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Abstract

For mobile robots to be successful, they have to navigate
safely in populated and dynamic environments. While recent
research has led to a variety of localization methods that can
track robots well in static environments, we still lack methods
that can robustly localize mobile robots in dynamic environ-
ments, in which people block the robot’s sensors for extensive
periods of time or the position of furniture may change. This
paper proposes extensions to Markov localization algorithms
enabling them to localize mobile robots even in densely pop-
ulated environments. Two different filters for determining the
“believability” of sensor readings are employed. These fil-
ters are designed to detect sensor readings that are corrupted
by humans or unexpected changes in the environment. The
technique was recently implemented and applied as part of an
installation, in which a mobile robot gave interactive tours to
visitors of the “Deutsches Museum Bonn.” Extensive empiri-
cal tests involving datasets recorded during peak traffic hours
in the museum demonstrate that this approach is able to accu-
rately estimate the robot’s position in more than 98% of the
cases even in such highly dynamic environments.

Introduction

To operate autonomously, mobile robots must know where

they are. Mobile robot localization, that is the process of

determining and tracking the position (location) of a mobile

robot relative to its environment, has received considerable

attention over the past few years. Accurate localization is a

key prerequisite for successful navigation in large-scale envi-

ronments, particularly when global models are used, such as

maps, drawings, topological descriptions, and CAD models

(Kortenkamp, Bonasso, & Murphy 1998). As demonstrated

by a recent survey of localization methods (Borenstein, Ev-

erett, & Feng 1996), the number of existing approaches is

diverse. Mobile robot localization techniques can be cate-

gorized at least along the following two dimensions: local

vs. global approaches, and approaches for static vs. dynamic

environments:

1. Local vs. global localization Local approaches to

localization are designed to compensate odometric error

based on sensor data. They usually require that the initial lo-
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cation of the robot is known, and are only capable of track-
ing the location of a robot. The majority of existing localiza-

tion approaches falls into this category. Global approaches

are more general. They can localize a robot globally, that

is, they can determine its location without knowledge of the

initial location and thus can handle the “kidnaped robot prob-

lem” (Engelson 1994). Recently, several researchers pro-

posed a new localization paradigm, called Markov local-
ization, which enables robots to localize themselves under

global uncertainty. Global approaches have two important

advantages over local ones: First, the initial location of the

robot does not have to be specified and, second, they pro-

vide an additional level of robustness, due to their ability to

recover from localization failures.

2. Static vs. dynamic environments A second dimension

along which localization methods can be grouped is con-

cerned with the nature of the environment which they can

master. The majority of approaches can only cope with static
environments, that is, environments where, according to the

robot’s sensors, the only aspect that may change over time

is the robot’s own location. However, these approaches are

typically brittle in environments where the dynamics are per-

ceived through the robot’s sensors. The approach of (King &

Weiman 1990) uses cameras pointed towards the ceiling and

thus cannot perceive most of the changes that occur in typical

office environments. Unfortunately, such an approach is only

applicable if the ceiling contains enough structure for accu-

rate position estimation. Thus, the development of methods

that can localize a robot in dynamic environments is still an

important goal of research on mobile robot navigation.

This paper proposes a localization algorithm that can lo-

calize robots in the most difficult of all situations, namely

localization under global uncertainty and in highly dynamic

environments. The approach is based on Markov localiza-

tion. Like Markov localization, it localizes robots probabilis-
tically, that is, it maintains multiple hypotheses as to where

the robot might be, weighted by a numerical probability fac-

tor. As a consequence, our approach inherits from Markov

localization the ability to localize a robot under global un-

certainty (see (Burgard et al. 1996)). Markov localization

is based on the assumption that the position of the robot is

the only state in the world. Unfortunately, this assumption
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is violated if not all aspects of the environment are covered

by the world model, which is the case for most dynamic en-

vironments. Thus, although Markov localization has been

found to be robust to occasional dynamical effects (such as

people walking by or doors being closed), it typically fails

to localize a robot in densely crowded environments. Unlike

Markov localization, however, our approach actively filters

sensor data to eliminate the damaging effect of sensor data

corrupted by external (unmodeled) dynamics. In this paper,

we propose and compare two such filters, one that filters sen-

sor data based on entropy change, and one that incorporates

additional knowledge concerning the nature of possible cor-

ruptions.

