 0.968 0.032 99.947
ARAH 21.769 0.958 0.037 77.840

Table 2: Quantitative comparison against Neural Actor on
“S82” sequence of DeepCap dataset. Metrics are computed on
the testing sequence in the same cropped manner as [Liu
et al. 2021].

Method PSNRT LPIPS| FID |
Our 25.836 0.061 15.228
Neural Actor 23.531 0.066 19.714

SLRF, TAVA, ARAH and Ani-NeRF. Fig. 12 shows qualitative com-
parisons against SLRF, TAVA and ARAH on DeepCap [Habermann
et al. 2020] and THuman4.0 [Zheng et al. 2022] datasets. We also
compare our method against Ani-NeRF on ZJU-MoCap dataset
[Peng et al. 2021b] in Fig. 10. The animated results by SLRF, TAVA,
ARAH and Ani-NeRF are blurry especially in the red circles, whereas
our method not only reconstructs more details in terms of gar-
ment wrinkles under the training poses, but also generates more
fine-grained and realistic dynamic appearance given novel poses.
Although SLRF represents the avatar as a set of local radiance fields
to improve the network capacity, it still suffers from the bottleneck
of its pose encoding, i.e., the low-frequency pose vector. Moreover,
neither the learned pose-dependent shading in TAVA nor per-frame
latent codes in Ani-NeRF and ARAH are able to model detailed
dynamic human appearance. Tab. 1 reports the numerical compari-
son on the animation accuracy. Overall, our method outperforms
these four approaches both qualitatively and quantitatively benefit-
ing from the proposed pose encoding method, PoseVocab, which
has a powerful ability to encode high-frequency dynamic human
appearance.

Neural Actor (NA). We compare our method with NA both quali-
tatively and quantitatively on “S2” sequence of DeepCap dataset in
Fig. 11 and Tab. 2, respectively. We follow the same training/testing
splits and metric computation as NA, and the visualized and quan-
titative results are borrowed from [Liu et al. 2021]. On the whole,
NA outperforms the other four SOTA methods (SLRF, TAVA, etc),
and the possible reason is that it transforms the 3D human surface
into 2D SMPL UV to utilize a powerful 2D image-to-image trans-
lation network with adversarial training to predict texture maps



PoseVocab: Learning Joint-structured Pose Embeddings for Human Avatar Modeling

Training Pose

Novel Pose

i1l

(a) (b) (©) (d) (e)

Figure 4: Qualitative evaluation on pose encoding methods.
We show ground-truth images (a), and synthesized avatars
by PoseVocab (b), pose vectors (¢) and SMPL positional (d)
and normal (e) maps, respectively.

from normal maps. Without deep 2D convolutions, our method
can produce comparable or even better results than NA as shown
in Fig. 11. Moreover, the SMPL UV parameterization in NA con-
strains the character to wear tight clothes, while PoseVocab is a
basic pose encoding method that can be combined with other avatar
representations for modeling loose clothes as discussed in Sec. 5.

4.3 Evaluation

We conduct evaluations on the core designs of our method to demon-
strate the improvement brought by our contributions.

Pose Encoding Methods. To prove the effectiveness of our pose
encoding method, PoseVocab, we compare it against 3 baseline
methods, i.e., pose vectors [Zheng et al. 2022], SMPL positional maps
[Ma et al. 2021b] and SMPL normal maps [Yoon et al. 2022]. Specifi-
cally, the three baseline methods respectively take the pose vector,
convolutional SMPL positional or normal feature as the pose condi-
tion to decode the dynamic details of the character. Note that since
all the points in the canonical 3D space require corresponding pose
features, we sample them by orthographic projection on rendered
maps as in [Li et al. 2022b; Lin et al. 2022]. Fig. 4 shows that the pro-
posed PoseVocab not only encodes more fine-grained details under
the training poses, but also generates more realistic appearances
in novel poses than the other three pose encoding methods. Tab. 3
shows that our method can produce more accurate results on both
novel view and novel pose synthesis.

Ablation Study on Feature Lines. In our method, we propose to
represent each pose embedding as three feature lines on x, y and z
axes to improve the spatial capacity. We evaluate the capacity of
feature lines by replacing them with global latent codes, i.e., all the
3D points in the canonical space share the same pose embedding.
Fig. 5 shows the rendering results with global latent codes and
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Table 3: Quantitative evaluation on pose encoding methods.
Numerical results on both training and novel poses by Po-
seVocab (ours), pose vectors, SMPL positional and normal
maps, respectively.

Pose Method PSNRT SSIMT LPIPS| FID|
Ours 27.958 0.980 0.016 45.486
Training Pose Vector  25.848 0.974 0.024 48.965
Pos. Map 24931 0.971 0.027 71.121
Norm. Map  25.330 0.971 0.027 67.417
Ours 27.464 0.979 0.014 64.396
Novel Pose Vector  25.384 0.977 0.020 79.256
Pos. Map 23.201 0.973 0.025 85.226
Norm. Map  25.323 0.977 0.021 80.389

Global Codes Feature Lines

Figure 5: Qualitative ablation study on Feature lines. Render-
ing results of joint-structured pose embeddings represented
by global codes and feature lines, respectively.

