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The operator structure of the collective coordinate associated with extended objects in 
quantum field theory is discussed in the context of renormalized perturbation theory. 

§ 1. Introduction 

In recent years, considerable effort has been devoted to the understanding of 
the structure of quantum field theories with extended objects.1) A remarkable 
difference of such theories from the conventional field theory of homogeneous 
systems is the appearance of quantum mechanical degrees of freedom in addition 
to the usual particle-like modes. 2 ),3) These quantum mechanical modes describe 
the quantum mechanical motion of an extended object. Particularly important 
operators are the position operators which take care of the quantum fluctuation 
of the position of the extended object as well as the translational invariance of the 
theory. 

The analysis of a quantum field theory with extended objects must take into 
account the presence of these position operators. Two methods have been 
proposed so far. One is the collective coordinate method,4) in which the 
Heisenberg field operator and its canonical conjugate are decomposed into a new 
set of Heisenberg operators, namely the collective coordinate operator X( t) and 
field operator x(x, t) and their conjugates p( t) and Jr(x, t), respectively. This 
decomposition is accompanied by certain constraints which define X( t) and p( t). 

It is required that X( t)--> X( t) + a induces the space translation of the Heisenberg 
operators and that X( t) and x(x, t) are independent as Heisenberg operators. 
The other method expresses the Heisenberg operators in terms of the physical 
operators or asymptotic fields which construct the physical Hilbert space.3) This 
expression is called the dynamical map. 

In this method it has been shown that the set of physical operators consists 
of two mutually commuting sets (q, p) and ((l, (l t), where q is the quantum 
mechanical position-operator (quantum coordinate) and p is its canonical con­
jugate while (l and (l t stand for the annihilation and creation operators of 
particle-like modes respectively.3),5) Thus, the Hilbert space is found to be a 
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1620 C. Semenoff, H. Matsumoto and H. Umezawa 

direct product of the Fock space of the particle-like modes and the quantum 
mechanical realization of (q, p). A remarkable fact is that, when P is the total 
momentum of the Heisenberg field and when it is expressed in terms of physical 
operators, the result is the simple relation P = p, implying that P commutes with 
a and at. In the dynamical map, q always appears in the combination (x - q), 

and the translation of the Heisenberg operator is induced by q .... q + a. It was 
shown in Ref. 3) that it is always possible to find a representation where the 
quantum coordinate is given (in (1 + l).dimensions) by 

where M is the generator of Lorentz transformations and H is the Hamiltonian. 
This position operator is similar to the Newton-Wigner position operatorS) which 
represents the center of mass in configuration space of a quantum system. 

The purpose of this paper is to make a comparison of the above two methods 
and to see the relation between the collective coordinate X( t) and the quantum 
coordinate q by an explicit calculation of the dynamical map of X( t). These 
two operators have a similarity in that they always appear in the combination x 
- X( t) ~ x - q. This however does not immediately imply that the dynamical 
map of X( t) is q. Indeed, a central result of this paper is that, when the 
Heisenberg operators {X(t), p(t)}'and {X(x, t), 7f(x, t)} are expressed in terms 
of physical operators, X(t) contains not only (q, p) but also the annihilation and 
creation operators (a, at) of the particle-like modes, while p( t) does not contain 
(a, at). This means that X(t) does not commute with (a, at), and therefore 
that X( t) cannot be used as an operator to separate the quantum mechanical part 
from the Hilbert space. The dependence of X(t) on a and at remains even when 
the quantum mechanical operators (q, p) are disregarded. 

The computation of the dynamical map of the Heisenberg operators is quite 
complicated. The essential procedure is that the dynamical map of ¢ is con­
structed in such a way that it is consistent with the Heisenberg equation and the 
equal time commutation relations in a' renormalized perturbative expansion. 
The dynamical maps of the operators {X(t), p(t), X(x, t), 7f(x, t)} of the collec­
tive coordinate method are then computed using ¢(x, t) and the constraints which 
define X( t) and pC t). In this perturbative computation the lowest order term of 
XU) is found to be q. This fact makes X(t) useful in perturbative calculations 
since one can identify the first order part of XU) as q(t). 