In an experimental study, our extended Markov localiza-

tion is compared to the original Markov localization with-

out filtering. These experiments are conducted using data

gathered during a six-day deployment of our mobile robot

RHINO in the “Deutsches Museum Bonn” shown in Fig-

ure 1(a) (see also (Burgard et al. 1998)). Our comparisons

show that in such situations, conventional Markov localiza-

tion fails to track the robot’s location. Our filter techniques,

in contrast, successfully accommodate the environment’s dy-

namics. Additionally, our approach can reliably recover from

localization errors.

RHINO

(a) (b)

Fig. 1. (a) RHINO surrounded by visitors and (b) a highly

corrupted sensor scan.

The remainder of this paper is organized as follows. After

introducing Markov localization in the following section, we

will describe our extension, followed by experimental com-

parisons and a discussion section.

Markov localization

This section briefly outlines the basic Markov localization

algorithm upon which our approach is based. The key idea

of Markov localization which has recently been applied with

great success at various sites (Nourbakhsh, Powers, & Birch-

field 1995; Simmons & Koenig 1995; Kaelbling, Cassan-

dra, & Kurien 1996; Burgard et al. 1996) is to compute a

probability distribution over all possible locations in the en-

vironment. Let l = hx; y; �i denote a location in the state

space of the robot, where x and y are the robot’s coordi-

nates in a world-centered Cartesian reference frame, and � is

the robot’s orientation. The distribution Bel(l) over all lo-

cations l expresses the robot’s subjective belief for being at

position l. Initially, Bel(l) reflects the initial state of knowl-

edge: if the robot knows its initial position, Bel(l) is cen-

tered on the correct location; if the robot does not know its

initial location, Bel(l) is uniformly distributed to reflect the

global uncertainty of the robot. As the robot operates, Bel(l)
is incrementally refined.

Markov localization applies two different probabilistic

models to update Bel(l), an action model to incorporate

movements of the robot into Bel(l) and a perception model

to update the belief upon sensory input.

Robot motion is modeled by a conditional probability

p(l j l0; a) specifying the probability that a measured move-

ment action a, when executed at l0, carries the robot to l.

Bel(l) is then updated according to the following general

formula coming from the domain of Markov chains (Chung

1960):

Bel(l)  �
X

l0

P (l j l0; a) �Bel(l0) (1)

The term p(l j l0; a) represents a model of the robot’s kine-

matics. In our implementation we assume the errors of the

odometry to be normally distributed.

Sensor readings are integrated according to the well-

known Bayesian update formula. Let s denote a sensor read-

ing and p(s j l) the likelihood of perceiving s given that the

robot is at position l, then Bel(l) is updated according to the

following rule:

Bel(l)  � � p(s j l) Bel(l) (2)

Here � is a normalizer ensuring thatBel(l) sums up to 1 over

all l.

Strictly speaking, both update steps are only applicable

if the problem is Markovian, that is, if past sensor readings

are conditionally independent of future readings given the

location of the robot. The Markov assumption thus assumes

that the world is static. While in practice, the approach has

been applied even in environments that contained people and

hence violate the Markov assumption, the experiments re-

ported here indicate that it does not scale to densely popu-

lated environments.

In this paper we use a fine-grained grid-based represen-

tation of the state space, just like the approach described in

(Burgard et al. 1996). In all our experiments, the resolution

of robot orientation was 2�, and the spatial resolution was

15cm. Different optimization techniques described in (Fox,

Burgard, & Thrun to appear) allow the robot to efficiently

update such large state spaces in real-time, without restrict-

ing the power of the approach in any noticeable way. The

primary advantage of the high resolution are the resulting

accuracy of position estimates and the ability to incorporate

raw data of proximity sensors, which were required in the

specific application domain described below.

Localization in Highly Dynamic Environments

The standard Markov localization approach has been found

to be robust in static environments. However, as argued in



the introduction to this paper (and demonstrated in the results

section), it is prone to fail in densely populated environments

which violate the underlying Markov assumption. In the mu-

seum, where the robot is naturally accompanied by crowds of

people, this assumption is clearly violated. To illustrate this

point, Figure 1(b) shows a typical example situation where

RHINO has been projected into the map at its correct posi-

tion. The lines indicate the current proximity measurements

and the different shading of the measurements indicates the

two classes they belong to: the black values correspond to

static obstacles that are part of the map, whereas others are

caused by humans and thus violate the Markov assumption

(max-range measurements are not shown).

The proximity of people usually increases the robot’s be-

lief of being close to modeled obstacles, which has the ef-

fect that the robot frequently loses track of its position when

relying on all sensor measurements. Approaches for con-

current estimation of the state of the world and of the posi-

tion of the robot as proposed in (Gutmann & Schlegel 1996;

Lu & Milios 1997; Thrun, Fox, & Burgard to appear), un-

fortunately, require too many computational resources to be

applied on-line or even in real-time. Our approach to solve

this problem is to develop filters which select those readings

of a complete scan which with high likelihood are not due

to static obstacles in the map thus making the system more

robust against such kind of noise.

