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Abstract. This paper presents two algorithms, non-linear regression and Kalman

filtering, that fuse heterogeneous data (pseudorange and angle-of-arrival) from

an ultra-wideband positioning system. The performance of both the algorithms is

evaluated using real data from two deployments, for both static and dynamic sce-

narios. We also consider the effectiveness of the proposed algorithms for systems

with reduced infrastructure (lower deployment density), and for lower-complexity

sensing platforms which are only capable of providing either pseudorange or

angle-of-arrival.

1 Introduction

While GPS is a common solution for outdoor localisation, indoor localisation still re-

mains an open research problem. Location systems based on conventional radio tech-

nology have relatively coarse-grained performance indoors because their signals typ-

ically cannot be resolved accurately enough to produce quantities such as a time-of-

arrival or angle-of-arrival. Instead, received signal strength indication (RSSI) or other

metrics are used to estimate location via a technique called fingerprinting, but position-

ing errors of several metres often result because of indoor multipath fading. By con-

trast, ultra-wideband (UWB) systems can employ pulses of extremely short duration to

achieve much finer signal resolution. This resolution also aids in the identification of

erroneous measurements due to multipath [3].

UWB positioning systems can measure time-of-arrival, time-difference-of-arrival

(TDOA) or angle-of-arrival (AOA), or some combination of them. A time-of-arrival

can be converted into a range estimate, but measuring time-of-arrival directly is prob-

lematic, because the synchronisation signal (typically conventional radio) and the UWB

positioning pulse both travel at near the speed of light.1 Pseudoranging (based on TDOA

measurements) is more attractive for some deployments, since there is no need for pre-

cise synchronisation between the transmitting and receiving entities. A network of re-

1 If a wired tether were used to connect the receiver and transmitter, direct range measurement

would be possible after calibration of the timing offset due to the tether. Direct range measure-

ment using round-trip time-of-flight measurements are possible for devices capable of both

transmitting and receiving UWB positioning pulses.



ceivers can be precisely synchronised using stable clocks which are periodically cor-

rected via a wired reference timing signal [14]. Producing AOA estimates requires a

receiver equipped with an antenna array.

One UWB positioning system [2] estimates a tag’s location using pseudorange data,

with a stated accuracy of about 30 cm. Ubisense is a commercial UWB-based location

system which performs measurement of both pseudorange and AOA (azimuth and ele-

vation). The advantage of using AOAs as well as pseudoranges is that location can be

determined with fewer sensors, compared to systems that use just pseudoranging. The

reported accuracy (using their proprietary algorithms) is 15 cm.

This paper examines the results of two positioning algorithms operating on pseu-

dorange and AOA data. The four primary contributions of this paper are as follows:

(I) a brief characterisation of the raw observations reported by two different Ubisense

deployments (Sect. 3); (II) formulation of two algorithms (regression using a non-linear

model, and Kalman filtering; Sect. 4) which fuse the heterogeneous observations (pseu-

dorange, azimuth, elevation) of a UWB system; (III) a characterisation of the static

(Sect. 5) and dynamic (Sect. 6) tracking performance of the two algorithms; and (IV) an

evaluation for reduced sensor densities and for pseduorange-only and AOA-only data,

showing that the algorithms can support minimal deployments and less sophisticated

UWB positioning sensors.

2 Related work

Three approaches are generally used to calculate location using range, pseudorange, or

AOA estimates. The first approach uses a simple geometric model to calculate intersec-

tion of circles (lateration), hyperbolas (hyperbolic localisation) or lines (angulation),

depending on whether range, pseudorange, or AOA data is used. However, such sim-

ple algorithms typically do not take measurement error into account, and cannot make

optimal use of redundant data (such as that gathered from a large number of receivers)

which overspecify the solution.

By contrast, a second approach is to use optimisation algorithms which are specifi-

cally designed to find a solution which minimises the total error between the collected

data and the location estimate (i.e. the residual error). These algorithms traverse the so-

lution space and compute expected measurements for each estimate of the solution. The

gradient method employs derivatives to observe the rate at which an area of the solution

space converges towards an optimum. Some examples in this category are the method

of steepest descent, Newton’s method, and the Levenberg-Marquardt method [8]. Such

methods require model equations which are used to express the measured values (such

as pseudorange, or AOA) in terms of the position being solved. The Bat system [15],

and other ultrasonic positioning systems [1] apply such model-based optimisation algo-

rithms to compute location solutions from ranging data.

Scott et al. utilise a non-linear system of equations to compute location based on

pseudoranges (in this case TDOAs of acoustic signals) [11]. Fontana comments on

the performance differences between the steepest decent search and Davidon-Fletcher-

Powell algorithm for estimating a tag’s location using UWB pseudorange data [2]. It is



worth noting that these error minimisation algorithms do not make use of information

obtained from prior location readings.

