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Abstract: Latest advances in hardware technology and state of the art of mobile robot and 

artificial intelligence research can be employed to develop autonomous and distributed 

monitoring systems. And mobile service robot requires the perception of its present position to 

coexist with humans and support humans effectively in populated environments. To realize 

these abilities, robot needs to keep track of relevant changes in the environment. This paper 

proposes a localization of mobile robot using the images by distributed intelligent networked 

devices (DINDs) in intelligent space (ISpace) is used in order to achieve these goals. This 

scheme combines data from the observed position using dead-reckoning sensors and the 

estimated position using images of moving object, such as those of a walking human, used to 

determine the moving location of a mobile robot. The moving object is assumed to be a point-

object and projected onto an image plane to form a geometrical constraint equation that 

provides position data of the object based on the kinematics of the intelligent space. Using the a 

priori known path of a moving object and a perspective camera model, the geometric constraint 

equations that represent the relation between image frame coordinates of a moving object and 

the estimated position of the robot are derived. The proposed method utilizes the error between 

the observed and estimated image coordinates to localize the mobile robot, and the Kalman 

filtering scheme is used to estimate the location of moving robot. The proposed approach is 

applied for a mobile robot in ISpace to show the reduction of uncertainty in the determining of 

the location of the mobile robot. Its performance is verified by computer simulation and 

experiment. 
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1. INTRODUCTION 
 

This document is a during the past two decades, 

researchers from the field of mobile robotics have 

dealt with different path planning methods. In most 

cases, the goal of the methods is to determine 

collision-free paths that will meet the initial and final 

configurations to accomplish a mission. Some 

researchers have proposed methods in where the 

precise configuration of the robot is known at each 

instant during the planning and navigation stages [1]. 

However, this is not always possible. It is essential to 

deal with uncertainty in the planning stage when the 

values of position errors approach the allowed 

thresholds for the mission. Plans based on geometrical 

models, assuming null uncertainty, are clearly 

insufficient when the mobile robot has to coexist with 

humans or in other types of difficult situations. Thus, 

the use of planners, which does not explicitly deal 

with uncertainty, is limited to simple situations where 

the errors are less than the allowed thresholds to 

accomplish the mission [2]. Generally, the basic 

requirements for the autonomous navigation of a 

mobile robot are environmental recognition, path 

planning, driving control, and location estimation/ 

correction capabilities [6,7]. The location estimation 

and correction capabilities are practically 

indispensable for the autonomous mobile robot to 

execute the given tasks efficiently. There are several 

factors involved in obtaining accurate location 

information while the mobile robot is moving [16]. To 

obtain reliable and precise location data, sensor fusion 

techniques [8,20] have also been developed. When a 

CCD camera is utilized under good illumination 
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conditions, certain patterns or shapes of objects also 

enable effective determination of the location [11,23]. 

Similarly, when a mobile robot is moving in a 

building, the walls, edges, and doors can be utilized 

for position estimation [3,4]. Most researches [22-24] 

focus on the indoor navigation of a mobile robot in a 

well-structured environment. In other words, beacons, 

doors, and corridor edges are utilized to estimate the 

current location of the mobile robot. However, in 

cases wherein a mobile robot is navigating under a 

deep sea or in a forest [17], there are no landmarks 

that can be utilized to determine the location.  

This paper considers the situations in which a 

mobile robot and a walking human coexist in a 

structured intelligent environment, such as an 

assembly line in a factory. In these cases, one cannot 

utilize any landmarks or special features known a 

priori [14,19] to localize the mobile robot. The only 

data that can be utilized for the localization is 

information on the human captured by a CCD camera 

attached to the top of the mobile robot. An intelligent 

environment is used to solve these problems, and a 

new scheme for the mobile robot localization using 

information about the moving object has been 

developed. This situation may be considered to be the 

opposite of tracking an unknown moving object using 

a camera- equipped navigating robot. The location of 

the robot is precisely calibrated and stored at the times. 

The tracking problem has been already tackled in 

many researches studies [13,21]. 