(®) ®

Training Pose Novel Pose
Figure 6: Qualitative ablation study on the joint level of the
hierarchical query. (a)(d) Ground truth, (b)(e) results with
the joint level, (c)(f) results without the joint level.

feature lines, respectively. It demonstrates that the proposed feature
lines have a more powerful ability to preserve fine-grained details
of human appearances, especially patterns and logos on the clothes.
On the other hand, the model sizes of networks with feature lines
and global codes are 194.0 and 6.9 MB, respectively, and are both
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affordable for commercial GPUs. However, representing each pose
embedding as tri-planes [Chan et al. 2022] or volumes by hash tables
[Mdller et al. 2022] is unaffordable since the embedding number is
very large (over 5000). Overall, the proposed feature lines are both
effective and memory-efficient.

Ablation Study on Joint Level in Hierarchical Query. The hierar-
chical query in PoseVocab includes joint, key-rotation and spatial
levels. We attempt to eliminate the joint level and redivide the query
procedure into key-pose and spatial levels, i.e., we sample key global
pose vectors (key poses) rather than key rotations of each joint,
and then assign a pose embedding for each key pose. In this setting,
given a query pose, we directly search for K nearest key poses and
interpolate corresponding embeddings to acquire the pose feature.
We show animated results with and without the joint level in Fig. 6,
and it demonstrates that the joint level not only reconstructs more
fine-grained details under the training pose, but also improves the
generalization ability to novel poses by disentangling the effects of
different joints on the dynamic human appearance.

Pose Generalization. We evaluate the pose generalization of Pose-
Vocab using driving poses with different pose similarities from the
testing chunk and AIST++ dataset [Li et al. 2021]. We also evaluate
the results of a baseline method that replaces PoseVocab with con-
tinuous MLPs to model the mapping from driving poses to latent
embeddings. Fig. 13 shows that PoseVocab outperforms the baseline
method on pose generalization and avatar quality. The reason for
our superiority may be that PoseVocab implicitly projects the novel
driving pose to the pose space spanned by seen poses instead of
extrapolating by a learned MLP-based function.

5 DISCUSSION

Conclusion. In this paper, we present PoseVocab, a novel pose
encoding method for human avatar modeling. We propose joint-
structured pose embeddings to encode the dynamic human appear-
ance under various body poses. Compared with previous methods
that directly map the low-frequency SMPL-derived attributes like
pose vectors [Li et al. 2022a; Zheng et al. 2022] to the high-frequency
dynamic human appearances, our approach promotes the network
to discover the optimal pose embeddings to encode the high-fidelity
varying details of the avatar. Furthermore, we introduce feature
lines to improve the representation ability of the pose embedding
while maintaining memory efficiency. Last but not least, a hierarchi-
cal query strategy in PoseVocab is designed for disentangling the
control of different joints on the dynamic human appearance and
for generalized and temporally consistent avatar animation. Over-
all, our approach outperforms other state-of-the-art methods both
qualitatively and quantitatively, and we believe that the proposed
new pose encoding method will make progress towards realistic
animatable human avatar modeling.

Limitation. So far, our method cannot handle the character wear-
ing loose clothes like long dresses, because our avatar represen-
tation relies on the inverse skinning by SMPL skeletons. But the
proposed PoseVocab is a general pose encoding method, and we
believe that it can be applied to other avatar representations, e.g,
DDC [Habermann et al. 2021] and SLRF [Zheng et al. 2022], to
model the character wearing loose clothes.

Li, Z. et al

Social Impact. Our method can automatically create animatable
human avatars, and may be combined with Deep Fakes to generate
fake videos. This should be addressed carefully before deploying
the technology.

ACKNOWLEDGMENTS

This paper is supported by National Key R&D Program of China
(2022YFF0902200), the NSFC project No.62125107.

In this supplementary material, we will introduce the implemen-
tation, training, and animation details.

A IMPLEMENTATION DETAILS

We implement the network by PyTorch [Paszke et al. 2019]. To
improve the spatial continuity, we construct PoseVocab on multiple
spatial scales like Instant-NGP [Miller et al. 2022], and concate-
nate the embeddings queried on each scale together. The hyper-
parameters of PoseVocab are listed in Tab. 4. The NeRF [Mildenhall
et al. 2020] module is instantiated as an MLP. The whole network
architecture is illustrated in Fig. 7. The frequency of positional en-
coding [Tancik et al. 2020] for the position and view direction is 6
and 3, respectively. The pose vector is represented as quaternions of
21 SMPL joints except for the root and hand joints, since the global
rotation should not affect the avatar appearance in most situations
and we do not focus on modeling the hands. The pose vector is also
concatenated with queried embeddings and fed into the MLP.