Algorithms that utilise a solution state (either current state, or current and past

states) can be grouped under the third approach of state-estimation algorithms. State-

estimation algorithms are used extensively in robot localisation. They operate by iter-

atively combining the previous estimate of the state (e.g. a position and orientation)

with the observed measurements (range, AOA, etc. ). Many state estimation algorithms

exist [4], of which Kalman filtering [16] is most commonly used. The HiBall tracking

system [17] employs a technique called single-constraint-at-a-time (SCAAT) tracking

to model movement, and handles one observation at a time rather than obtaining multi-

ple simultaneous measurements. The Constellation system [5] tracks a mobile unit con-

sisting of a 3D inertial sensor and a number of ultrasonic sensors which report ranges

that are fed into a SCAAT algorithm. The idea is to correct the positional drift in inertial

tracking by incorporating ultrasonic range measurements in an extended Kalman filter.

Smith et al. present a tracking algorithm using extended Kalman filtering of ultrasonic

range data gathered from “Cricket” devices [12]. Smith et al. employ a combination of

least squares minimisation, Kalman filtering and outlier rejection to predict the state of

the Cricket device. While their approach is similar to our proposed Kalman filtering,

we fuse heterogeneous data (pseudoranges and angles-of-arrival), and operate on UWB

rather than ultrasound measurements.

Recent work by Renaudin and Kasser demonstrates the fusion of pseudoranges and

AOAs from a Ubisense system together with inertial sensing data using an extended

Kalman filter [9]. Curiously, their modelling equations are quite different to ours pre-

sented below (Eqns. 1–4) which we have verified through the analysis in this paper.

Moreover, the goal of Renaudin and Kasser is the augmentation of inertial tracking

with UWB sensing. There is no literature which explores in detail the fusion of hetero-

geneous data (pseudorange and AOA) through regression or Kalman filtering for UWB

position sensing.

3 Deployments

In all our experiments, we used hardware and software procured from Ubisense. In

brief, Ubisense hardware is comprised of two entities: a tag2 which emits UWB pulses

when triggered by the system; and receivers (“Ubisensors”) which are typically fixed

at upper extremes of the measurement volume. The receivers are networked via CAT5

cabling and it can be assumed that they are tightly synchronised (once the cable timing

offsets are estimated during calibration). A workstation PC is connected to the same

network, and runs the Ubisense Location Engine (LE), which can be used to configure

and calibrate the system, and which produces location estimates from receiver measure-

ments, using proprietary algorithms.

The calibration of the receivers’ position and orientation are crucial in achieving

accurate location estimates. The coordinates of a receiver’s position can be estimated

2 Ubisense offer both a “slim” and a “compact” tag. We chose to use the compact tag for the

data collection. It is advertised that the tag emits pulses in an omnidirectional fashion, and it

performed as such during our initial, informal experiments.



with sufficient accuracy via manual methods, such as measuring the distance (using a

tape measure or laser rangefinder) from the receiver centre to several known points in

the environment. By comparison, accurate estimation of receiver orientation3 (yaw and

pitch) is more difficult without special equipment, and additionally there can be small

misalignments between the plastic casing of the Ubisensor, and the plane of the UWB

receiver array inside. Thus, calibration of receiver pitch and yaw is normally undertaken

using a series of measurements from a tag; the measurement logging and orientation

estimation process is automated by the Ubisense Location Engine. To calibrate the re-

ceiver pitch and yaw for the systems at our sites, we used two different modes of the

automated process, as described below.

3.1 Twente

Six receivers were deployed covering an area of approximately 15× 9 m (Fig. 1(a)).

Four of the receivers were deployed in an area which was relatively empty except for

some desks along the corners of the room. The remaining two receivers were placed in

the rooms along the other side of the corridor, in typical office spaces containing desks,

metal shelving, and other furniture. We arbitrarily chose twenty-one test points across

the measurement volume. Measurements were taken with tags placed at two different

heights (75 m and 151 cm above the floor). The positions of the sensors and the test

points were surveyed using tape measures.

Automatic calibration. At Twente, we used the “automatic calibration” mode of

the Ubisense LE. In automatic mode, a tag is placed at a position within the measure-

ment volume. The height of the tag must be known and provided to the LE by the user,

but the system then takes measurements to estimate the horizontal position of the tag,

and the pitch and yaw of those receivers which can reliably detect the tag’s pulses. The

tag is then moved to another position and this process is repeated until the pitch and

yaw of all receivers is estimated.

