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a b s t r a c t

This paper investigates the problems of kinematics, Jacobian, singularity and workspace analysis of a

spatial type of 3-PSP parallel manipulator. First, structure and motion variables of the robot are

addressed. Two operational modes, non-pure translational and coupled mixed-type are considered.

Two inverse kinematics solutions, an analytical and a numerical, for the two operational modes are

presented. The direct kinematics of the robot is also solved utilizing a new geometrical approach. It is

shown, unlike most parallel robots, the direct kinematics problem of this robot has a unique solution.

Next, analytical expressions for the velocity and acceleration relations are derived in invariant form.

Auxiliary vectors are introduced to eliminate passive velocity and acceleration vectors. The three types

of conventional singularities are analyzed. The notion of non-pure rotational and non-pure translational

Jacobian matrices is introduced. The non-pure rotational and non-pure translational Jacobian matrices

are combined to form the Jacobian of constraint matrix which is then used to obtain the constraint

singularity. Finally, two methods, a discretization method and one based on direct kinematics are

presented and robot non-pure translation and coupled mixed-type reachable workspaces are obtained.

The influence of tool length on workspace is also studied.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Parallel kinematic machines (PKMs) have shown to offer many

advantages such as, high positioning accuracy, high static/

dynamic inherent rigidity, low inertia, high nominal load-to-

weight ratio and good dynamic performance. However, the

principal drawbacks of the PKMs are small and complex work-

space, commonly coupled position and orientation of moving

platform as well as difficult forward position kinematics [1–3].

Earlier PKMs were designed mostly with 6 degrees of freedom

(DOFs). However, there are many practical applications where

6-DOFs are not all required [4]. The PKMs with the lower DOFs

have most of the inherent capabilities of the parallel robots and

can be made with lower manufacturing cost [3,5]. However, some

spatial PKMs with lower DOFs present application complications

due to the commonly coupled position and orientation of the

moving platform. The 3-DOF PKMs can be classified into three

categories with respect to the type of DOF used by their moving

platform. These categories are: (a) translational, (b) rotational and

(c) coupled mixed-types motion (two translational and one rota-

tional, T2R1-type, or two rotational and one translational, R2T1-

type). The motions in each of these categories may be pure or non-

pure. Many literatures have studied the famous pure translational

robots such as the 3-UPU [6], the CUR [7] and the 3-PRC [8]. There is

extensive research work focused on the famous DELTA robot with

three translational DOFs [9]. Also, many studies are completed on

pure rotational PKMs such as spherical robots [10,11] and the Agile

Eye mechanism [12]. The PKMs with coupled mixed-types of

motions are also studied, for example, the 3-PRS [1] and the

CaPaMan [13]. In addition Li and Herve� [14] studies a number of

pure R2T1 type parallel robots.

In this paper, a specific architecture of the 3-PSP fully parallel

robot is selected and its position, Jacobian and workspace analysis

are investigated. The 3-PSP robot is a spatial 3-DOF parallel robot

with symmetric geometry and three identical PSP legs (Prismatic–

Spherical–Prismatic). The 3-PSP robot offers the advantage of

allowing the user to select its desired DOFs. The user may select

to run the robot either in non-pure translational or coupled

mixed-type modes. This feature potentially allows use of different

applications for the 3-PSP robot.

Unlike their serial counterparts, the inverse kinematics pro-

blem of PKMs is often simpler to solve than its direct kinematics

problem. However, obtaining analytical solution to direct and

inverse kinematics of 3-PSP are both difficult. The difficulty in
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solving the inverse kinematics of the 3-PSP robot depends on the

DOFs selected for the moving platform [15–17]. The direct

kinematics of PKMs commonly involve the solution for a system

of nonlinear coupled algebraic equations in the variables describ-

ing pose parameters of the moving platform [6]. To solve direct

kinematics problem, either numerical or analytical approaches

are used. However, usually, finding the exact analytical solutions

is difficult [6]. Kamali and Akbarzadeh [18] presented a method

for a general solution to the direct kinematics problem of non-

cuspidal parallel manipulators in trajectory following by introdu-

cing a new concept based on basic regions. In a thesis presented

by Bonev [19], the effectiveness of geometric methods to design

and analyze parallel mechanisms is presented. He presented a

brief discussion on the 3-PSP and obtained its kinematics con-

straint equations leading to motion equations for the center of the

platform. Di Gregorio solved the position analysis of a general 3-

PSP parallel robot in analytical form [16]. To solve the direct

position analysis, an algebraic system which has a Sylvester

eliminant that is a polynomial equation of the 8th degree in one

of the unknowns is obtained. In the present paper, the direct

kinematics of the 3-PSP robot is solved utilizing a new geome-

trical approach. We also show that the direct kinematics problem

of this robot, unlike most parallel robots, has only one unique real

answer.

To define and evaluate the performances of a manipulator,

Jacobian and singularity analyses are commonly used [20,21].

These analyses have been studied by many literatures [21–23].

Firmani and Podhorodeski [24] described singularity of planar

parallel manipulators based on forward kinematic solutions. Also,

Enferadi and Akbarzadeh [10] studied singularity of a novel

spherical parallel manipulator using obtained Jacobian matrices

from position equations. The workspace of the PKMs has also

been extensively studied using different methods [25–27]. Exam-

ples of common 3-DOF workspaces include reachable, maximal

and dexterous workspace [20]. To the best of authors’ knowledge,

the Jacobian, singularity and workspace analysis are not pre-

viously reported for the 3-PSP robot.

This paper is organized as follows. In Sections 2 and 3,

structure and motion variables of the robot are addressed and

two separate operational modes, coupled mixed-type and non-

pure translational, are presented, respectively. In Section 4,

inverse kinematics is discussed. A numerical method for the

coupled mixed-type mode and an analytical method for the

non-pure translational mode are presented. In Section 5, the

direct kinematics of the robot is solved utilizing a new

geometrical approach. In Section 6, using vector analysis, analy-

tical expressions for velocity and acceleration relations are

derived in invariant form. Additionally, we introduce the non-

pure rotational and non-pure translational Jacobian matrices and

use them to derive the relationship between angular and transla-

tional velocities of the moving platform and the actuated joint

rates. Using non-pure rotational and non-pure translational

Jacobian matrices, Jacobian of constraint is defined. In Section 7,

using Jacobian matrices, obtained in analytical form, the three

conventional types of singularities are analyzed. Furthermore,

using Jacobian of constraint matrix, the constraint singularity is

obtained for the 3-PSP robot. Finally, in Section 8, two numerical

methods are presented and used to calculate the robot non-pure

translation and coupled mixed-type reachable workspaces. Influ-

ence of the tool length on non-pure translation workspace is also

studied. Concluding remarks are made in last section of the paper.

2. Structural description of a spatial 3-PSP parallel robot

In this paper, a special type of a 3-PSP parallel robot with

specific architecture is investigated. The spatial 3-PSP robot is

fully parallel with three DOFs in space. The robot is composed of a

moving platform which is shaped like a symmetric tripetalous

star, called moving star (MS), and two fixed platforms. The MS is

formed by three branches, forming a planar star with each branch

making an angle of g¼1201 with the other. Various tools, end-

effectors, may be placed in the center of the MS. The MS and the

fixed platforms are connected together using three parallel legs

with identical serial kinematic chains. Each of the three legs,

consists of an active prismatic joint (P-joint) which is actuated by

a Linear rod (LR), a passive spherical joint (S-joint) and a passive

prismatic joint (P-joint). The MS is attached to the base by three

identical serial PSP linkages. The three closed kinematics loops

make the 3-PSP parallel manipulator. The actuation system for

each leg is made of a motor, a gear box and a ball screw assembly.

A kinematic chain of a general 3-PSP parallel robot is shown in

Fig. 1(a). A simplified equivalent form of the spatial 3-PSP parallel

manipulator investigated in this paper is shown in Fig. 1(b). Note

that for the spatial 3-PSP, parameters li, ci and di shown in

Fig. 1(a) are all set to zero which insures the axis of the passive

prismatic and spherical joints intersect.

The solid and physical models of a 3-PSP parallel manipulator

are also illustrated in Fig. 2.