B TRAINING DETAILS

We train the network using the Adam [Kingma and Ba 2015] op-
timizer with a batch size of 1 for 50 epochs. The initial learning
rate is 5 x 1074 and decays by multiplying 0.8 every 100K itera-
tions. The training procedure takes about 1.5 ~ 2 days on one RTX
3090 card. The training procedure contains three stages. In the first
stage, we set Acolor = 1, Aperceptual = 0, Amask = 1, Aeikonal = 0.1
and Aty = 10 during the first 5 epochs. We randomly sample 1024
rays on the training views and sample 64 points on each ray within
the SMPL bounding box. Under the supervision of the mask and
color losses, a plausible geometry for each training frame can be
learned after 5 epochs. Then we extract 3D meshes using Marching
Cubes [Lorensen and Cline 1987] for all the training frames by
querying the SDF value of each voxel in a coarse 3D volume that
contains the posed character, and then render depth maps to all the
training views. In the following training procedure, we only sample
32 points within 5 cm near the surface based on the rendered depth
map. The depth-guided sampling strategy encourages the network
to focus on modeling the dynamic appearance of valid regions. In
the second stage, we disable the Eikonal loss for faster training from
the 5th to the 30th epoch. In the third stage, we sample patches
with a resolution of 64 X 64 on the training view, and enable the
perceptual loss with Aperceptual Set to 0.1 until convergence at the
50th epoch.

C ANIMATION DETAILS

Given a testing pose from the testing chunk or another dataset,
we first obtain the SMPL model and allocate a sparse volume with
a resolution of 128 x 128 x 128 that contains the posed SMPL.
Then we predict SDF values of voxels near the SMPL surface to
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Table 4: Hyper-parameters of PoseVocab module. We imple-
ment the PoseVocab module on 4 multiple spatial scales, and
report its hyper-parameters on each scale, respectively.

Parameter Value
M (Number of Key Rotations) (256, 256, 256, 256)
Ry, Ry, R, in Eq. 3 (Spatial Resolution) (256, 128, 32, 8)

D in Eq. 3 (Feature Channels) (4,4, 4,4)
K in Eq. 5 (KNN Number) (8, 8, 8, 8)
{vc Canonical Position s SDF

10 Pose Vector (Quaternions) ¢ Color
e Queried Pose Embeddings d View Direction

PoseVocab

Figure 7: Network architecture.

extract the geometric avatar using Marching Cubes [Lorensen and
Cline 1987]. With the geometric model on hand, we can render
it to the camera view to obtain a depth map. In the next volume
rendering, we only need to evaluate the colors of pixels inside the
body mask on the depth map. Besides, we can sample points near
the geometric surface based on the depth map in volume rendering
for clearer texture. But the depth may be inaccurate on boundaries
of self-occluded regions, producing background colors (e.g., black
or white). So we reevaluate these pixels by sampling points within
the balls generated by SMPL vertices like [Liu et al. 2021]. Such a
rendering strategy improves the inference speed so that it can take
about 3 secs to render the neural avatar at a resolution of 512 x 512.
In sequential animation, a sliding window of length 5 is introduced
to jointly consider embeddings of adjacent frames for more stable
temporal consistency.

D GEOMETRIC RESULTS

Benefiting from SDF-based geometric representation [Yariv et al.
2021] and the effectiveness of PoseVocab, our method can also
produce detailed geometric avatars as shown in Fig. 8. As mentioned
in Sec. B and Sec. C, the geometry serves as a prior to sample points
near the surface in volume rendering.
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Figure 10: Qualitative comparison against Ani-NeRF [Peng
et al. 2021a] under both training (left) and testing (right)
poses. (a)(d) Ground truth, (b)(e) our results, (c)(f) results of
Ani-NeRF.

Figure 11: Qualitative comparison against Neural Actor [Liu
etal. 2021] on novel pose synthesis. (a)(d) Ground truth, (b)(e)
Our results, (c)(f) results of Neural Actor.
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Figure 12: Qualitative comparison against SLRF [Zheng et al.
2022], TAVA [Li et al. 2022a] and ARAH [Wang et al. 2022] on
DeepCap and THuman4.0 datasets. We show ground-truth
images and animated avatars by PoseVocab (our method),
SLRF, TAVA and ARAH under both training and novel poses,

respectively.
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Figure 13: Evaluation on pose generalization. We compare
our method with the baseline method that replaces PoseVo-
cab with MLPs under novel testing poses. The testing poses
are from the testing chunk and AIST++ dataset [Li et al. 2021]
that contains lots of fancy poses. The closest training image
is selected in the training dataset by pose similarity and view
similarity. The pose similarity is computed as a face-area-
weighted average distance (unit: cm) between SMPL vertices
driven by the testing and training poses.
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