3.2 Lancaster

At another site, a smaller measurement area of 2.75× 2 m was covered with five re-

ceivers. Readings were taken with a stationary compact tag placed at four heights (about

0, 7.5, 75, and 125 cm above the floor), at sixteen points across the measurement area

(Fig. 1(b)). The positions of the sensors and the test points were surveyed using a Leica

Total Station.4

Dual calibration. At Lancaster, the LE “dual calibration” mode was used to esti-

mate receiver pitch and yaw. In this mode, a tag is placed at a known position in the

environment, and its 3D coordinates are provided to the LE. Measurements of the tag’s

pulses are then gathered from two receivers, and the receivers’ pitch and yaw are esti-

mated for one or both of the receivers (selectable by the user). The dual calibration has

3 Ubisense use the aeronautical terms yaw, pitch and roll to describe receiver orientation [13].
4 A Total Station is a professional surveying device which accurately measures the range, az-

imuth, and elevation between itself and a reflector, and which can thus be used to estimate the

3D coordinates of the surveyed point.
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Fig. 1. Plan views of the deployment areas

the potential to more accurately estimate pitch and yaw, since the estimation process

does not depend upon the accuracy of the LE’s result for the tag’s horizontal position

(as it does in the automatic calibration mode). Ubisense recommend that when perform-

ing calibration, the tag be placed as near as possible to the boresight of the receiver(s)

being calibrated. At Lancaster, we ran the dual calibration for all five receivers at each

of twelve known points (whose coordinates had been surveyed using the Total Station)

in or near the test arena. The twelve calibration points (which are different from the test

points used in our evaluation) were each selected for their favourable line-of-sight to

at least four of the five receiver units. To remove poor pitch and yaw estimates (typi-

cally due to poor line-of-sight or environmental reflections), we took the median of the

twelve pitch and yaw values for each receiver as our final calibration.

3.3 Characterisation of raw measurements

Fig. 2 shows the distributions of the receivers’ raw measurements for a static tag placed

at the test points at each site (sixty-four locations at Lancaster, and forty-two locations

at Twente). The accuracy of the Lancaster measurements is significantly better than that

of the Twente measurements (Table 1). The Twente deployment covers a wider area, and

not all receivers have line-of-sight to all the test points. In its measurement and location

estimation process, the LE identifies receivers whose measurements were rejected for

the purposes of computing a location; the rejected measurements typically correspond

to receivers which had poor line-of-sight to the tag (and may therefore represent mul-

tipath readings). We plot the raw accuracy with these rejected measurements excluded.

In total, the discarded measurements represent 25% of the Twente dataset.

Even with the LE-rejected measurements excluded, the data from the Twente de-

ployment is significantly worse in accuracy than the Lancaster data. In general, there
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Fig. 2. Raw measurement error distributions

Pseudorange Azimuth Elevation

Lancaster 6 cm 1.5° 9°

Twente 37 cm 22° 17°

Twente (excl. LE discards) 25 cm 6.8° 8°

Table 1. Seventy-fifth percentile accuracy of the raw measurements of two Ubisense deployments

are three sources of raw measurement error in any location system: (a) sensor inaccu-

racy; (b) calibration inaccuracy (sensor position, pitch and yaw), and (c) inaccuracies

induced by environmental effects (attenuation and/or reflection of the UWB pulse). The

Lancaster deployment was more carefully calibrated—a Total Station survey as opposed

to hand measurements; and dual calibration of all receivers at twelve surveyed points, as

opposed to automatic calibration at several arbitrary points. Moreover, the Lancaster de-

ployment was specifically designed to accurately monitor the measurement volume; all

five receivers have favourable line-of-sight to the majority of the sixty-four test points.

By contrast, the Twente deployment has a much lower receiver density, covering a mea-

surement volume containing office furniture and walls. For these reasons, we would

argue that the inaccuracy of the Twente raw measurements is due to a poorer calibra-

tion (visible in the significant error offsets for some of the Twente receivers), and less

favourable line-of-sight and multipath conditions caused by the environment.

In summary, the two sites represent very different kinds of deployment. The Lan-

caster deployment has been carefully calibrated using specialised equipment and system-

specific knowledge, and has been designed to monitor a small volume using a high sen-

sor density. The Twente installation covers a much larger volume, the environment was

left unmodified (leading to a higher degree of unfavourable pulse propagation for some

tag locations), and sensor position and orientation have been calibrated based on fewer

measurements taken with non-specialised, less accurate equipment.

4 Overview of Algorithms

4.1 Non-linear regression

We formulate a non-linear regression algorithm [8, section 15.5] which utilises mod-

elling equations. The regression is an iterative process which finds an estimate of the



tag’s location. The estimate can be seen as a “best fit” for the pseudoranges and/or

angles-of-arrival and the surveyed receiver locations and orientations, since it minimises

the sum of squares of the residual errors.