In the following two sections we will describe two dif-

ferent filters aiming at detecting corrupted readings and thus

allowing the robot to keep track of its location even in con-

siderably difficult situations, in which more than 50% of all

readings are misleading. The first filter is a general method

for filtering sensor data in dynamic environments. It selects

only those readings that increase the robot’s certainty, which

is measured by the entropy of the belief Bel(l). The sec-

ond filter is especially designed for proximity sensors, as it

attempts to filter such readings which with high probability

are shorter than expected according to the model of the envi-

ronment and the current belief state Bel(l) of the robot.

Entropy filter

The first filter used in our implementation is called entropy
filter. The entropy H(l) of a distribution over l is defined by

H(l) = �
X

l

Bel(l) logBel(l): (3)

Entropy is a measure of uncertainty: The larger the entropy,

the higher the robot’s uncertainty as to where it is. The en-
tropy filter measures the relative change of entropy upon in-

corporating a sensor reading into the belief Bel(l). More

specifically, let s denote the measurement of a sensor (in our

case a single range measurement). The change of the entropy
of Bel(l) given s is defined as:

�H(l j s) := H(l)�H(l j s): (4)

While a positive change of entropy indicates that after in-

corporating s, the robot is less certain about its position, a

negative change indicates an increase in certainty.

RHINO’s entropy filter uses only such sensor measure-

ments s for which �H(l j s) � 0. Thus, the entropy filter

makes robot perception highly selective, in that it considers

only sensor readings confirming the robot’s current belief.

Novelty filter

While the entropy filter makes no assumptions about the na-

ture of the sensor data and the kind of disturbances to expect

in dynamic environments, the second filter is especially de-

signed for proximity sensors and detects additional obstacles

in the environment. This filter is called novelty filter, since

it selects sensor readings based on the degree of their “nov-

elty.” To be more specific, a measurement s is assumed to

be “novel” to the robot, if it is reflected by an obstacle not

represented in the map. Obviously, for proximity measure-

ments such a case can only be detected if the measurement is

shorter than expected.

The novelty filter removes those proximity measurements

which with probability higher than � (this threshold is set to

0:99 in all experiments) are shorter than expected. Suppose

d1; : : : ; dn is a discrete set of possible distances measured

by a proximity sensor. Let p(dj j l) denote the probability of

measuring distance dj if the sensor detects the next obstacle

in the map. This distribution describes the expected mea-

surement, and a distribution for laser-range finder given the

distance ol to the next obstacle is shown by the dashed line

in Figure 2 (see (Fox, Burgard, & Thrun to appear) for fur-

ther discussion of the proximity sensor models we use). Now

we can derive pn(di j l), namely the probability of di being

shorter than expected, by the following equation (c.f. 2):

pn(di j l) = 1:0�
X

j�i

p(dj j l): (5)

In order to deal with situations in which the position of the

robot is not known with absolute certainty, we average over

all possible locations of the robot to obtain the probability

that di is shorter than expected:

pn(di) =
X

l

pn(di j l)Bel(l): (6)

The selection scheme of the novelty filter is to exclude all

measurements d with pn(d) > �.

The difference between both filters can be characterized as

follows: the entropy filter always tries to confirm the current

belief of the robot (whether this is right or wrong) while the

novelty filter also forces the incorporation of very unlikely

sensor measurements (especially too long readings).

Experimental Results

Localization using the entropy filter was a central component

of the tour-guide robot in the Deutsches Museum Bonn. Ac-

curate position estimation was a crucial component, as many
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of the obstacles were “invisible” to the robot’s sensors (such

as glass cages, metal bars, staircases, and the alike). Only

through accurate localization could collisions with those ob-

stacles be avoided (Fox et al. 1998). Using Markov local-

ization with entropy filters, our approach led only to a single

software-related collision, which involved an “invisible” ob-

stacle and which was caused by a localization error that was

slightly larger than a 30cm safety margin. During six days

of operation, RHINO traversed approximately 18.5 km at an

average speed of approximately 36.6 cm/sec. In this appli-

cation, the entropy filter was used and the novelty filter was

developed post the fact, based on an analysis of the collision

reported above, in an attempt to prevent similar effects in fu-

ture installations.