In this research, the data obtained from the dead 

reckoning sensors are used to determine the initial 

location of the mobile robot, and it is corrected 

through the position estimation procedure using the 

information on the moving object/walking human. In 

the quantitative analysis of this approach, the position 

uncertainty of the mobile robot [15,18] is represented 

by an uncertainty ellipsoid that quantitatively shows 

the directional uncertainty. To reduce the size of the 

uncertainty ellipsoid, the trajectory of the moving 

object is transformed to the image frame and 

represented as a geometrical constraint equation, 

which is used for the Kalman filtering process [9,10] 

that estimates the position of the mobile robot. A 

mobile robot interacts with multiple intelligent 

sensors, which are distributed in the environment. The 

distributed sensors recognize the mobile robot and the 

moving object/walking human, and they issue control 

commands to the mobile robot. The mobile robot 

receives the necessary support for localization control 

from the environmental sensors. We aim to perform 

the localization of a mobile robot which is simple in 

structure, without laying any burden on the human 

who is in its vicinity. We propose intelligent space 

(ISpace) as an environment with several intelligent 

sensors, and we are building an environment wherein 

humans and mobile robots can coexist. In this 

research, the mobile robot is one of the physical 

agents for human support in the ISpace [25,26]. 

This paper is organized as follows. In Section 2, the 

concepts of ISpace and robot localization in intelligent 

space are explained. Section 3 describes the driving 

model of a mobile robot and the position estimation 

uncertainty. In Section 4, the image transformation 

relation, the image projection of the human-walking 

trajectory, and the position correction technique using 

the Kalman filter are described. Section 5 explains the 

proposed control method as applied to the ISpace. 

Simulations and experiments of robot localization are 

performed and the effect of the proposed method is 

verified. Finally, the conclusions and directions for 

future work are described in Section 6. 

 

2. ROBOT LOCALIZATION IN ISPACE 

 

2.1. Structure of ISpace 

As shown in Fig. 1, ISpace [25] is a space 

throughout which several intelligent devices are 

distributed. These intelligent devices have sensing, 

processing, and networking functions, and they are 

termed distributed intelligent networked devices 

(DINDs). These devices observe the positions and 

behavior of both humans and robots that coexist in the 

ISpace. The information acquired by each DIND is 

shared with the other DINDs through the network 

communication system. Based on the accumulated 

information, the environment as a system is capable of 

understanding the actions of humans. In order to 

support humans, the environment/system utilizes 

machines including computers and robots. 

 

2.2. Multi-camera ISpace system 

In the ISpace, the CCD camera is adopted as the 

sensor for the DINDs, and moving objects, such as 

walking humans, and mobile robots, are tracked. The 

use of CCD cameras offers two advantages: the 
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Fig. 1. Structure of the intelligent environment

obtained by distributed cameras. 
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position measurement of the targets is obtained using 

a non-contact method, and the human need not be 

equipped with any special devices for the DINDs to 

be able to measure his position. A laboratory, 

approximately 7m in both width and depth, is used as 

the ISpace and experiments were performed in it. The 

ISpace has a mobile robot as a human-following agent, 

six DINDs that can obtain information on the 

environment, and a projector and screen that provide 

the human with necessary information. Each module 

is connected through the network communication 

system. Three DINDs are used to recognize the 

mobile robot and generate the control commands. The 

other three DINDs are used to recognize the position 

of the human. The DINDs are placed as shown in Fig. 1. 

Fig. 2 is an image of the actual ISpace. The 

placement of the three DINDs for human recognition 

is optimized in order to expand the viewable area of 

the cameras and recognize the head and hands of the 

human over a wide area [12]. On the other hand, the 

placement of the DINDs for the mobile robot 

recognition has to be determined by trial and error. In 

order to achieve a human-following system and 

reliable mobile robot control, it is desirable that the 

DINDs for the mobile robot recognize the entire area 

covered by the three DINDs associated with human 

recognition. Thus, the three DINDs for the mobile 

robot are placed such that the area for human 

recognition is completely covered. Information on the 

walking human is extracted by background 

subtraction and by detecting the skin color of the face 

and hands on captured images.  

As shown in Fig. 3, a mobile robot is connected to 

the DIND network via wireless LAN, and it shares the 

resources of the DINDs. In order to recognize the 

position of the robot, one-color panels are installed 

around the mobile robot. The pattern of the color 

panel is recognized by a DIND, and the posture and 

position of the robot are estimated by the kinematics 

of the robot projected onto an image plane. Since the 

height of the mobile robot is already known, the 

position of the mobile robot is reconstructed from a 

single camera image. 

 

2.3. Robot control by DINDs 

The human-following module of a DIND is realized 

by software configuration [25]. The network of six 

DINDs, which consist of three DINDs for the mobile 

robot and three DINDs for the human, is used in the 

experimental environment. Since each DIND is 

capable of covering limited area, the DINDs must 

share the information they acquire in order to realize 

human following across the entire experimental 

environment. 