Pseudoranges. For a receiver i, the receiver’s pseudorange estimate (based on the mea-

sured relative arrival time of the pulse emitted by the tag) d̃i, the receiver’s 3D location

(xi, yi, zi), and the tag’s location (u, v, w) can be related as follows:

d̃i =
√

(u − xi)2 + (v − yi)2 + (w − zi)2 − dc, (1)

where dc is the distance offset common to all receiver pseudorange measurements, and

arises from the tag’s unknown clock offset from the system. It is assumed that the re-

ceivers are very tightly synchronised, or their reported pseudoranges have been other-

wise appropriately adjusted (using for example deployment-specific calibration infor-

mation) for any time offset which may exist between receiver units.

Angles-of-arrival. The receiver-reported azimuth φi of a tag is related to the tag’s

position (us, vs, ws) in the receiver’s frame of reference.

Quads. I & IV: φi = arctan

(

vs

us

)

Quads. II & III: φi =

(

π + arctan

(

vs

us

))

(2)

Similarly, the elevation θi of a tag measured by a receiver is defined as

θi = arctan

(

ws
√

u2
s + v2

s

)

(3)

Note that a four-quadrant definition of the elevation θi is unnecessary, since the denom-

inator of the arctangent operand is always positive.

To compute the tag location in the receiver’s frame of reference, first the coordi-

nates of the tag (urel, vrel, wrel) relative to the receiver are computed by subtracting the

receiver coordinates from the coordinates of the tag in the global frame of reference, i.e.

(u − xi, v − yi, w − zi). This effectively translates the origin of the global coordinate

system to the location of the receiver. These tag-to-receiver relative coordinates must

be transformed to the receiver’s frame of reference. This is first a rotation about the Z

axis by an amount corresponding to the receiver’s yaw ϕi, followed by a rotation about

the Y axis by an amount corresponding to the receiver’s pitch ϑi. The rotation matrix

RGS can thus be defined as:

RGS =





cos(ϑi)cos(−ϕi) −cos(ϑi)sin(−ϕi) sin(ϑi)
sin(−ϕi) cos(−ϕi) 0

−sin(ϑi)cos(−ϕi) sin(ϑi)sin(−ϕi) cos(ϑi)



 (4)

Note that Ubisense yaw is defined as positive anticlockwise (looking at the XY plane

from the Z+ direction), and Ubisense pitch is defined as negative anticlockwise (looking

at the XZ plane from the Y+ direction). The position of the tag (us, vs, ws) in sensor’s

frame of reference is then computed by multiplying the tag’s coordinates relative to the

receiver (urel, vrel, wrel) by RGS.



Outlier rejection. The number of observations required (pseudoranges and/or angles-

of-arrival) depends upon the particular tag-to-receiver geometry. In typical Ubisense

deployments, to estimate both tag location and the distance offset d̂c at minimum either

two pseudoranges, one azimuth, and one elevation, or four pseudoranges are needed. To

estimate only tag location, at least three angles-of-arrival (including at least one azimuth

and one elevation) are needed. For locations estimated using more than the minimum

number of observations, the standard error s of the estimate can be calculated from the

residual errors ei:

s =

√

∑I

i=1
e2

i

I − C
, (5)

where I is the number of observations being used in the non-linear regression, and C
is the minimum number of observations required. C is set to 3 if only tag location is

being estimated, or to 4 if the distance offset d̂c is also being estimated. The non-linear

modelling process assumes the residual errors ǫi=1...I are normal, independent, and

have equal variance and zero mean.

With heterogeneous data such as that reported by Ubisense receivers (pseudorange,

azimuth, and elevation), the computed residuals have different units. Thus, before ap-

plying Eqn. 5 to estimate the standard error, each residual should be scaled by a typical

magnitude of error which might be expected for each type of data. To perform scaling

of residuals, we utilised divisors of 30 cm, 4° and 3° for pseudorange, azimuth, and

elevation, respectively. These were chosen to work with both the Twente and Lancaster

datasets, rather than being specifically tailored to either one.

If the observations given to the regression do not corroborate one another, the re-

sult will typically have a high standard error estimate. Standardised residuals [6, ch. 4]

can be used to identify the observations which agree the least with the solution. If the

standard error estimate was greater than 0.30, our regression algorithm removes the

observation with the highest standardised residual, and re-computes the solution. This

process continues until the standard error of the estimate falls below 0.30, or the highest

residual is less than 1.0.

Even after the outlying observations have been removed, the location accuracy can

still be poor (Fig. 3(a)). To improve accuracy, one tactic is to simply reject location

readings which have a high standard error estimate. For the regression results presented

in the remainder of this paper, we have omitted estimates with a standard error higher

than 0.5 (except where otherwise noted). Assuming both pseudorange and angle-of-

arrival data is used, this corresponds to about 20% of the readings taken at Twente

(Fig. 3(b)), and very few (less than 0.1%) of the static readings taken at Lancaster.