The evidence from the museum is purely anecdotal. We

also investigated the merit of the approaches proposed here

more systematically, and under even more extreme condi-

tions. In particular, we were interested in the localization re-

sults (1) when the environment is densely populated and (2)

when the robot suffers from extreme dead-reckoning errors.

Datasets

Two datasets were used in our comparison, which both were

recorded in the museum, and which mainly differed by the

amount of disturbances.

1. The first dataset was collected during 2.0 hours of

robot motion, during which the robot traversed as much as

1,000 meters. This data was collected when the museum was

closed, and the robot guided only remote internet-visitors

through the museum. The robot’s top speed was limited to

50cm/sec. Thus, this dataset was “ideal” in that the environ-

ment was only extremely sparsely populated, and the robot

moved slowly.

2. Figure 3 shows the second dataset, which represents

1,540 meters of robot motion through dense crowds over a

period of 4.8 hours. This dataset was collected during peak

traffic hours on the most crowded day during the entire ex-

hibition. When collecting this data, the robot was frequently

faced with situations as illustrated in Figure 1(a) and (b). The

top speed in this dataset was 80cm/sec.

Both datasets consist of logs of odometry and laser-range

finder scans collected while the robot moved through the mu-

seum. Using the time stamps in the logs, all tests have been

conducted in real-time simulation on a SUN-Ultra-Sparc 1

(177-MHz). The first dataset contained more than 32,000,

and the second dataset more than 73,000 laser scans. The

reader may notice that only the obstacles shown in black in

Figure 3 were actually used for localization; the others were

either invisible, or could not be detected reliably.

Figure 4 shows the estimated percentage of corrupted sen-

sor readings over time for both datasets. The dashed line

corresponds to the first dataset while the solid line illustrates

the corruption of the second (longer) dataset. In the second

dataset, more than half of all measurements were corrupted

for extended durations of time. These numbers are estimates

only; they were obtained by analyzing each laser reading as

to whether it could be “explained” by the obstacles repre-

sented in the map.

To evaluate the different localization methods, we gener-

ated two reference paths through nine independent runs for

each filter on the datasets (with small random disturbances)

to determine the location of all sensor scans. Visual inspec-

tion made us believe that the resulting reference locations

were indeed correct and accurate enough. In order to esti-

mate the accuracy of the methods on the second dataset, we

selected 118 representative reference positions, for which we

manually determined the robot’s location as closely as pos-

sible through careful comparison of sensor scans, the robot’s

path, and the environment.

Localization in densely populated environments

In our first series of experiments, we were interested in com-

paring the localization performance of all three approaches

— plain Markov localization, localization with entropy fil-

ters, and localization with novelty filters — under normal

working conditions.

Table 1 summarizes the results obtained for the different

approaches. The first row provides the percentage of failures
(including 95% confidence intervals) for the different filters

on the first dataset. Position estimates were considered as a

“failure,” if the estimated location deviated from the refer-

ence path by more than 45cm. All three approaches worked

nicely for tracking the robot’s position in the empty museum

(first dataset), exhibiting only negligible errors in localiza-



Filter None Entropy Novelty

Tracking Ability

failuresI [%] 1:6 �0:4 0:9 �0:4 0:0 �0:0

failuresII [%] 26:8 �2:4 1:1 �0:3 1:2 �0:7

Accuracy in Dataset II

d [cm] 188:9�26:9 9:2 �0:5 11:4 �3:4

Recovery

trecI [sec] 237 �27 1779 �548 188 �30
trecII [sec] 269 �60 1310 �904 235 �46

Table 1: Experimental results.

tion. The results obtained for the second, more challenging

dataset, however, were quite different. While plain Markov

localization failed in 27% of all cases, both filter techniques

showed a failure rate well below 2% (see second row). The

third row, labeled d, gives the average Euclidean error be-

tween the estimated position and the 118 reference positions.

Here as well, the gap between conventional Markov localiza-

tion and our approaches is large. The reader may notice that

the accuracy of the filter techniques is higher than the grid

resolution of 15cm.

To shed light onto the question as to why Markov local-

ization performs so poorly when compared to the algorithms

proposed in this paper, we analyzed the sensor readings that

each method considered during localization. Figure 5 shows,

for a small fraction of the data, the endpoints of the mea-

surements that were incorporated into the robot’s belief. The

figures illustrate that both approaches proposed here man-

age to focus their attention on the “right” sensor measure-

ments, whereas conventional Markov localization incorpo-

rates massive amounts of corrupted (misleading) measure-

ments. Moreover, both filters show similar behavior. As also

can be seen in Figure 5, both filter-based approaches produce

more accurate results for this example. These results demon-

strate that our approach scales much better to populated and

dynamic environments than Markov localization.