In this environment, the DINDs are required to 

cooperate with each other. Effective communication 

and role assignment are essential for the cooperation 

of the DINDs. The dominant DIND for the robot is 

defined as the one that possesses control authority 

over a robot. Each DIND compares its reliability rank 

based on the measurement error and other factors. 

When a robot moves from one area to another, the 

dominant DIND for the robot needs to be switched 

automatically to the DIND that has a higher reliability 

rank. This is termed handing over [26] the control 

authority. The dominant DIND possesses the control 

authority of the robot, and only one dominant DIND 

exists for a given robot at any given time instant. The 
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Fig. 3. Mobile robot and network system in the ISpace.
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human-following module of a DIND is realized with 

the software configuration shown in Fig. 4. 

 

2.4. Basic concept of robot localization in ISpace 

The basic concepts for the robot localization in 

ISpace are described in this subsection. A new scheme 

is proposed for a mobile robot to estimate and change 

its position for following human using the human 

images obtained by the cameras in ISpace. The 

position of a walking human and a mobile robot were 

estimated using the kinematics of the camera adopted 

as the sensor in ISpace and the images of the mobile 

robot assuming that it is point object and the size of 

point is set to 30cm x 100cm, respectively.  

In order to plan the uncertainty reduction for the 

robot to estimate and follow the walking human, the 

linear and angular velocities of the walking human 

were estimated for the human-following robot to 

relocate using the trajectory of the human. A state 

estimator was designed using a Kalman filter to 

overcome the uncertainties in the image data caused 

by the point-object assumption and physical noises. 

Based on the motion information of the walking 

human, the human-following robot was controlled to 

improve its own position estimation accuracy by 

observing the walking human. 

 

3. POSITION UNCERTAINTY MODELING 

 

3.1. First part 

The initial position of a mobile robot can be 

specified precisely. However, measurement error and 

slippage during movement may lead to a large 

position estimation uncertainty. This uncertainty 

increases with driving distance, and eventually, the 

location of the mobile robot may be lost. 

The robot’s position is represented by the vector of 

its spatial variables x(k) as a point in the Cartesian 

plane, with xr(k) and yr(k) as the coordinates and an 

orientation of ( )r kθ , [ , , ]Tr r rx y θ=x . The simplified 

kinematic model proposed in [15] describes how the 

robot’s position changes with time in relation to an 

initial position and in response to a control input u(k) 

formed by a translation T(k) followed by a rotation 

( )r kθ : ( )  [ ( ),  ( )]Trk T k kθ=u . The state for a given 

instant is obtained from the state transition function 

( ( ),  ( ))f k kx u , represented in (1) as follows: 

( 1)  ( ( ),  ( )) ( )

( )  ( )cos( ( ))

( )  ( )sin( ( ))  ( )

( )  ( )

r r

r r

r

k f k k k

x k T k k

y k T k k k

k k

θ
θ

θ θ

+ = +

+⎡ ⎤
⎢ ⎥= + +⎢ ⎥
⎢ ⎥+ Δ⎣ ⎦

x x u v

v ,
 (1) 

where ( ( ), ( ))f k kx u  is a non-linear state transition 

function, ( )kv  is a noise source assumed to be zero-

mean Gaussian with covariance ( )kQ → (0,  ( ))N Q k , 

and u(k) is the control input. The position uncertainty 

of the robot is modeled by means of a Gaussian 

distribution of probability centered in the vehicle 

position at a given moment. (1) to obtain the mean 

vector estimation in the k + 1 position. Next, tt is 

necessary to estimate the covariance matrix in the 

same position. The first two moments that follow the 

spatial position relationship, namely the mean and the 

covariance of the distribution function, must be 

determined. The covariance matrix related to the 

prediction in the case of non-linear spatial relationship 

is obtained from the Taylor series expansion. 