4.2 Extended Kalman filtering (EKF)

We formulate an Extended Kalman Filter (EKF) using a state vector x̂k with seven vari-

ables, three position variables u, v, w, user clock offset dc and three velocity variables

vu, vv, vw. After any discrete time step, which is approximately 108 ms5 the filter has an

5 The tag emits a UWB pulse once every four Ubisense time slots. With our particular version

of Ubisense hardware, each time slot corresponds to 27.029 ms.
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idea of its state and how confident it is in that state (prediction). The filter then corrects

the predicted state based on the most recent measurements (pseudoranges and angles)

and its internal state. Note that we use an Iterative Extended Kalman Filter (IEKF) [7],

which is an extension to the standard EKF, and is useful for reducing the errors that

may occur due to large non-linearities in the system.

Initialisation. The filter is initialised with a posterior state estimate x̂−

k
and uncertainty

P−

k
. Kalman filter estimates rely heavily on these initial estimates. We set the initial

state estimates based on averaging the first twenty measurements through non-linear

regression (as described above), discarding any with high standard error. Since we have

set the tag at the highest update rate, this corresponds to a wait of a few seconds to start

the Kalman filter. We chose to use a small but non-zero value for P−

k
, meaning that

there is a little uncertainty in the defined initial state.

System Model and Measurement Model. We use a constant-velocity model, i.e. it is

assumed the tag moves at constant speed between time steps. Thus, the new state esti-

mate x̂k will depend on the previous state estimate x̂k−1, constant velocity vxk and a

noise term wk (as in, x̂k = x̂k−1 + vxk
dt + wk). In order to predict the state using the

measurements, we will have to describe how the measurements are related to the state.

The measurement model ẑk(= Hx̂k + vk) describes how measurements depend on the

state estimates x̂k . H is the Jacobian matrix with partial derivatives of the measurement

function with respect to the state x̂k. The measurement function here represents the

pseudorange (d̃i), azimuth (φi) and elevation (θi) as defined earlier in Sect. 4.1.

Prediction & Correction. The predicted error covariance (P−

k
) and the state estimate

(x̂−

k
) for a time-step is given by:

x̂−

k
= Ax̂k−1 + Buk

P−

k
= APk−1A

T + Q.
(6)



Here, A is the Jacobian matrix and Q is the process noise covariance. The process noise

covariance Q for a position-velocity model includes the process covariance in position

and velocity and the process covariance in the position.

The filter computes the posterior state estimate by taking the prior state estimate and

combining with the Kalman gain Kk times the difference between the actual measure-

ment (pseudoranges and angles) and a measurement prediction (ẑk = Hx̂k+vk), called

the innovation or residual r. If the innovation is zero, then the predicted state estimate

exactly reflects the real measurement. But if there is a difference between the predicted

and the observed measurement, then the prior state estimate needs to be updated. In

eq. 7, Kk determines to what extent the innovation should be used in the posterior state

estimation. Based on the measurement noise R and the prior error covariance P−

k
, the

gain can favour the innovations or the measurements more. The measurement noise

R for pseudorange and angles (azimuth and elevation) is set to be 10 cm, 7◦ and 10◦

respectively.

Kk = P−

k
HT (HP−

k
HT + R)−1

x̂i+1

k
= x̂−

k
+ Kk(zk − H(x̂−

k
− x̂i

k))

Pk = (I − KkH)P−

k−1

(7)

In Eqn. 7 the Jacobian matrix H is evaluated at the most recent intermediate state esti-

mate x̂i

k
(difference between the IEKF and EKF). After a number of iterations or when

the intermediate state estimate does not differ with more than a certain threshold from

x̂i−1

k
, the filter sets the posterior state estimate and estimates its posterior uncertainty.

It is important to note that the IEKF computes the uncertainty in the state only after it

finds the most accurate intermediate state estimate. Though the computations involved

in IEKF are larger than the standard EKF, the state estimates will be better because of

re-evaluation of the measurement function and the Jacobian.

Validation gating. It is imperative to employ some form of outlier rejection (also known

as validation gating in Kalman literature) as part of the filter, since noisy measurements

can cause the filter arrive at a bad state estimate. In most cases, innovation or residual

r is used to identify outliers. An approach to eliminate outliers is based on r2S−1 > γ,

where S−1 is a scalar based on the state and γ is an empirically-chosen parameter [12].

Alternatively, the distribution of innovations can be used to detect innovations that are

unlikely to occur. Recent work by Renaudin looks at the possibility of eliminating outly-

ing measurements based on human body orientation and comparing the predicted state

with the current measurements. Another interesting approach is to check the condition

for optimality of the filter. It is reported [10] that through the usage of statistical meth-

ods it is possible to check if the innovation sequence is white (a sufficient and necessary

condition for testing optimality). If the filter shows sub-optimality, R and Q can be ad-

justed in order to make the filter optimal, thereby making the Kalman filter adaptive.