Fig. 1. (a) A kinematic chain of a general 3-PSP parallel robot and (b) a simplified equivalent form of the spatial 3-PSP parallel manipulator

A. Rezaei et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 158–173 159
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3. Description of vectors, reference frames, motion variables

and DOFs

Fig. 3 represents vectors and coordinate frames used for the

inverse kinematics problem of the 3-PSP. For this purpose, a fixed

coordinate frame B x,y,z
� �

is embedded in the top fixed platform,

at center point O of fixed triangle DA1A2A3. Likewise a moving

coordinate frame T{u,v,w} is attached to the tool, at point T. Point

P defines the position of the tool tip and is located along the z-axis

of frame {T}. In this paper, a leading superscript represents the

coordinate frame in which the vector is referenced. Additionally,

bold lower and upper case lettering designate vectors and

matrices, respectively. The three spherical joints are denoted

bySi (fori¼ 1, 2 and 3) and their positions with respect to point

O are denoted by Bsi . Three position vectors Bqi specify length of

each linear rod (LR) and connect corners of the fixed triangle, Ai,

to the center of the spherical joints, Si. Position of the end-effector,

point T, and tool tip, point P, with respect to {B} is given by vector
Bt¼[xT,yT,zT]

T and Bp¼[xP,yP,zP]
T, respectively. Three additional

position vectors, Bai locate corners of the fixed base, Ai, in {B}.

Further, the position vector T
h, defined in {T}, is a vector which

connects point T to point P. The length of this vector, h, defines

the length of the tool. Finally, the position vector T
bi , connects the

end-effector, point T, to the ith spherical joint, Si.

Assume the 3-PSP consists of ‘‘r’’ movable rigid bodies which

are connected together by ‘‘m’’ one-DOF joints. A multi-DOF joint

like a spherical joint can be considered as three one-DOF revolute

joints linked with two movable rigid bodies having zero mass and

dimension. Therefore, the DOF of the 3-PSP can be calculated

using the Chebyshev–Grübler–Kutzbach formula as

DOF¼ 6r�5m¼ 6� 13�5� 15¼ 3 ð1Þ

As shown in Eq. (1), the 3-PSP parallel robot has 3-DOFs in

space. We know that, the degrees of freedom for parallel robots are

equal to the number of independent motion variables for the

moving platform. Therefore, only three DOFs of the total six DOFs

considered for the MS are independent and are so-called control-

lable. The desired motion variables of the MS, may be selected as

Selection #1—Operational Mode yjZ : Two rotational DOFs

about x- and y-axis, y and j, and one translational DOF along

z-axis.

Selection #2—Operational Mode XYZ : Three non-pure transla-

tional DOFs along x, y and z-axis.

Therefore, when solving the inverse kinematics problem and

performing workspace analysis, depending on the selected DOFs,

two separate solution strategies are considered. These strategies

Fig. 2. The 3-PSP parallel manipulator: (a) solid model and (b) physical model and its controller.

Fig. 3. The vectors and coordinate frames for one typical kinematic chain of the 3-PSP parallel robot.

A. Rezaei et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 158–173160
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will be explained in the next section. The following variables are

used.

� Variables used for MS

Rotational variables about the x-, y- and z-axis (Euler angles):

y, j, l

Translational variables of the MS center, point T, along the x-,

y- and z-axis: xT , yT , zT
Translational variables for the tool tip, point T, along the x, y

and z-axis: xP , yP , zP

� Variables used for linear motion of the linear rods

Translational variables for the linear rods, LRs: q1, q2,q3

� Variables used for linear motion of the MS branches

Translational variables for the MS branches: b1,b2,b3

Therefore, depending on the selected DOFs, three of the six MS

variables are chosen and the remaining nine variables are calculated

using inverse kinematics problem. The inverse kinematics solution

process for the two operational modes is illustrated in Fig. 4.

4. Inverse position analysis

To perform analyses such as Jacobian analysis, dynamics,

trajectory planning and stiffness analysis, we need to have the

robot kinematic variables [28,29]. Consider Fig. 3. The position

vectors used to describe the kinematic configuration of the 3-PSP

parallel manipulator can be expressed by

Ba1 ¼ a 0 0
� �T

,

Ba2 ¼ ½� 1
2 a

ffiffi
3

p

2 a 0 �T ,

Ba3 ¼ ½� 1
2 a �

ffiffi
3

p

2 a 0 �T ð2Þ

T
b1 ¼ ½ b1 0 0 �T ,

Tb2 ¼ ½� 1
2 b2

ffiffi
3

p

2 b2 0 �T ,

Tb3 ¼ ½� 1
2 b2 �

ffiffi
3

p

2 b2 0 �T ð3Þ

Bqi ¼ ½0 0 qi �T for i¼ 1,2,3 ð4Þ

Bt ¼ ½ xT yT zT �T ,

Bp¼ ½ xP yP zP �T ,

Bh¼ ½0 0 h �T ð5Þ

To transfer a vector defined in {T} to {B}, we can use a rotation

matrix, BTR , which consists of three Euler angles y, f and l about x,

y and z-axis of the fixed reference frame {B}. For this purpose,

three unit vectors u, v and w along the u-, v- and w-axis of the

moving coordinate frame {T} are defined. Therefore, the rotation

matrix, B
TR , using these unit vectors is

B
TR ¼ Rz,lRy,jRx,y ¼

ux vx wx

uy vy wy

uz vz wz

2
64

3
75

¼
clcj �slcyþcl jsy slsyþclsjcy

slcj clcyþslsjsy �clsyþslsjcy

�sj cjsy cjcy

2
64

3
75 ð6Þ

where c and s stand for cosine and sine, respectively. Therefore,

the position vector
B
bi , in {B}, which connects the end-effector,

point T, to the ith spherical joint, Si, can be expressed as

B
bi ¼

B
TR

Tbi for i¼ 1,2,3 ð7Þ

Considering Fig. 3, we can write

Bt ¼ Bp�B
h,

B
h ¼ B

TR
T
h ð8Þ

For each kinematics chain, we can write a closed loop vector

equation as

Bai þ
Bqi ¼

B
bi þ

Bt for i¼ 1,2,3 ð9Þ

Substituting Eqs. (7) and (8) into Eq. (9), yields

Bai þ
Bqi ¼

B
TRð

Tbi�T
hÞþBp for i¼ 1,2,3 ð10Þ

The vector equations, Eq. (10), are called kinematics constraint

equations. These equations consist of three vector equations and

are equal to a set of nine non-linear scalar equations. In inverse

kinematics, InvKin, problem, three chosen independent variables

for the MS are given. Next, values for lengths of the LRs, qi, and

subsequently the corresponding values for rotational position of

motors, ymi, are determined. As shown in Fig. 5, we can represent

the relationship between the linear displacement of nuts and

corresponding rotational displacement of motors as

ymi ¼
Np

lb

� �
qi ð11Þ

where lb and N are the lead of the ball screws and gearbox

transmission ratio, respectively.

4.1. The first operational mode, coupled mixed-type mode yjZ

In this problem, the orientation of the MS about x- and y-axis

of the frame {B} and translation of the tool along z-axis are

considered as inputs of the InvKin problem. In this mode, the

three motion variables x, y and l are dependent on the remaining

Fig. 4. Inverse kinematics process diagram for the 3-PSP parallel manipulator.

A. Rezaei et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 158–173 161
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motion variables y, f and z. Typical applications of this mode

include orienting a laser device as well as simulator platforms. It

is also possible to install the 3-PSP robot on an XY table and

achieve a hybrid robot with 5 independent DOFs. In this case, the

hybrid robot may be used as a 5-axis CNC machine head.