Therefore, the estimated position of a mobile robot 

and ˆ( | ) k kx covariance matrix equation are 

represented in (2) and (3), respectively [9], as 

ˆ ˆ( 1) ( ( ), ( ))k f k k+ =x x u ,                    (2) 

( 1| )  ( | ) ( )T
k k k k k+ = ∇ ∇ +P f P f Q ,         (3) 

where ∇f  is the Jacobian of the state transition 

function, obtained as the linearizing result around the 

estimated state. The Jacobian of the state transition 

function is described in (4) as follows: 

ˆ1 0 ( )sin( ( | ))

ˆf = 0 1 ( )cos( ( | ))

0 0 1

r

r

T k k k

T k k k

θ

θ

⎡ ⎤
⎢ ⎥

∇ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.            (4) 

In order to estimate the vehicle position, odometry 

is insufficient. The ˆ( | )x k k  covariance matrix 

equation represented in (3) tends to grow continuously 

(Fig. 6). Using this covariance matrix, the position 

estimation uncertainty can be represented as a hyper-

ellipsoid. In other words, the uncertainty hyper-

ellipsoid can be defined [6] based on the singular 

value decomposition (SVD) of the covariance matrix. 

This SVD provides the principal axis by the left 

singular vectors and the length along the axis by the 
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Fig. 5. Geometrical model of a mobile robot. 
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corresponding singular values. As an example, Fig. 6 

illustrates the effectiveness of the uncertainty ellipsoid. 

It indicates that the uncertainty ellipsoid becomes 

larger with the movement of a mobile robot and the 

geometrical shape of the ellipsoid directly represents 

the position estimation uncertainty along a given axis. 

 

4. FOSITION ESTIMATION BASED 

ON DINDS 

 

4.1. Image projection of a walking human 

During navigation, a mobile robot may need to 

relocate. When the image of a walking human is 

captured by the CCD cameras of DINDs and the 

motion information on the walking human is available 

to the mobile robot, it may halt at its current position 

to improve its own position estimation accuracy by 

observing the walking human. Using the current 

position estimation of the mobile robot, the given 

object trajectory can be represented as a linear 

equation in the image frame and geometric constraint 

equations can be derived through coordinate 

transformation.  

The derivation procedure of the geometric 

constraint equations is illustrated with an example in 

Fig. 7. The conventional pin-hole model [7] is utilized 

to form a geometrical model of the camera. In Fig. 7, 

( W W Wx y z ) and (u, v) represent the reference 

coordinates and the image coordinates, respectively. 

The trajectory of the walking human on the W Wx y−  

plane of the reference coordinates, without loss of 

generality, is assumed to be as follows 

( , ) 0W Wf x y = ,                          (5) 

0( )Wz z h= ≠  is also assumed to be constant and not 

equal to the camera height, h. 

The walking human trajectory in the reference 

coordinates can then be transformed into the robot 

coordinates, as follows: 

ˆ ˆcos sin 0 ˆ

ˆ ˆ ˆsin cos 0

0 0 1

r rR W r

R r r W r

R W

x x x

y y y

z z

θ θ

θ θ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

,         (6) 

where ˆ ˆ ˆ[ ]T

r r rx y z  represents the current estimated 

position of the mobile robot and [ ]TW W Wx y z  

represents the position of the walking human. This 

point ([ ]TR R Rx y z ) is mapped once more onto the 

image frame using perspective projection, as follows 

[7,11]: 

R

R

R

R

y

xu

v z h

x

λ

λ

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥−⎣ ⎦
⎢ ⎥
⎣ ⎦

,                        (7) 

where λ  represents the camera focal length and 

[ ]Tz u v=  is the position of the walking human on 

the image frame. Based on (6) and (7), the geometric 

constraint equation can be generally represented as 

ˆ( , ) 0f z x = ,                             (8) 

where ˆ ˆ ˆ ˆ[ , , ]T

r r r
x x y z=  represents the current 

estimated position of the mobile robot. 
 

4.2. Position correction 

There is some discrepancy between the calculated 

position of the walking human in the image frame, 

which is based on the estimated robot position, and 

the actual value. Utilizing this error, the real position 

of the robot can be corrected recursively. To 

overcome vague input information, i.e., the noise of 
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the human position in the image frame and 

uncertainty components of the position estimation of 

the robot, the Kalman filtering technique is adopted to 

develop a robust observer [9,10]. The geometric 

constraint equations between the human image 

coordinates and the robot position are approximated to 

a linear equation, and the Kalman filtering technique 

is applied to estimate the position of moving robot. It 

is assumed that the i
th

 measured vector, i.e., the 

position of the walking human, ˆiz , includes noise 

with the following average and variance: 

ˆi i iz z ν= + ,                             (9) 

where [ ] 0iE ν =  and [ ]T
i i iE Sν ν = . 