We however chose to use the simple strategy of using the innovation distribution (based

on setting thresholds determined empirically) to identify outlying measurements.



5 Static Positioning

For the static positioning experiments at Lancaster, a tag was placed at the sixteen test

points (Fig. 1(b)), at four different heights. At each of these sixty-four locations, receiver

readings were gathered for about one thousand tag pulses and about 1000 readings were

gathered. At Twente, a tag was placed at the twenty-one test points (Fig. 1(a)) at two

different heights, for a total of forty-two locations, with about 1500 readings at each. For

our experiments at both sites we set the tags to run at the highest update rate, emitting

a UWB pulse once every four Ubisense time slots, which for our Ubisense hardware

is equivalent to about ten times per second. All receiver observations were fed into our

algorithms, even those rejected by the Ubisense LE (see Fig. 2).

5.1 Results from heterogeneous observations

Fig. 4 shows the accuracy of the regression and Kalman filtering algorithms when they

are provided with the heterogeneous measurements (pseudoranges and angles-of-arrival)

produced by the receivers. Note that the vertical accuracy at Lancaster is more than

thirty centimetres worse than the horizontal accuracy. This might be explained in two

ways. First, the geometry of the Ubisense deployment (receivers are approximately co-

planar) and the types of measurements they take (pseudorange, azimuth, and elevation)

mean that there is more information about the tag’s horizontal position solution (heavily

contributed to by pseudorange and azimuth), and less about the vertical position of the

tag (primarily affected by the elevation readings). Second, referring to Fig. 2, one can

see that the pseudoranging and azimuth accuracy tend to be better than the elevation ac-

curacy. At Twente, the opposite is true: the vertical accuracy tends to be superior to the

horizontal. However, about 30% of the Twente raw azimuth readings are off by more

than 20°, whereas the elevation accuracy is comparable to that at Lancaster (Fig. 2(c)).
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Fig. 4. Positioning static tags using heterogeneous measurements (pseudoranges and AOAs)

On the Lancaster data, the Kalman filter performs slightly better than the regres-

sion. This is because the Kalman filter utilises its predicted estimate for the position



75% confidence level (cm) 90% confidence level (cm) Estimates

Algorithm Site Horizontal Vertical Horizontal Vertical accepted (%)

Regression Twente 42.07 54.74 155.59 101.04 80.42

Kalman Twente 107.82 51.86 276.95 63.72 N/A

Regression Lancaster 8.83 42.13 16.02 68.46 99.98

Kalman Lancaster 7.51 37.35 11.14 52.61 N/A

Table 2. Performance summary of static positioning using heterogeneous data

of the tag, in addition to new receiver observations, to produce the new tag estimate.

By contrast, the regression algorithm utilises only the receiver observations from the

current time slot to compute a solution. Thus the Kalman filter can be slightly more

accurate, especially for static situations where the location estimate is stable for con-

secutive observations. Note that for the Twente data, the Kalman filter has much worse

horizontal eror than the regression. However, this is because the regression rejects re-

sults with a high standard error estimate. Rejecting no readings (Fig. 3), the regression’s

75% horizontal accuracy of 106 cm is comparable to the Kalman filter’s 108 cm.

Effect of reduced receivers. Decreasing the required infrastructure can reduce installa-

tion and calibration cost. To show how well our algorithms support reduced infrastruc-

ture, we compute the tag locations based on the observations from subsets of receivers.

As expected, the accuracy of both algorithms decreases as infrastructure density de-

creases. However, the Kalman filter degrades much more gracefully; note in particular

the difference in the vertical accuracy results for Kalman and regression. Moreover, the

regression rejects more readings as deployment density decreases, whereas the Kalman

filter consistently supplies reliable estimates regardless of density.

No. of 75% confidence level (cm) 90% confidence level (cm) Estimates

receivers Horizontal Vertical Horizontal Vertical accepted (%)

All 8.83 42.13 16.02 68.46 99.98

Non-linear 4 11.38 47.59 18.25 75.05 99.66

regression 3 15.02 55.82 22.85 86.29 95.07

2 24.24 64.76 36.29 108.11 52.78

All 7.51 37.35 11.14 52.61

Kalman 4 9.10 37.38 13.69 53.02 Not

filtering 3 11.38 37.60 17.07 51.93 applicable

2 14.45 35.74 17.26 53.87

Table 3. Reducing deployment density (heterogeneous data, Lancaster static measurements)

5.2 Results from homogeneous observations

Both the algorithms we have presented are capable of computing location estimates

using only pseudoranges or angles-of-arrival. It is interesting to consider their perfor-

mance on homogenous data in order to judge our algorithms’ application for UWB



position-sensing platforms having fewer capabilities than Ubisense. For example, re-

ceivers not equipped with array processing would not be capable of measuring AOA.