Recovery from extreme localization failures

One of the key advantage of the original Markov localization

technique lies in its ability to recover from extreme local-

ization failures. Re-localization after a failure is often more

difficult than global localization from scratch, since the robot

has to (1) detect that its current belief is wrong and (2) glob-

ally re-localize itself afterwards. Since the filter-based ap-

proaches incorporate sensor data selectively, it is not clear

that they still maintain the ability to recover from global lo-

calization failures.

Our experiments under normal operation conditions did

not lead to such failures for the two methods proposed in this

paper; thus, we manually introduced such failures into the

data to test the robustness of these methods in the extreme.

More specifically, in our experiments we “tele-ported” the

robot at random points in time to other locations. Techni-

cally, this was done by changing the robot’s orientation by

180�90 degree and shifting it by 0�100 cm, without letting

the robot know. These perturbations were introduced ran-

domly, with a probability of 0:005 per meter of robot motion.

Obviously, such incidents make the robot lose its position.

Each method was tested on 23 differently corrupted datasets.

This resulted in an overall of 133 position failures. For each

of these failures we measured the time until the methods re-

localized the robot correctly. Re-localization was assumed

to have succeeded if the distance between the estimated po-

sition and the reference position was smaller than 45cm for

more than 10 seconds.

The two bottom rows in Table 1 summarize the results for

the two datasets. trec represents the average time in seconds

needed to recover from a situation when the position was

lost. Both conventional Markov localization and the exten-

sion using novelty filters are relatively efficient in recovering

from extreme positioning errors, whereas the entropy filter-

based approach is an order of magnitude less efficient. The

results illustrate that despite the fact that sensor readings are

processed selectively, the novelty filter-based approach re-

covers as efficiently from extreme localization errors as the

conventional Markov approach. These findings are specifi-

cally interesting in the light of the fact that in the Deutsches

Museum Bonn the entropy-based filter was used, which, ac-

cording to these results, would have led to poor recovery

from extreme failures.

In summary, these experiments suggest that only the lo-

calization algorithm with the novelty filter is able to localize

robots in densely crowded environments, while retaining the

ability to efficiently recover from extreme localization errors.

Conclusions

This paper proposed an approach for global robot localiza-

tion that has been demonstrated to reliably localize mobile

robots even in extremely challenging dynamic environments.

These environments are characterized by the presence of var-

ious dynamic effects, such as crowds of people that fre-

quently block the robot’s sensors. Our approach is based

on Markov localization, a popular method for mobile robot

localization, which provides the ability to recover from arbi-

trary failures in localization. It extends Markov localization

by an approach that filters sensor data, so that the damaging

effect of corrupted data is reduced. Two specific filters were

proposed and evaluated, one which considers conditional en-

tropy for selecting sensor readings, and one which takes into

account additional knowledge about the effects of possible

environment dynamics.

Our approach was essential for operating a robot success-

fully in a crowded museum. Experimental comparisons us-

ing data collected there demonstrated that the technique pro-

posed in this paper is superior to state-of-the-art localization

methods. These results also demonstrated that by processing

sensor readings selectively, one of the proposed approaches
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Fig. 5. Estimated and real paths of the robot along with endpoints of integrated sensor measurements using (a) no filter, (b) entropy filter,

and (c) novelty filter.

still retains the ability to recover from global failures in lo-

calization. Additional tests in our office environment have

shown that our technique can deal with situations in which

only an outline of the environment is used as a world model

(c.f. 6(a)). In this case sensor readings reflected by the fur-

niture (c.f. 6(b)) are successfully filtered out. We believe

that these results are essential for operating mobile robots

in highly dynamic and densely populated environments.

(a) (b)

Fig. 6. (a) Outline used for localization and (b) environment

including furniture.

How specific are these results to the problem of mobile

robot localization? We believe that the first filter proposed

here, the entropy filter, is applicable to a much wider vari-

ety of state estimation (and learning) problems in dynamic

environments. Loosely speaking, this filter makes robot per-

ception highly selective, in that only sensor readings are con-

sidered that confirm the robot’s current belief. This filter

rests only on two assumptions: First, that the variable to be

estimated is represented probabilistically, and second, that

sensor readings can be sorted into two bins, one which only

contains corrupted readings, and one that contains authentic

(non-corrupted) measurements. A promising application of

this filter is the compensation of hard-ware failures of sen-

sors, a problem addressed in (Murphy & Hershberger 1996).

Future work will aim at analyzing quantitatively, to what ex-

tent this filter can make robots more robust to sensor failures.
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