Using the Taylor series expansion and ignoring the 

higher order nonlinear terms at the measured vector, 

ˆiz , and the estimated position of the mobile 

robot, 1ˆix − , the nonlinear constraint equations are 

approximated to linear equation as follow:  

1

1 1

ˆ ˆˆ

ˆ( , ) 0

ˆ ˆ ˆˆ ˆ( , ) ( ) ( ),
ˆ

i x

i

i i i i i

z z x x

f z x

f f
f z x z z x x

z x
−

− −
= =

=

∂ ∂
≈ + − + −

∂ ∂
 (10) 

where 

iz z

f

z ∧
=

∂
∂

 and 

1ˆ ˆ
ˆ

ix x

f

x
−=

∂
∂

represent the estimated 

value of 
f

z

∂
∂

and 
ˆ

f

x

∂
∂

 at ˆiz  and 1ˆix − , respectively. 

In a linear system, (10) can be rearranged as the 

following matrix equation [8]: 

ˆi i iy M x u= + ,                          (11) 

where 

1

1 1

ˆ ˆ

ˆ ˆˆ( , )
ˆ

i

i i i i

x x

f
y f z x x

x
−

− −
=

∂
= − +

∂
, 

1ˆ ˆ
ˆ

i

i

x x

f
M

x
−=

∂
=
∂

, 

and 

ˆ

ˆ( )

i

i i i

z z

f
u z z

z =

∂
= −
∂

. 

In this equation, yi is the new measured vector, Mi 

linearly combines the measured vector and the robot 

position, x̂ , and iu  is the error in linearization of 

the measured vector with the following average and 

variance values [6]: 

[ ] 0iE u = ,                             (12) 

ˆ ˆ
[ ]

T

T

i i i i

f f
E u u W S

z z

∂ ∂
= =

∂ ∂
.               (13) 

Since Mi and yi are a priori given values, if the 

average and variance of iu  are known, we can obtain 

the optimal estimated value of x̂  with the new 

variance. The Kalman filter provides the estimated 

value, x̂ , which minimizes the expected squared 

error norm, ˆ ˆ[( ) ( )]T
E x x x x− − , as the linear 

combination of the measured vectors, {yi}, as follows: 

)ˆ(ˆˆ
11 −− −+= iiiiii xMyKxx ,             (14) 

1
1 1( )T T

i i i i i i iK P M M P M W
−

− −= + ,           (15) 

1( )i i i iP I K M P−= − ,                     (16) 

where Ki represents the Kalman gain, Pi is the zero-

mean-variance matrix of the estimated error by the i
th

 

measured vector, and ˆix  is the estimated robot 

position by the i
th

 measured vector.  

The initial robot position estimation and 

variance, 0x̂  and 0P , can be obtained using the 

mobile robot driving model. Using n image frames 

from the image coordinates of the moving object, the 

final robot position is recursively estimated as ˆnx , 

with a variance of nP . 

 

4.3. State estimation of moving objects based on a 

Kalman filter 

Input data such as image information include 

uncertainties and noises generated during the data 

capturing and processing steps. And the state 

transition of a moving object also includes irregular 

components. Therefore as a robust state estimator 

against these irregularities, a Kalman filter was 

adopted to form a state observer [9,10]. The Kalman 

filter minimizes the estimation error by modifying the 

state transition model based on the error between the 

estimated vectors and the measured vectors, with an 

appropriate filer gain. The state vector which consists 

of position on the x-y plane, linear/angular velocities, 

and linear/angular accelerations can be estimated 

using the measured vectors representing the position 

of a moving object on the image plane.  

The covariance matrix of estimated error must be 

calculated to determine the filter gain. The projected 

estimate of the covariance matrix of estimated error is 

represented as 

, 1 1 , 1 1
T

k k k k k k kP P Q− − − −′ = Φ Φ + ,             (17) 

where kP′  is a zero-mean covariance matrix 

representing the prediction error, kΦ  represents 

system noise, 1kP −  is an error covariance matrix for 

the previous step, and 1kQ −  represents other 

measurement and computational errors . 

The optimal filter gain Kk that minimizes the errors 

associated with the updated estimate is 

1[ ]T T
k k k k k k kK P H H P H R

−′ ′= + ,            (18) 
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where Hk is the observation matrix and Rk is the zero-

mean covariance matrix of the measurement noise. 