Or, nodes in a distributed, wireless sensor network might only be able to measure angle-

of-arrival, as the nanosecond-level node synchronisation required for pseudoranging is

prohibitively difficult without a wired connection.
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Fig. 5. Positioning static tags using pseudoranges only

Data 75% conf. level (cm) 90% conf. level (cm) Estimates

type Algorithm Site Horizontal Vertical Horizontal Vertical accepted (%)

Regression Twente 39.80 141.28 68.30 233.93 18.48

Pseudo- Kalman Twente 330.62 491.51 1983.08 1229.96 N/A

ranges Regression Lancaster 8.85 46.48 14.66 94.44 84.14

Kalman Lancaster 10.03 39.17 17.75 75.80 N/A

Regression Twente 190.55 64.10 435.11 103.02 63.93

AOAs Kalman Twente 452.10 59.62 678.16 119.24 N/A

Regression Lancaster 19.56 38.95 30.55 70.40 98.1

Kalman Lancaster 17.18 37.15 26.89 54.92 N/A

Table 4. Performance summary of static positioning using homogeneous data

Pseudoranges only. Fig. 5 shows the accuracy of the two algorithms operating on pseu-

dorange data only, at both sites. As in the heterogenous case, the regression performs

significantly better than the Kalman filter on the Twente data; however note the ratio of

readings rejected by the regression—over four-fifths for the Twente dataset (Table 4).

Even for the Lancaster dataset, the regression rejects over 15% of readings. On the Lan-

caster data, the Kalman filter’s accuracy is comparable, and it provides constant updates

(no readings are rejected). Note that in general the vertical accuracy is inferior com-

pared to the heterogeneous case. This is because the vertical solution is less constrained

when only pseudoranges are used (no elevation data is present). The 3D accuracy of the

Twente results are especially poor, since the accuracy of the underlying pseudoranges

is much lower than in the Lancaster deployment (37 cm compared to 6 cm, at the 75%

confidence level).



Angles-of-arrival only. Using only angles-of-arrival, the two algorithms perform com-

parably (Fig. 6 and Table 4). The accuracy for the Lancaster deployment is quite favour-

able (horizontal and vertical 75% confidence better than 20 and 40 cm, respectively).

This is because for the majority of the Lancaster readings, a reliable azimuth and ele-

vation were reported by all five receivers. The Twente AOA-only results are quite the

opposite of the Twente pseudorange-only results. While the Twente vertical accuracy is

about as good as the heterogeneous case (Fig. 4), around half of the readings exhibited

a horizontal accuracy worse than one metre. Inspecting the per-receiver distributions

reveals that three out of the six Twente receivers returned very poor azimuth estimates

about 25% of the time. (As mentioned above, this is most likely due to environmental

effects and an inaccurate calibration.) Thus, without the pseudorange contribution to

the solution, the seventy-fifth percentile horizontal accuracy falls from several tens of

centimetres in the heterogeneous case, to several metres in the AOA-only case.
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Fig. 6. Positioning static tags using angles-of-arrival (azimuth and elevation)

6 Dynamic Tracking

At Lancaster, dynamic data traces were taken in the test arena. Data was recorded

(Fig. 7(a)) in traces lasting approximately seven minutes each, resulting in about 2500

pulse readings per trace. We gathered two types of dynamic data (Fig. 7(b)): “robot”

data (four traces) was generated as a Lego Mindstorms robot roamed the arena (ve-

locity 0.16 m/s); and “walking” data (three traces) was recorded as a person pulled the

robot around in the arena using a tether (peak velocity of about 1 m/s). The ground truth

positions of the tag in the dynamic experiments were recorded using computer vision–

based localisation. Two cameras equipped with fisheye lenses were placed above the

measurement area, a fiducial marker was rigidly attached to the top of the tag, and re-

acTIVision software was used to perform accurate localisation in real time. Since there

are slight differences in the timestamps between the logged camera estimates and the

ubisense estimates, we use a weighted-average method to interpolate the camera data

for the corresponding ubisense timestamp. Where there were large gaps in the camera

timestamps, the interpolated values may not be valid, hence interpolation was done only

if the surrounding data points are close in time (shorter than 300 ms). For gaps greater



than this, the Ubisense readings are discarded, to allow accurate comparison. For most

traces, this method resulted in about 10% of receiver observations being dropped.