4.1.1. Numerical solution for inverse kinematics problem

When variables (y,f,zP) are chosen as inputs, finding the

analytical solution for Eq. (10) is rather difficult. Therefore, a

numerical approach may be employed to find a local solution. In

this paper, a set of 9 nonlinear algebraic equations, shown in

Appendix A, are extracted from Eq. (10). These nine equations are

numerically solved using Newton iterative method as

Algorithm: Numerical solution for inverse kinematics problem

using Newton‘s method
1. Constant inputs: a and h
2. Inputs: Trajectory¼½zP , y, j�n�3, n¼number of discrete

data points on the trajectory
3. Error¼10�6 (m) An arbitrary small value (Tolerance)
4. Find an initial guess as a 9�1 vector x0¼[qi,bi,xP,yP,l]1�9 for

i¼1,2,3

For j¼1: n

While||c(xj)||4error

xj ¼ xj�1�ð@wðxj�1Þ
@x Þ�1wðxj�1Þ

End while

If 0rxj(1)¼q1r0.4 m and 0rxjð2Þ ¼ q2r0:4 m and

0rxj(3)¼q3r0.4 m

xj�1¼xj Update the initial guess for next level

and save xj1�9

else, xj is not a correct answer (is not within the bounds

of ball screw travel)

Next n

xj1�9 is the answer to the inverse kinematics problem for the jth point of the

trajectory.

The proposed Newton‘s method is not computationally efficient

and may not be used for real time control. Additionally, in most

robotics applications the inverse kinematics is solved offline.

Therefore, its efficiency is not that critical. Yet, various researchers

have presented methods to improve the computation time [6,30].

Next, two cases for the InvKin problem are considered and the

Newton‘s method is used to obtain the solutions. In the first case,

the length of the tool is assumed to be zero while the second case

assumes tool length of h¼8 cm. Results are depicted in Fig. 6 and

Table 1. To provide a better visual perspective, the tool position at

y¼ 0, j¼ 0 and zT ¼ 0:25 m are also shown in this figure.

4.2. The second operational mode, non-pure translational mode XYZ

In this problem, the Cartesian position of the tool tip with

respect to the x-, y- and z-axis of the frame {B} are used as inputs

and corresponding lengths of the LRs, qi, are considered as

outputs of the InvKin problem. In this mode, the three motion

variables y, f and l are dependent on the remaining motion

variables x, y and z. In author‘s opinion, this mode does not have

much practical applications. This is because in addition to having

non-pure motion, small motions in x, y and z may require large

changes in y, f and l. In our laboratory, we have mostly used this

mode for teaching applications as path traveled by tool tip can be

easily, physically, observed.

4.2.1. Analytical solution for inverse kinematics problem

Consider Fig. 7. Three constraint scalar equations are required

to express the relationship between inputs,ðxP ,yP ,zPÞ, and outputs

parameters,ðq1,q2,q3Þ. According to structure of the robot, we

know that the position of the three S-joints, Si, and center of the

MS, point T, are located on the MS plane. Then, for the first

constraint equation, we will use the position of the three S-joints

and center of the MS to obtain equation of the MS plane.

ðbsnormalÞUðsi�tÞ ¼ 0 ð12aÞ

The scalar representation of Eq. (12a) may be expressed by

Aðx�xT ÞþBðy�yT ÞþCðz�zT Þ ¼ 0 ð12bÞ

where scalar parameters A, B and C are components of the normal

unit vector to the MS plane called bsnormal. This unit vector can be

defined as

bsnormal ¼
s12 � s13

:s12 � s13:
¼ A B C
� �T ð13Þ

where s12 and s13 are position vectors which connect the first

S-joint, S1, to the second and third S-joints (S2,S3), respectively.

These vectors are illustrated in Fig. 7 and are define as

sij ¼ sj�si for i¼ 1,2,3 and j¼ 2,3,1 ð14Þ

where

si ¼ qiþai ð15Þ

To obtain the second and third constraints, we note that the

angles between each two branches of the MS are equal to

g¼ 1201.

Fig. 5. The ith motor, ball screw and nut assembly.

A. Rezaei et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 158–173162
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Therefore, we can write

b1:b2 ¼ b1b2 cosð1201Þ, b2:b3 ¼ b2b3 cosð1201Þ ð16Þ

Additionally, vectors bi can be expressed using center of the

MS, point T, and position of the ith S-joint, point Si, as

bi ¼ si�t ð17Þ

The magnitude of the vectors, bi, can be expressed by

bi ¼ :si�t: ð18Þ

The three scalar constraint equations required for solving the

InvKin problem can be obtained by substituting Eqs. (17) and (18)

into Eq. (16), as well as using the MS plane Eq. (12b). These three

equations, express relationship between center of the MS

position,ðxT ,yT ,zT Þ, and lengths of the LRs, qi. To obtain the posi-

tion of the tool tip,ðxP ,yP ,zPÞ, we can use the vector loop Eq. (8).

The vector
B
h may be expressed using bsnormal as

B
h ¼ h bsnormal ð19Þ

Therefore, we can rewrite the vector loop Eq. (8) as

xT

yT

zT

8
><

>:

9
>=

>;
¼

xP

yP

zP

8
><

>:

9
>=

>;
�h

A

B

C

8
><

>:

9
>=

>;
ð20Þ

Substituting values of the MS center position, Eq. (20), into the

three constraint equations as well as substituting any of the

S-joints positions into Eq. (12b) will yield three scalar constraint

equations based on the position of the tool tip and length of the

LRs. Next, MAPLE software may be used to solve the three scalar

equations and obtain closed form solution for qi values as Eq. (21).

Note the solutions are values of qi with respect to the position of

the tool tip.

qi ¼
f 1ðxP ,yP ,zP ,a,hÞ
f 2ðxP ,yP ,zP ,a,hÞ

( )
for i¼ 1,2,3 ð21Þ

In this mode of operation, unlike the first, there are two different

answers for the InvKin problem of the robot (see Eq. (21)). Once the

values of qi are known, we can obtain corresponding position of the

MS center, point T. Therefore, using Eqs. (18) and (20), the values for

bi are obtained. The corresponding Euler angles, using qi, can be

obtained using the rotation matrix, Eq. (6). The rotation matrix, BTR ,

is defined using three unit vectors u, v and w. These unit vectors

can be expressed as

u¼ ½ux uy uz �T ¼ b1

:b1:
ð22aÞ

w¼ ½wx wy wz �T ¼bsnormal ð22bÞ

Table 1

Inputs/outputs values of InvKin analysis for operational mode yfZ.

Inputs Outputs

y (deg.) f (deg.) zP (m) q1 (m) q2 (m) q3 (m) xP (m) yP (m) l (deg.) b1 (m) b2 (m) b3 (m)

Case #1 �35.01 0 0.25 0.25 0.14 0.36 0.02 0 0 0.161 0.221 0.221

Case #2 �35.01 0 0.25 0.2645 0.1547 0.3743 0.02 0.046 0 0.161 0.221 0.221

Case #1: a¼0.181 m, h¼0; Case #2: a¼0.181 m, h¼0.08 m.

Fig. 7. The MS plane and its related vectors.

Fig. 6. Inverse kinematics results for mode yjZ.

A. Rezaei et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 158–173 163
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v¼ ½vx vy vz �T ¼w� u ð22cÞ

Therefore, the Euler angles using Eqs. (6) and (22) are obtained

as

y¼ tan�1ðvz

wz
Þ, j¼ sin�1ð�uzÞ, l¼ tan�1 uy

ux

� �
ð23Þ

Based on structure of the robot, values greater than 90o are not

acceptable. One of the advantages of using the 3-PSP robot in its

first mode of operation is that its InvKin problem has a unique

solution. However, as will be shown in the workspace section, the

XYZ mode has a smaller space than the yfZ mode.

Next, two cases for the InvKin problem are considered. In the

first case, the length of the tool is assumed to be zero while the

second case assumes tool length of h¼8 cm. Furthermore, the

selected xyz input position, is the equal to the output of the yfZ

shown in Table 1—case#1. Results are depicted in Fig. 8 and

Table 2.

As expected, by comparing Tables 1 and 2 for the case #1, it

can be seen that all related variables are equal. See bold numbers

in Tables 1 and 2. Next, InvKin solutions for the case when tool

length is non-zero, for the two modes are considered. Results are

depicted in Fig. 9 and Table 3. As expected, by observing Table 3,

it can be seen that all related variables for one of the solutions are

equal (see bold numbers).