The estimate of the state vector ˆkx  from the 

measurement Zk is expressed as 

, 1 1 , 1 1
ˆ ˆ ˆ[ ]k k k k k k k k k kx x K Z H x− − − −=Φ + − Φ .     (19) 

Therefore, ˆkx  is updated based on the new values 

provided by Zk. The error covariance matrix that will 

be used for the prediction, Pk, can be updated as 

follows; 

k k k k kP P K H P′ ′= − .                      (20) 

After the current time is updated to 1k + , a new 

estimation can be provided using (17) to (20). Fig. 

8(a) represents a real and an estimated trajectory of a 

moving object, while Fig. 8(b) represents the 

estimation error when the trajectory was estimated by 

the Kalman filter. To incorporate the measurement 

noise which is empirically assumed to be zero-mean, 

Gaussian random noise with the variance of 2, the 
linear and angular velocities of the object were set as 

follows:  

k

16*(sin(0.03*k) 1)    [ cm/sec],

 0.65*cos(0.02*k)     [ rad/sec],

k vv

ω

ξ
ω ξ

= + +

= +
   (21) 

where the linear and angular velocities ( vξ , wξ ) were 

assumed to include the Gaussian random noise with 

the variance of 3 and 0.1, respectively. 

Fig. 9 shows that the Kalman filter estimation of 

the states under a noisy environment. 

 

5. SIMULATION AND EXPERIMENTS 

 

5.1. Simulations 

Simulations were performed for two different 

patterns of walking human motion: the parabolic 

motion and the sinusoidal motion. To achieve realistic 

conditions, the camera parameters listed in Table 1 

were utilized: 

The variances of the measured vectors were 

independent of each other, and the empirical variances 

were obtained as follows: 

2

2

0.005 0

0 0.005
iS

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

.                     (22) 

 

Table 1. Parameters of the camera system. 

Parameter Value 

Camera height(h) 220cm 

Focal length ( )λ  1.25cm 

CCD size ( ) ( )H V×  0.66 cm 0.48 cm×  

 

(a) Trajectory of moving object. 
 

(b) Estimation error along the trajectory. 
 

Fig. 8. State estimations using a Kalman filter. 

 

Fig. 9. State estimations, kθ , kν , and kω , using a

Kalman filter. 
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parameters used for the experiments were the same as 

those used for the simulations. When the robot arrived 

at the goal position, it had captured 20 frames of 

images of the walking human at every 100 ms, and it 

utilized this information to estimate and correct its 

own position. The real position of the mobile robot 

was [33 cm 208 cm 90 ]T° . The estimated position 

of the mobile robot and the variance of the estimated 

error are as follows: 

0ˆ [28cm 195cm 87.9 ]Tx = °  and 

0

49.951 1.021 0.154

1.021 0.183 0.003

0.154 0.003 0.001

P

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

After the 100 frames of observation, the estimated 

position of the mobile robot was approximately equal 

to the real position and the variance of the estimated 

error greatly reduced, as shown below: 

100ˆ [29.4cm 196.4cm 89.7 ]Tx = °  and 

100

8.0406 0.1784 0.0252

0.1784 0.1660 0.0006

0.0252 0.0006 0.0001

P

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

The robot position estimation uncertainty was 

represented as an uncertainty ellipsoid. It is 

rem`arkable that the size of the ellipsoid shrunk only 

along the normal direction of the walking human, as 

shown in Fig. 17(a). Fig. 17(b) shows the position 

errors of the mobile robot. As expected, it is evident 

that the position error reduces significantly as the 

robot moves, and it depended on the observed motion. 

The overall robot posture uncertainty for each cycle 

decreases over iterations, indicating that the 

estimation uncertainty reduces by observing the scene 

repeatedly with DINDs. Hence, a more accurate robot 

posture is obtained. Due to the above mentioned 

reason, the robot orientation decreases slightly when 

the walking motion does not include an acute angle 

turn. 

These experiment results are obtained from 

experiments performed in the interior of the 7 m x 7 m 

space. Evidently, in the experiment, the experimental 

error range appears low since the mobile robot and 

walking human were assumed to be point objects, and 

WXW
Y

 

Goal

Walking

human path

wX

wY

)90,cm0,cm0( °

0(30cm, 400cm, 90 )

0(80cm, 250cm, 0 )

(30cm, 200cm)

 
 

Fig. 16. Experimental environment. 

 

Initial Uncertainty Ellipsoid

Final Uncertainty Ellipsoid

(a) Robot position estimation uncertainty. 