Lego mindstorm robot
moving at 0.16 m/sFiducial marker,

Ubitag placed underneath
the marker

Cameras equipped with
fisheye lenses

(a) Test arena
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(b) Sample location traces: “Walk-

ing” (top) and “robot” (bottom)

Fig. 7. Lancaster dynamic experiment

The location accuracy for the “robot” and “walking” traces is roughly equivalent

for each algorithm, despite the large difference in the speed of the tag. This is likely

due to the sufficient update rate of Ubisense readings (about 10 Hz) for both types of

trace. Since the accuracy does not change appreciably between the two speeds, for the

homogeneous dynamic case (Fig. 9 and Table 5), we consider only the three “walking”

traces. The “walking” homogeneous results are comparable to the estimates for static

data taken at similar height. For example, the regression operating on pseudoranges

only yields a 75% horizontal dynamic accuracy of 20 cm, which is exactly the same

accuracy as for the static readings taken at a height of 7.5 cm.

7 Ubisense Location Engine Estimates

Although the goal of this paper is to characterise our algorithms’ performance with

different deployments and types of UWB positioning data (pseudorange and angle-of-

arrival), we provide here the estimates produced by the Ubisense Location Engine for

purposes of comparison. Fig. 10 shows the static tag positioning accuracy of the LE

when configured to “default no filtering.” The regression and Kalman algorithm results

for the same data are also shown. Like our regression algorithm, the LE produces a
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Fig. 8. Dynamic tracking of tags using heterogeneous data (Lancaster)
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Fig. 9. “Walking” tracking accuracy using homogeneous data (Lancaster)

75% conf. level (cm) 90% conf. level (cm) Estimates

Data type Algorithm Horizontal Vertical Horizontal Vertical accepted (%)

Pseudoranges Regression 18.31 35.31 27.46 55.43 99.66

and AOAs Kalman 21.02 26.07 31.42 36.12 N/A

Pseudoranges Regression 20.29 90.63 26.86 167.24 61.86

only Kalman 33.30 46.27 55.84 53.90 N/A

AOAs Regression 32.43 39.58 48.53 61.01 94.83

only Kalman 48.69 15.87 62.87 22.16 N/A

Table 5. Dynamic tracking performance summary (Lancaster). All values shown pertain to the

location results of the three “walking” data traces.



measure of standard error. But, because we do not know how the LE standard error is

calculated, for this comparison we have not rejected any estimates from the LE or the

regression results. With no filtering, the Ubisense LE performs quite comparably to our

proposed algorithms for static tags. Likewise, the dynamic accuracy of the LE is similar

to our results (Fig. 8) if “no filtering” is set.
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Fig. 10. Ubisense Location Engine accuracy (Lancaster, static readings)

8 Conclusion

This paper has presented a non-linear regression and a Kalman filtering algorithm de-

signed specifically to process the heterogeneous data which UWB positioning systems

are capable of producing. Both algorithms fuse the different types of raw data (pseudor-

ange, azimuth, and elevation) effectively. For reliably accurate raw data (as produced by

the Lancaster deployment), the algorithms exhibit similar performance, and we would

select the Kalman filter since it provides a more consistent (if at times slightly less

accurate) stream of location estimates. Supplied with reliable readings, the Kalman fil-

ter performs better than regression as deployment density decreases. For deployments

with poor calibration and/or less reliable, “noisy” readings (as in the Twente data), we

would select the non-linear regression algorithm for its accuracy, despite the high ratios

(20–80%) of rejected readings.

We have shown that the algorithms can work well on homogeneous data (pseudo-

ranges or AOAs), despite the reduction of the information contributing to the location

solution. Under certain configurations, noisy, homogeneous data can be pathological, as

in the Twente pseudorange-only vertical accuracy, or the Twente AOA-only horizontal

accuracy. When working on homogeneous data with reliable accuracy, the algorithms

continue to produce good location estimates, as seen in the Lancaster results.

In many of our results, the vertical location accuracy was worse than the horizontal

location accuracy. As noted previously, this is very much a function of the geometry

of the receivers in our deployments. One can envision receiver deployment strategies

which correct the bias, such as fixing some receivers high on the wall (as in our test

deployments), and some receivers to the ceiling with their boresight facing the floor.

The ceiling-mounted receivers’ reported AOAs would contribute more heavily to the

horizontal estimate, and the pseudoranges (in combination with pseudoranges received

from wall-mounted receivers) would contribute much more to the vertical estimate.

As future work, we plan to explore adaptive Kalman filters. This is particularly

interesting as Kalman performance is heavily influenced by the choice of the model



parameters, and making the filter adaptive can automatically tune the model param-

eters based on the current measurement. Usage of other probabilistic algorithms, for

example particle filtering, may also be a fruitful area for investigation. Another avenue

of research is to extend the presented algorithms to address online auto-calibration of

reference nodes. Called simultaneous localisation and mapping (SLAM) in robotics,

this can also be used for calibration-sensitive infrastructure to bring us a step closer in

realising easily deployable yet accurate positioning systems.
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