5. Direct position analysis

Unlike serial robots, the direct kinematics (DirKin) problem of

parallel robots is more involved and complicated. Typically, the

DirKin problem of parallel robots leads to solving a high degree

polynomial. By solving this equation, several answers are

obtained. Some of these answers are in imaginary form and some

are physically not reachable by the robot. However, some answers

are both real and consistent with physical limitations of the robot

structure. These answers are the correct answers. In this section, a

new approach for solving the DirKin problem of the 3-PSP is

presented. The approach uses the geometry of the robot. We will

show that unlike most parallel robots, using the proposed

approach, only one answer is obtained for the DirKin problem.

Consider Figs. 3 and 10. The position of three spherical joints,

Si, in the fixed base coordinate frame {B} can be determined using

ai and position of the three moving blocks qi. The MS plane can

Fig. 8. Inverse kinematics results for mode XYZ.

Table 2

Inputs/outputs values of InvKin analysis for operational mode XYZ.

Inputs Outputs

xp (m) yp (m) zp (m) q1 (m) q2 (m) q3 (m) y (deg.) j (deg.) l (deg.) b1 (m) b2 (m) b3 (m)

Case #1 0.02 0 0.25 0.25 0.36 0.14 35.01 0 0 0.161 0.221 0.221

0.25 0.14 0.36 �35.01 0 0 0.161 0.221 0.221

Case #2 0.02 0 0.25 0.115 0.201 0.201 0 17.65 0 0.194 0.181 0.181

�0.291 0.299 0.299 0 65.29 0 0.559 0.181 0.181

Case #1: a¼0.181 m, h¼0; Case #2: a¼0.181 m, h¼0.08 m.
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next be determined using the three points Si. Fig. 10 shows guide

planes and auxiliary coordinates frames required for solving the

DirKin problem of the 3-PSP parallel robot.

Consider two auxiliary coordinate frames {A} and {S} shown in

Fig. 10. Origin of the fixed coordinate frame {A} is attached to the

top fixed platform, at the point A1. Its x- and z-axis are along the

line connecting points A1 to A2 and z-axis of the fixed coordinate

frame {B}, respectively. Origin of the moving coordinate frame {S}

is attached to the point S1 on the MS plane. Its x- and z-axis are

along the line connecting points S1 to S2 and z-axis of the moving

coordinate frame {T}, respectively. To transform frame {S} to

frame {B}, two translations and three rotations are needed. To

do this, two axes, axis-a and axis-b are defined which both pass

through point S1 but their directions are parallel to y-axis of {B}

and x-axis of the frame {S}, respectively. Table 4 shows steps to

transform frame {S} to frame {B}.

Fig. 10. Coordinate frames and guide planes to solve DirKin problem.

Table 4

Transformation steps—{S} to {B}.

Translation/rotation Along/about Coordinate frame Value

Step #1 Translation x {B} a

Step #2 Rotation z {B} 5p/6
Step #3 Translation zA {A} q1
Step #4 Rotation axis-a or y-axis {B} a
Step #5 Rotation axis-b or xS-axis {S} b

mode θφZ mode XYZ

Fig. 9. Comparison between InvKin answers for modes yjZ and XYZ. (a) mode yjZ and (b) mode XYZ.

Table 3

Comparison between InvKin answers for modes yfZ and XYZ.

Inputs Outputs

Mode yfZ y (deg.) j (deg.) zP (m) q1 (m) q2 (m) q3 (m) xP (m) yP (m) l (deg.) b1 (m) b2 (m) b3 (m)

�17.53 13.54 0.25 0.132 0.152 0.251 0.02 0.03 �2.09 0.185 0.178 0.202

Mode XYZ xP (m) yP (m) zP (m) q1 (m) q2 (m) q3 (m) y (deg.) j (deg.) l (deg.) b1 (m) b2 (m) b3 (m)

0.02 0.03 0.25 0.132 0.152 0.251 �17.53 13.54 �2.09 0.185 0.178 0.202

�0.261 0.272 0.321 �9.5 63.88 �5.93 0.532 0.15 0.215

a¼0.181 m, h¼0.08 m.
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The transformation matrix, B
ST, which transfers frame {S} to

frame {B} is define as

B
ST ¼ B

AT
A
ST ð24Þ

where A
ST and A

ST are the transformation matrix which transfer

frame {S} to frame {A} and frame {A} to frame {B}, respectively.

These matrices are defined as follow:

B
AT ¼

B
AR

B
At

01�3 1

" #
,

A
ST ¼

A
SR

A
S t

01�3 1

" #
ð25Þ

where j
i
R is a 3�3 rotation matrix which rotates frame {i} to

frame {j}, and j
it is a 3�1 vector that locates origin of {i} relative

to origin of {j}. These rotation matrices and vectors are expressed

as

B
AR ¼Rðz,

5p

6
Þ ¼

cosð5p=6Þ �sinð5p=6Þ 0

sinð5p=6Þ cosð5p=6Þ 0

0 0 1

2
64

3
75,

B
At ¼

a

0

0

2
64

3
75 ð26Þ

A
SR ¼Rðy,bÞRðx,aÞ ¼

cb sbsa sbca

0 ca �sa

�sb cbsa cbca

2
64

3
75,

A
S t ¼

0

0

q1

2
64

3
75 ð27Þ

The tool position and orientation is more conveniently defined

in {S} which is why the direct kinematics solutions are first

obtained in frame {S}. Using the transformation matrix, B
ST,

vectors obtained in {S} can be transferred to the fixed frame {B}.

Then, the corresponding values of the Euler angles can be

obtained using Eq. (6). Finally, by transferring the point T along

the z-axis of frame {T} by h, position of the tool tip, point P, which

is the answer of DirKin problem is obtained. Fig. 11 shows the

normal view, along zS, of the MS plane. The center of the MS, point

T, is situated on the MS plane. This plane, P3, contains the three

points, Si. The location of point T in frame {S}, also located in

xS�yS plane, can be obtained from intersection of two arcs S1TS3
and S2TS3. When a normal view of the MS, along zS, is considered,

the shape of the MS will always be in form of a symmetrical

tripetalous star with 1201 angles between any two branches.

Therefore, upon obtaining position of points Si and knowing that

angles +S1C1S2 and +S1C2S3 are equal to 1201, center of two

circles C1ðx01,y01Þ and C2ðx02,y02Þ with radiuses r1 and r2 can be

obtained.

The equations of these two circles are defined as

ðx0�x01Þ
2þðy0�y01Þ

2 ¼ r21 ð28aÞ

ðx0�x02Þ2þðy0�y02Þ2 ¼ r22 ð28bÞ

Next, the position vector of point T, St, can be obtained in the

local frame {S}. This point is result of intersecting the two above

circles. These two circles intersect each other at two points, S1 and

T. Therefore, there are two real answers for this set of equations.

We know that base of auxiliary coordinate frame {S} is always

attached to point S1. Therefore, one of the answers is zero

(position of the point S1 in local frame {S}, which is ð0,0,0Þ).
However, the second answer, the acceptable answer, is the

position of point T in local frame {S} as St ¼ ½ x0T y0T 0 �T . This
answer can be transferred to fixed coordinate frame {B} by using

of the transformation matrix, Eq. (24). Therefore, position of the

point T in frame {B} can be obtained

Bt ¼ B
ST

St ð29Þ

where Bt ¼ ½ xT yT zT �T is position of the point T in frame {B}.

Having the position of point T in frame {B} and position of the

three S-joints, Si, we can obtain the length of each branch of

MS, bi, Eq. (18). Therefore, to obtain the position of the tool tip,

point P, position of the point T is transferred along unit vectorFig. 11. Perpendicular view to the MS plane.

Fig. 12. Direct kinematics results.
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bsnormal which is previously defined in Eq. (13). Therefore, the

position vector of the tool tip, ðxP ,yP ,zPÞ, can be determined by

rewriting Eq. (8) as

Bp ¼ Btþhbsnormal ð30Þ

Once bi and (xP,yP,zP) are calculated, the remaining output

variables, the corresponding Euler angles ðy,j,lÞ, can be calcu-

lated. To do this, similar to steps outlined for second mode of

InvKin problem, Eqs. (22) and (23) are used. Next, similar to the

InvKin section, two cases for the DirKin are considered. In the first

case, the length of the tool is assumed to be zero while the second

case assumes tool length of h¼8 cm. Results are depicted in

Fig. 12 and Table 5.