 

(b) Position errors. 
 

Fig. 17. Improvement of position estimation uncertainty.
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the size of point was set to 30 cm x 100 cm. Fig. 18 

presents additional experimental results when the 

walking speed is the same as in case 1. For the 

comparison purposes, the Kalman filter was designed 

based on case 1, and its outputs are plotted in the 

figure. The walking human moved along a parabolic 

trajectory in the x-y axis, and the motion models had 

the same zero-mean variance. Fig. 18(a) gives the 

experimental result when the average walking speed is 

100 cm/s and the turns of the human are included. 

When the walking human accelerates, the DIND4, 

DIND5, and DIND6 are used to track the accurate 

position and direction of the human.  

The response of the position is reasonably smooth, 

whereas the orientation θ  continues to be very noisy 

during sampling step 30. This is due to distortions of 

the images caused by the human’s motion and 

walking speed. During the sampling step of 90 ms, the 

error of position is at most 100 mm, and the error of 

orientation is up to 5 degrees. Fig. 18(b) shows the 

data plot of the robot localization error according to 

the motion information of walking human. Compared 

with Fig. 18(a), the response of the position is 

reasonably smooth. Moreover, when the average 

moving speed of mobile robot is 100 cm/s, the 

localization accuracy is reasonably high and the robot 

is able to quickly determine its absolute position in the 

environment.  

In future research efforts, it is necessary to survey 

the influence of the mobile robot that maintains a 

flexible distance between the robot and the human. In 

the ISpace, since a human-walking trajectory is newly 

generated at every step, it can be considered to be a 

function of time. Therefore, the application of 

tracking control is effective. On the other hand, 

although the target trajectory of a mobile robot is 

continuous and smooth when the usual tracking 

control is used, the actual human-walking trajectory 

that is to be tracked by the robot is generally unstable. 

In such cases, stable human-following behavior may 

not be achieved by the usual tracking control is used. 

 

6. CONCLUSION 

 

In this paper, using the images of a walking human, 

an absolute position estimation method for a human-

following robot in the ISpace was presented. First, the 

position estimation uncertainty of the mobile robot 

was quantitatively represented by the uncertainty 

ellipsoid. The real position of the human was 

transformed to geometric constraint equations in the 

image coordinates for a given robot position. Using 

the linear constraint equations and the Kalman 

filtering technique, the control algorithm was 

proposed for the mobile robot in order to estimate and 

correct its position recursively and enable it to follow 

a walking human whose position was incompletely 

estimated. 

Specifically, the pre-determined path of a walking 

human is projected onto an image frame; then, the 

geometrical constraint equations between the 

coordinates of human’s image and the estimated 

position of the human-following robot are derived. 

Since the location is based on the estimated position 

of the mobile robot, there exists a positional 

discrepancy between the estimated image coordinates 

and the real position of the walking human. Using this 

discrepancy, the position of the mobile robot was 

corrected recursively. Since the image coordinates of 

the human are subjected to noise, the Kalman filtering 

technique was adopted for robust estimation. Next, 

cooperation between the multiple DINDs was 

described. The positions of the human and the mobile 

robot in ISpace were measured by DINDs. To control 

a mobile robot over a wide area, cooperation of the 

DINDs, effective communication, and role assignment 

are required. Finally, simulations and an experiment 

on the human-following control of a mobile robot 

were performed using the proposed control algorithm. 

It was observed that position estimation accuracy 

depends on the path of the walking human. The 
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(a) Position and orientation estimation of a walking 

human. 
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(b) Position and orientation estimation of a mobile 

robot. 
 

Fig. 18. Experimental results obtained by DIND system.
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effectiveness of this algorithm was verified through 

real experiments.  

Future studies will involve improving the 

estimation accuracy for the human-following robot 

and applying this system to complex environments 

where several people, mobile robots, and obstacles 

coexist. Real-time image processing and camera 

calibration are required to improve the estimation 

accuracy of the distance between the human and the 

mobile robot. Since the proposed algorithm absorbs 

the kinematic differences between the humans and 

robots, any type of mobile robot, including legged 

robots, can be used as a human-following robot, 

provided the robot is able to move at the walking 

speed of the human. Moreover, it is necessary to 

examine the influence of the mobile robot that 

maintains a flexible distance between the robot and 

the human, and introduces knowledge of cognitive 

science and social science into the study. 
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