6. Jacobian analysis

In this section, Jacobian matrices describing relationship

between the end-effector and the LRs velocity vectors are

obtained. Using Jacobian matrices, singularity analysis and var-

ious kinds of singularities for the 3-PSP parallel robots are

investigated. The acceleration inversion is also presented.

6.1. Velocity inversion

The kinematics constraint equations, Eq. (10), are defined in

the base frame {B}. Therefore, for ith limb of the 3-PSP robot, both

sides of the Eq. (10) can be time differentiated to yield

_q i
bqi ¼ _b i

bbiþxs � bi�xs � hþvP for i¼ 1,2,3 ð31Þ

where bqi and
bbi are unit vectors along ith LRs and ith branch of

the MS respectively. The values _q i and _b i represent the ith

actuated joint rate and ith passive prismatic translational joint

rate, respectively. Additionally, vectors os and vP denote angular

velocity vector of the MS and Cartesian velocity vector of the tool

tip, respectively. For brevity, in Eq. (10), the superscript ‘‘B’’

denoting the frame {B} in which vectors are defined in, is

eliminated.

To eliminate the translational velocity vectors of the passive P

joint, _b i
bbi, both sides of Eq. (31) are dot multiplied with a specific

vector which is perpendicular to the three vectors b1,b2 and b3.

Additionally, as shown in Fig. 13, three unit vectors bmi which are

all perpendicular to the MS plane can be defined as

bmi ¼
bi � bj

:bi � bj:
for i¼ 1, 2, 3 and j¼ 2,3,1 ð32Þ

The three unit vectors bmi are perpendicular to the MS plane

and therefore are also perpendicular to vectors bi. Then, by dot

multiplying both sides of Eq. (31) with bmi, the terms _b i
bbi can be

eliminated. Then

_q i
bmiUbqi ¼ _bi bmiU

bbiþ bmiUðxs � ðbi�hÞÞþ bmiUvP for i¼ 1,2,3 ð33Þ

where

bmi ? bbi for i¼ 1, 2, 3 ð34Þ

Also, we know that

AUðB� CÞ ¼ ðC� AÞUB ð35Þ

Eq. (33) can be rewritten as follows:

_q i
bmiUbqi ¼ ððbi�hÞ � bmiÞUxsþ bmiUvP for i¼ 1, 2, 3 ð36Þ

Finally, three scalar equations shown in Eq. (36) can be written

in matrix form as follows:

Jinv _q ¼ Jdir
_X ð37Þ

where _q ¼ ½ _q1
_q2

_q3 �T and _X ¼ ½ vP xs �T are vectors of the

linear actuated joint rates and the MS velocities, respectively.

Additionally, vP ¼ ½ _xP _yP
_zP �T and xs ¼ ½ _y _j _l �T , represent

translational and angular velocities of the MS, respectively.

Therefore,

Jinv ¼
cm1Ubq1 0 0

0 cm2Ubq2 0

0 0 m 3Ubq3

2
4

3
5

3�3

, Jdir ¼
bm1

T ððb1�hÞ � bm1ÞT

bm2
T ððb2�hÞ � bm2ÞT

bm3
T ððb3�hÞ � bm3ÞT

2
4

3
5

3�6

ð38Þ

where Jinv and Jdir are inverse and direct Jacobian matrices,

respectively. In view of Eq. (37), we can rewrite

_q ¼ J _X ð39Þ

where J¼ J�1
invJdir is a 3�6 matrix called overall Jacobian matrix of

the 3-PSP parallel manipulator. Eq. (39) has many practical

applications such as calculating the robot stiffness matrix [4,15]

and robot dynamics. As stated before, the vector _X, also known as

twist vector, has three translational and three rotational speeds.

Using Eq. (37) all 6 speed components of the MS are mapped to

3 speed components of LRs. However, the 3-PSP has only three

DOFs and therefore only three of the six speed components in the

twist vector, _X, are independent and can be specified as inputs for

the inverse velocity problem. Therefore, a new 3�3 Jacobian

matrix is defined which maps the three desirable independent MS

speed components to the three speed components of LRs. Then,

one must first define which speeds are specified and eliminate the

dependent speeds from Eq. (37).

Consider selecting _y, _j and _l as independent and _x, _y and _z as

dependent MS speed variables, respectively. Then Eq. (37) can be

re-written as

Jinv _q ¼ Jdir XvPþ Jdir Yxs ð40Þ

where Jdir X and Jdir Y are

Jdir X ¼
cm1

T

cm2
T

cm3
T

2
4

3
5

3�3

, Jdir Y ¼
ððb1�hÞ �cm1ÞT

ððb2�hÞ �cm2ÞT

ððb3�hÞ �cm3ÞT

2
4

3
5
3�3

ð41Þ

To find the relationship between the angular velocities of the

MS,os, and the translational tool tip velocities, vP, both sides of

Eq. (31) are dot multiplied with a specific unit vectors. These unit

vectors, called as bki, are perpendicular to both _qi
bqi and _b i

bbi

vectors and are shown in Fig. 14.

To define bki, three additional guide planes, called P4, P5 and P6
are introduced. These three planes pass from three points Ai, T

Table 5

Inputs/outputs values of DirKin analysis.

Inputs Outputs

q1 (m) q2 (m) q3 (m) xP (m) yP (m) zP (m) y (deg.) f (deg.) l (deg.) b1 (m) b2 (m) b3 (m)

Case #1 0.15 0.21 0.32 �0.003 0.012 0.224 �19.34 21.78 �3.75 0.198 0.169 0.213

Case #2 0.15 0.21 0.32 0.027 0.037 0.294 �19.34 21.78 �3.75 0.198 0.169 0.213

Case #1: a¼0.181 m, h¼0; Case #2: a¼0.181 m, h¼0.08 m.
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and Si, respectively. Therefore, we can write

bki ¼
ei � qi

:ei � qi:
for i¼ 1,2,3 ð42Þ

where vectors ei connect points Ai to T and are expressed as

ei ¼ T�ai for i¼ 1,2,3 ð43Þ

Unit vectors bki are then perpendicular to planes containing the

three vectors, qi, ei and bi, respectively. Next to eliminate _qi
bqi and

_b i
bbi terms, both sides of Eq. (31) are dot multiplied with bki, as

_q i
bkiUbqi ¼ _b i

bkiU
bbiþbkiUðxs � ðbi�hÞÞþbkiUvP for i¼ 1,2,3 ð44Þ

where

bki ? bbi and
bki ? bqi for i¼ 1,2,3 ð45Þ

Therefore, Eq. (44) is simplified as

bkiUvPþððbi�hÞ � bkiÞUxs ¼ 0 for i¼ 1,2,3 ð46Þ

Finally, three scalar equations shown in Eq. (46) are re-written

in matrix form as

JvpvPþJosxs ¼ 0 ð47aÞ

where

Jvp ¼
bk
T

1

bk
T

2

bk
T

3

2
64

3
75

3�3

, Jos ¼
ððb1�hÞ � bk1ÞT

ððb2�hÞ � bk2ÞT

ððb3�hÞ � bk3ÞT

2
4

3
5

3�3

ð47bÞ

Therefore, Eq. (47a) can be re-written as

Jc
_X ¼ 03�1 ð48aÞ

where Jc ¼ ½ Jvp Jos � is a 3�6 matrix called Jacobian of con-

straints for the 3-PSP parallel manipulator. The Jacobian of

constraints matrix, Jc, can be written as

Jc ¼
bk
T

1 ððb1�hÞ � bk1ÞT

bk
T

2 ððb2�hÞ � bk2ÞT

bk
T

3 ððb3�hÞ � bk3ÞT

2
64

3
75

3�6

ð48bÞ

Each row in the Jacobian of constraints matrix, represents a

unit wrench of constraints imposed by the joints of a limb. This

matrix will later, Section 7.4, be used to obtain related singula-

rities when the moving platform has constrained motion.

6.1.1. Non-pure rotational and translational Jacobian matrix

In direct velocity inversion, _qi are supplied and using Eq. (37),

the three translational and rotational velocities of the MS are

obtained. Conversely, in trajectory planning applications, the MS

velocities are specified and motor speeds are obtained. The 3-PSP

has three independent DOFs. Therefore, one must first decide

which three of the six DOFs, operational modes, are used. For this

purpose, non-pure rotational and non-pure translational modes of

operation, y f l and XYZ, are considered and the relationships

between independent velocities due to the MS in each mode and

actuated joint rates are obtained. From Eqs. (40) and (47a), the

relationship between the linear actuated joint rates, _q, and the

angular velocities of the MS, xs, can be calculated as

Jinv _q ¼ Jrotxs ð49Þ

where Jrot ¼ ðJdir XJ
�1
vp Josþ Jdir YÞ is a 3�3 matrix and is called non-

pure rotational Jacobian matrix. Additionally, the relationship

between the linear actuated joint rates, _q, and the translational

tool tip velocity, vP, can be expressed as

Jinv _q ¼ JtransvP ð50Þ

where Jtrans ¼ ðJdir XþJdir YJ
�1
os JvpÞ is also a 3�3 matrix and is called

non-pure translational Jacobian matrix. There are several advan-

tages in splitting the overall Jacobian of constraint matrix and

obtaining Eqs. (49) and (50). The resulting square, 3�3, non-pure

rotational and non-pure translational Jacobian matrices will now

better enable trajectory planning as well as obtaining the singu-

larities in non-pure rotational and non-pure translational modes,

respectively.

6.2. Acceleration inversion

In this subsection, the relationship between the translational

and angular acceleration of the MS and the LRs velocity vectors

are obtained. To do this, both sides of Eq. (31) are time differ-

entiated to yield:

€qi
bqi ¼ ð €b i

bbiþxs � _b i
bbiÞþð _xs � biþxs � _b i

bbiþxsðxs � biÞÞ
�ð _xs � hþxs � ðxs � hÞÞþ _vP for i¼ 1,2,3 ð51Þ

The values €qi and
€bi represent the ith actuated joint accelera-

tion and ith passive prismatic joint linear acceleration, respectively.

Fig. 13. Definition of the three unit vectors bmi.

Fig. 14. Definition of the three unit vectors bki .
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Additionally, vectors _xs and _vP denote angular acceleration vector

of the MS and Cartesian acceleration vector for the tool tip,

respectively. We know that

A� ðB� CÞ ¼ ðA:CÞB�ðA:BÞC and A� B¼�B� A ð52Þ

Using above relations, Eq. (51) can be rewritten as follows:

€q i
bqi ¼ €b i

bbiþ2xs � _b i
bbiþ _xs � ðbi�hÞþðxs:ðbi�hÞÞxs

�ðxs:xsÞðbi�hÞþ _vP for i¼ 1,2,3 ð53Þ

By substituting vector _b i
bbi from Eq. (31) into above equation,

we will have

€qi
bqi ¼ €b i

bbiþ2xs � _q i
bqi�2xs � ðxs � ðbi�hÞÞ�2xs � vPþ _xs � ðbi�hÞ

þðxs:ðbi�hÞÞxs�ðxs:xsÞðbi�hÞþ _vP for i¼ 1,2,3 ð54Þ
Consider relationship (52), we can rewrite the above equation as

€q i
bqi ¼ €b i

bbiþ2xs � _q i
bqi�2xs � vPþ _xs � ðbi�hÞ�ððxs:ðbi�hÞÞxs

þðxs:xsÞðbi�hÞþ _vP for i¼ 1,2,3 ð55Þ

To eliminate the linear acceleration vectors of the passive

prismatic joint, €b i
bbi, both sides of Eq. (55) are dot multiplied with

unit vectors, bmi, defined in Eq. (32). We can write

€q i
bmi:bqi ¼ ððbi�hÞ � bmiÞ: _xsþ bmi: _vPþ2ðð _qi

bqi � bmiÞ�ðvP � bmiÞÞ:xs

þðxs:xsÞ bmi:ðbi�hÞ�ðxs:ðbi�hÞÞ bmi:xs for i¼ 1,2,3 ð56Þ

Finally, the three above scalar equations can be written in

matrix form as follows:

Jinv €q ¼ Jdir
€XþNxsþM ð57Þ

where €q ¼ ½ €q1
€q2

€q3 �T and €X ¼ ½ _vP xs �T are the actuated

joints and MS acceleration vectors, respectively. Additionally,

_vP ¼ ½ €x €y €z �T and _xs ¼ ½ €y €j €l �T represent linear and angu-

lar accelerations of the MS, respectively. Finally, the matrices N

and M are defined as

N¼
2ðð _q1

bq1 � bm1Þ�ðvP � bm1ÞÞT

2ðð _q2
bq2 � bm2Þ�ðvP � bm2ÞÞT

2ðð _q3
bq3 � bm3Þ�ðvP � bm3ÞÞT

2
4

3
5
3�3

,

M¼
ðxs:xsÞ bm1:ðb1�hÞ�ðxs:ðb1�hÞÞ bm1:xs

ðxs:xsÞ bm2:ðb2�hÞ�ðxs:ðb2�hÞÞ bm2:xs

ðxs:xsÞ bm3:ðb3�hÞ�ðxs:ðb3�hÞÞ bm3:xs

" #

3�1

ð58Þ

Upon completion of velocity inversion analysis, all speed compo-

nents of both MS and actuators are determined. Therefore, Eq. (57)

provides the relationship between angular and linear acceleration of

the MS with linear acceleration of the three actuators.

7. Singularity analysis

In singular configuration, the mobile platform may instanta-

neously gain one or more unconstrained degrees of freedom.

Therefore, in singular configurations, one or more DOFs of the

moving platform are not controllable. Singularities are undesir-

able situations in manipulator operation for both motion and

force control. For example, in some singular configurations; the

moving platform can have motion even if all actuated joints are

locked. Trajectory planning is another application where singu-

larity information is used. Clearly, trajectories that do not pass or

come close to singular points are desirable.

Singularity limits and separates the workspace of a mechan-

ism. Therefore, a usable robot workspace may be obtained by

eliminating all the singular configurations from the theoretical

workspace. The simplified velocity relation introduced in Eq. (39)

can be used in deriving the singularity equation of the parallel

manipulators. Algebraically, a singularity occurs when the overall

Jacobian matrix, J, Eq. (39), is not of full rank or when the

determinant of this matrix becomes zero. However, using the

overall Jacobian matrix to analytically determine the singularity

equations is difficult. To overcome this, the traditional form of

velocity relation, Eq. (37), is used which allows finding the

singularity conditions.

In this paper, the singularities of the 3-PSP are classified into three

categories which are defined by when Jinv, Jdir or both become

singular. Additionally, the constraint singularity using Eqs. (48a) and

(48b) is derived and singular configurations is investigated.

7.1. The first type of singularity—Inverse Kinematic Singularity (IKS)

This type of singularity, called IKS, occurs whenever Jinv
becomes singular but Jdir is invertible. As shown in Eq. (38),

matrix Jinv is a square matrix while matrix Jdir is not. The first type

of singularity occurs when

detðJinvÞ ¼ 0 , but RankðJdirÞ ¼ 3 ðfull rankÞ

From Eq. (38) this condition requires

bmiUbqi ¼ 0 for i¼ 1 or 2 or 3

There are three conditions that can fulfill the above relation.

These include, when either bmi, or bqi are zero or both bmi and bqi

are perpendicular to each other. The values of the unit vectors bmi

and bqi by definition are not zero. The only remaining condition is

when both unit vectors bmi and bqi are perpendicular to each other.

Theoretically, this condition can occur whenever one of the LR’s

lengths becomes infinite. In reality, because the motions of the

LRs are limited, this condition cannot occur. Therefore the first

type of singularity does not occur for the 3-PSP robot.

7.2. The second type of singularity—Direct Kinematic Singularity

(DKS)

This type of singularity, called DKS, occurs whenever Jdir
becomes singular but Jinv is invertible. The second type of

singularity occurs when

detðJinvÞa0, but RankðJdirÞo3

Note that Jdir is not a square matrix and if RankðJdirÞ ¼ 3 then

Jdir is a full rank. Therefore, the second type of singularity occurs

whenever rank of matrix Jdir is equal to 1 or 2. Theoretically, this

type of configuration is reached whenever two rows of Jdir are

linearly dependent. First, consider unit vector bmi in matrix Jdir . By

inspection of Eq. (32), we can see that the unit vectors bmi in

matrix Jdir are parallel. Therefore, these unit vectors are always

linearly dependent.

Next, consider vectors ðbi�hÞ � bmi in matrix Jdir . If two of three

vectors ðbi�hÞ � bmi are also parallel then two rows of the matrix

Jdir will be linearly dependent. Therefore, if the second condition

was to hold, then matrix Jdir will not be full rank. However, the

structure of the MS does not allow any two of three vectors

ðbi�hÞ � bmi to be parallel. Therefore the second type of singular-

ity also does not occur for the 3-PSP robot.

7.3. The third type of singularity—Combined Singularity (CS)

This type of singularity, called CS, occurs whenever both Jinv
and Jdir simultaneously become singular. For this purpose, the

third type of singularity occurs when:

detðJinvÞ ¼ 0 and RankðJdirÞo3

Generally, this type of singularity can occur only for manip-

ulator with special kinematic architecture and it has a slightly

different nature than the first two since it depends on the

configuration and the architecture of the manipulator [1].

We have this type of singularity whenever the two previously
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defined singularities occur simultaneously. Therefore, from Eq.

(38) this requirement implies,

detðJinvÞ ¼ 0 ) bmiUbqi ¼ 0 for i¼ 1 or 2 or 3

RankðJdirÞo3 )
bmi ¼ 0, for i¼ 1 or 2 or 3

or,

ðith row of JdirÞ ¼ ðjth row of JdirÞ

8
><

>:

If the two above requirements occur simultaneously, the third

type of singularity will occur. For this purpose, one of the three

vectors bmi must have zero components. However, this condition

also does not occur as bmi is a unit vector and cannot be zero.

7.4. Constraint singularity

The constraint singularity occurs whenever Jc become singular

[31,32]. For this purpose, this type of singularity occurs when:

RankðJcÞo3

As shown in Eq. (48b), this type of singularity can occur

whenever any one of the two following conditions is met:

Condition #1: One of three unit vectors bki has zero components.

This cannot occur as bki are unit vectors and cannot be zero.

Condition #2: Two rows of matrix Jc are linearly dependent.

This can occur whenever two of three unit vectors bki are

linearly dependent and the corresponding two of the three

vectors ðbi�hÞ � bki are also linearly dependent. This can occur

when tool length is zero, h¼0, and all three guide planes P4, P5

and P6 are perpendicular to the top fixed platform DA1A2A3.

This implies the lengths of all three LRs are equal, (q1¼q2¼q3)

(see Fig. 15(a)). To better explain this singularity concept of

force is used. As shown in Fig. 15(b), forces in x-direction are

not experienced by the motors of the 2-link robot. Similarly, as

shown in Fig. 15(c), forces in x- and y-directions are not

experienced by motors of the 3-PSP.

Additionally, we can conclude that when the constraint singularity

occur, both Jrot ¼ ðJdir XJ
�1
vp JosþJdir YÞ and Jtrans ¼ ðJdir X þ Jdir YJ

�1
os JvpÞ

are not computable. These conditions occur whenever detðJvpÞ ¼ 0

and detðJosÞ ¼ 0.

8. Workspace analysis of 3-PSP parallel robot

The workspace of the 3-PSP can be determined based on

the required application. For example, one may choose the

non-pure translation, non-pure orientation, or the coupled

mixed-type workspace. In this section two modes of opera-

tion are selected, XYZ and yjZ, and the reachable workspaces

is obtained using a numerical approach based on discretiza-

tion of the MS variables. The robot parameters of ai and h are

considered to be 181 mm and 80 mm, respectively. Addition-

ally, the range of LRs motion is considered to be 0rqir40 cm.

The InvKin solution for each Cartesian node is calculated

and robot workspace is obtained. The following algorithm is

used:

Algorithm#1 for obtaining the workspace using InvKin

For zP ¼ 0 to 40 cm, step size¼2 cm (20 layers)

For xP¼�10 to 10 cm, step size¼0.1 cm

or y¼751 to �751, step size¼11

For yP ¼�10 to 10 cm, step size¼ 0:1 cm

or j¼ 751to�751, step size¼ 11

Solve Invkin of the 3-PSP parallel manipulator

(Calculate qi,bi,l and y,j or xP ,yP using inverse kinematics)

If 0rqir40 cm and errorr10�5 cm

xP , yP or y,j are on the workspace

Else, are not on the workspace;

End if

End

End

End

Note that, the range considered for values xP and yP as well as y

and f used by the algorithm are larger than, the limit allowed by

Fig. 15. The inverse non-pure translational singularity: (a) singular configuration, condition #2, (b) concept of non-pure translational singularity using force as

explanation, and (c) 2-link robot in singular configuration.
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the robot. The larger range insures all points are included in

available workspace for the robot.

A second method for obtaining workspace based on DirKin is

also presented. In Section 5, we showed that DirKin of this chain

has a unique solution. This important property of the 3-PSP is

used to obtain the workspaces. For this purpose another numer-

ical algorithm, is presented

Algorithm#2 for obtaining the workspace using DirKin

For q1¼0 to 40 cm, step size¼0.1 cm

For q2¼ 0 to 40 cm, step size¼0.1 cm

For q3¼0 to 40 cm, step size¼0.1 cm

Direct kinematics of the 3-PSP parallel manipulator

(Calculate xP ,yP ,zP and y, j using direct kinematics)

End

End

End

Using the second algorithm, there is no need to filter the

answers because all answers are within the workspace. The

reachable workspace related to rotational and translational para-

meters of MS, (y,f,zP), is shown in Fig. 16(a). Additionally, the

reachable workspace related to translational parameters of tool

tip, (xP,yP,zP), both with and without considering length of the

tool, h, is shown in Figs. 16(b) and (c).

Consider Figs. 16(a) and (b). A direct comparison between the

two workspaces cannot be made due to the different units

used for the axis. However, comparison between these two

graphs provides a perspective for the range of motion in its

corresponding workspace. Using this viewpoint, we may conclude

that the ranges of values (motion) for variables in the yfZ

workspace are significantly larger than the corresponding XYZ

workspace. Furthermore, as expected, there is no control on MS

orientation in the XYZ mode, therefore it is possible that

small changes in XYZ variables result in large changes in MS

orientation. Therefore, we can conclude that the 3-PSP is better

Fig. 16. Reachable workspace: (a) coupled mixed-type workspace (R2T1, y,f,zP), (b) non-pure translation workspace (xP,yP,zP) without tool, h¼0 and (c) non-pure

translation workspace (xP,yP,zP) with tool, h¼0.08 m.

Fig. 17. Reachable workspace related to translational parameters of tool tip (xP,yP,zP) in plane zP¼20 cm: (a) without tool, h¼0 and (b) with tool, h¼8 cm.
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suited to be operated in the y f Zmode. The effect of adding a tool

with specific height, h¼8 cm, on the XYZ workspace is also

investigated (see Figs. 16(b) and (c)). At the first glance, one

may conclude that the workspace is significantly enlarged.

However, consider the reachable workspace obtained in plane

zP¼20 cm (see Fig. 17(a) and (b)). As can be seen, even though the

overall workspace area is increased, from Figs. 17(a) and (b),

the effective area is only slightly increased. In Fig. 17(b), the

robot is restricted to pass through point E, F and G in order to

reach its full potential. Therefore, the internal triangle DEFG is its

effective workspace which is only slightly larger than triangle in

Fig. 17(a).

9. Conclusion

A spatial type of the 3-PSP parallel manipulator with specific

architecture is introduced. The robot has three degrees of freedom

which can be selected among the six, x,y,z,y,j and l, MS vari-

ables. Two modes of operations, yfZ and XYZ, are considered. For

these two modes, position and workspace analysis is thoroughly

presented. For the direct kinematics, a geometrical approach

yielding a unique solution is presented. For the inverse kine-

matics, a closed form solution for the XYZ mode yielding to two

answers is presented. Two examples for InvKin and one example

for DirKin problem are supplied. In each example, two states of

with and without tool height are studied and graphically illu-

strated. Next, velocity and acceleration inversions are presented

in invariant form and the non-pure rotational and non-pure

translational Jacobian matrices are defined to derive the relation-

ship between angular and translational velocities of the moving

platform and the actuated joint rates. Additionally, using non-

pure rotational and non-pure translational Jacobian matrices,

Jacobian of constraint is defined. The three types of conventional

singularities are analyzed. The analysis shows that, the 3-PSP

robot is free of the three conventional, architecture singularities.

Additionally, the constraint singularity analysis is presented for

the 3-PSP robot using Jacobian of constraint. It is shown that the

3-PSP parallel robot has a constraint singularity when the lengths

of all three LRs are equal.

Finally, the robot reachable workspaces are determined. It is

shown that the ranges of motion for variables in the yjZ work-

space are significantly larger than the corresponding XYZ work-

space. Furthermore, the yjZ mode is free of singularities. It is

therefore, concluded that the 3-PSP is better suited to be operated

in the yjZ mode.

The main contributions of this paper are, obtaining an analy-

tical solution for the Invkin in XYZ mode, obtaining a numerical

solution for the Invkin in yjZ mode, obtaining an analytical

solution for Dirkin with unique solution, presenting the velocity

and acceleration inversion, obtaining the direct and inverse

Jacobians, Jacobian of constraints as well as introducing non-

pure rotational and non-pure translational Jacobian matrices,

investigating the conventional types of singularities as well as

constraint singularity using the Jacobian of constraints matrix,

presenting two methods for obtaining robot workspaces in two

operational modes and finally investigating the effect of tool

length on the XYZ workspace.

Appendix A

Extracting Eq. (10) and substituting rotation matrix compo-

nents from Eq. (6), we can obtain a set of 9 nonlinear algebraic

equations called constraint equations as

cðqÞ ¼ 0 ðA:1Þ

where

c1 ¼ xPþb1ðcos jÞcos lð Þ
	 


�hðsin yÞsin lð Þþsin j
	 


cos yð Þcos lð Þ
	 


�a¼ 0

c2 ¼ yPþb1ðcos jÞsin lð Þ
	 


�hð�sin yÞcos lð Þþsin j
	 


cos yð Þsin lð Þ
	 


¼ 0

c3 ¼ zPþb1ð�sin jÞ
	 


�hðcos jÞcos yð Þ
	 


�q1 ¼ 0

c4 ¼ xP�
1

2
b2ðcos jÞcos lð Þ

	 

þ

ffiffiffi
3

p

2
b2ð�cos yÞsin lð Þþsin j

	 

sin yð Þcos lð Þ

	 


�hðsin yÞsin lð Þþsin j
	 


cos yð Þcos lð Þ
	 


þ 1

2
a¼ 0

c5 ¼ yP�
1

2
b2ðcos jÞsin lð Þ

	 

þ

ffiffiffi
3

p

2
b2ðcos yÞcos lð Þþsin j

	 

sin yð Þsin lð Þ

	 


�hð�sin yÞcos lð Þþsin j
	 


cos yð Þsin lð Þ
	 


�
ffiffiffi
3

p

2
a¼ 0

c6 ¼ zP�
1

2
b2ð�sin jÞ

	 

þ

ffiffiffi
3

p

2
b2ðcos jÞsin yð Þ

	 

�hðcos jÞcos yð Þ

	 

�q2 ¼ 0

c7 ¼ xP�
1

2
b3ðcos jÞcos lð Þ

	 

�

ffiffiffi
3

p

2
b3ð�cos yÞsin lð Þþsin j

	 

sin yð Þcos lð Þ

	 


�hðsin yÞsin lð Þþsin j
	 


cos yð Þcos lð Þ
	 


þ 1

2
a¼ 0

c8 ¼ yP�
1

2
b3ðcos jÞsin lð Þ

	 

�

ffiffiffi
3

p

2
b3ðcos yÞcos lð Þþsin j

	 

sin yð Þsin lð Þ

	 


�hð�sin yÞcos lð Þþsin j
	 


cos yð Þsin lð Þ
	 


þ
ffiffiffi
3

p

2
a¼ 0

c9 ¼ zP�
1

2
b3ð�sin jÞ

	 

�

ffiffiffi
3

p

2
b3ðcos jÞsin yð Þ

	 

�hðcos jÞcos yð Þ

	 

�q3 ¼ 0

ðA:2Þ
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Glossary

B{x,y,z}: The fixed coordinate frame which is attached to point O in top fixed
platform;

T{u,v,w}: The moving coordinate frame which is attached to point T in the center
of MS;

a: Distance between the center point O of fixed triangle DA1A2A3, and point Ai;
h: Length of the tool;
Bai : The position vectors locate corners of the fixed base, Ai, in frame {B}.;

Bqi : The position vectors which are specified length of each linear rod (LR);
Bt: The position vector of the end-effector, point T, with respect to {B};
Bp: The position vector of the tool tip, point P, with respect to {B};
T
h: The position vector which connects point T to point P;

Bsi : The position vectors of the three spherical joints in frame {B};
T
bi : The position vectors connect the end-effector to the ith S-joint, Si in frame {T};

Bei : The position vectors connect points Ai to T in frame {B};
r: Number of movable rigid bodies (for the 3-PSP parallel robot is equal to 13);
m: Number of one-DOF joints (for the 3-PSP parallel robot is equal to 15);
y,j,l: Rotational variables about the x-, y- and z-axis (Euler angles);
xT , yT , zT : Translational variables of the MS center along the x-, y- and z-axis;
xP , yP , zP: Translational variables for the Tool tip along the x-, y- and z-axis;
q1 , q2 , q3: Translational variables for the linear rods, LRs;
b1 , b2 , b3: Translational variables for the MS branches;
B
TR: The rotation matrix to transfer a vector defined in {T} to {B};
u, v, w: Three unit vectors along the u-, v- and w-axis of the moving coordinate

frame {T};
ymi: The values for rotational position of motors;
N: Gearbox transmission ratio;
lb: The lead of the ball screw;
snormal: The normal vector to the MS plane;
bsnormal: The unit vector along the normal vector to the MS plane, snormal;
sij: The position vectors which connect the S-joint Si to the S-joint Sj;
{A}: The auxiliary coordinate frame, attached to the top fixed platform, at the

point A1;
{S}: The auxiliary coordinate frame, attached to the moving platform, at the point

S1;
j
i
T: The transformation matrix which transfers frame {i} to frame {j};
j
i
R: A 3�3 rotation matrix which rotates frame {i} to frame {j};
j
it: A 3�1 vector that locates origin of {i} relative to origin of {j};
st: The position vector of point T in frame {S};

_q: Vector of the linear actuated joint rates, ½ _q1
_q2

_q3 �T ;
_X: Vector of the MS velocities, ½ vP xs �T ;
_q i: The values of ith actuated joint rate;
_b i: The values of ith passive prismatic translational joint rate;

vP: The Cartesian velocity vector for the tool tip, ½ _x _y _z �T ;
xs: The angular velocity vector of the MS, ½ _y _j _l �T ;
bqi: The unit vectors along ith LRs;
bbi: The unit vectors along ith branch of the MS;
bmi: The three unit vectors which are all perpendicular to the MS plane;
bki: Unit vectors are perpendicular to planes containing the three vectors, qi ,

ei and bi;
Jinv, Jdir: The inverse and direct Jacobian matrices;
J: The overall Jacobian matrix;
Jc: The Jacobian of constraints;
Jrot, Jtrans: The non-pure rotational and the non-pure translational Jacobian

matrices;
_q: Vector of the actuated joint linear acceleration, ½ _q1

_q2
_q3 �T ;

_X: Vector of the MS acceleration, ½ _vP _os �T ;
_q i: The values of ith actuated joint acceleration;
_b i: The values of ith passive prismatic joint linear acceleration;

_vP: The Cartesian acceleration vector for the tool tip, ½ _x _y _z �T ;
_xs: The angular acceleration vector of the MS, ½ _y _j _l �T .
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