The following is the program of this paper. In the next section, the dynami­
cal map of the Heisenberg operator in a one-component scalar field theory in (1 
+ I)-dimensions is constructed. This dynamical map was already computed in 
the tree approximation in Ref. 5). In this paper that computation is extended to 
include one-loop corrections. At this stage the realization of the Heisenberg 
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operators in the physical Hilbert space is shown to be consistent with the 
Heisenberg field equation and the equal time commutation relations in a re­
normalized perturbation expansion. In § 3 using the dynamical maps con­
structed in § 2 and the definitions of the Heisenberg operators of the collective 
coordinate method, the dynamical maps of {X(t), p(t), X(x, t), 7f(x, t)} are 
constructed. Section 4 is devoted to the conclusion. 

§ 2_ The dynamical map 

Consider a one-component scalar field in (1 + 1 )-dimensions with field equa-
tion 

(2-1) 

and equal time canonical commutation relation 

(2-2) 

Consider a power counting parameter which is introduced by the substitution.1' 
[¢(x)]--->,.t-2.1'[;l¢(x)] where.1' is the Lagrangian density which leads to Eq. 
(2-1). Then, the field equation becomes 

(2-3) 

and the Heisenberg field, ¢(x), can be expanded as 

00 

¢(x) = ~ ;In¢n(x). 
n=-l 

(2-4) 

The quantity ¢-l(X) is a classical field satisfying the classical field equation 

(2-5) 

In the following, the case where ¢-l(X) is a static topological soliton solution of 
Eq. (2-5) will be considered. 

Substitution of ~q. (2-4) into (2-3) leads to 

where 

The quantity F[¢] must contain counterterms which are necessary for renormali­
zation. These counterterms are of higher order in ;l and are assumed to be the 
same as those for the quantum field theory of Eqs. (2-1) and (2-2) with no 
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extended objects7) (i.e., when cf;-I =0). They contribute to Fl[cf;-d by terms of 
higher order in A, 

(2'7) 

Since the quantum corrections arise from the contractions of pairs of fields, m in 
Eq. (2'7) will always be even. Combining Eqs. (2'6) and (2'7) leads to 

(02 + m2)cf;n(x) = L: -h-F1m[cf;-I(X )]cf;aJx ) ... cf;a/x), (2'8) 

where 1+m+al+···+al=n+1; ai, ... , a120. The first few orders of Eq. (2'8) 
are 

(2'9) 

{02+ m2~ FIO[cf;-I(x )]} cf;1 (x ) =Fo2[cf;_I(x )]+ F20[cf;-I(x )]cf;02(X )/2!, (2'10) 

{02+ m2~ FlO [cf;-l(X )]}cf;2(X )=FI2[cf;_I(x )]cf;o(x)+ F30[cf;-I(x )]cf;03(X )/3! 

+ F20[cf;-1(X)]~ [cf;o(x), cf;1(X )]+ . (2·11) 

In Ref. 5) it was shown that the solution of Eq. (2'9) must be taken as 

(2'12) 

where q is the quantum coordinate, p is the total momentum of the system and 
¢o(x) represents the particle-like excitations of the system, 

(2'13) 

where Ui(X) and Uk(X) are the bound and scat~ering state wavefunctions respec­
tively. The physical operators {q, p, ¢o(x), ¢o(x)} obey the algebra 

[q,p]=i, 

[¢o(x), ¢o(Y )]xo~yo= i{ J(x ~ y)~ 1cf;~1(X )cf;~I(Y)} = i 5]> (x , Y) 

with all other combinations commuting and 

(2'14) 

(2'15) 

(2'16) 

(2'17) 
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Position Operators for Extended Objects in Quantum Field Theory 1623 

The primes in the above equations denote space derivatives and the dots denote 
time derivatives. In the following, ¢(x) denotes the field ¢(x) when q and pare 
disregarded. 

The computational technique can be summarized in the following steps: 
(i) Having computed the dynamical map to some given order, use Eq. (2'8) 

to compute the dynamical map to the next order. 
(ii) At each order, add solutions of the homogeneous equation, {a 2 + m2 

- FlO[¢-l(X )]}¢n =0, until the following relation is satisfied: 

(2'18) 

This condition guarantees that x and q always appear in the combination x - q 

and therefore that q is the quantum coordinate for position. 
(iii) Add q-independent solutions of the homogeneous equation until the 

total canonical momentum calculated using the equation 

(2'19) 

satisfies 
PO=p, Pn>o=O. 

A straightforward calculation following the above scheme and using Eqs. 
(2' 9) ~ (2 '12) leads to the following dynamical map: 

¢(X)={l-(q+ ftt- ~[(X-q)'P2/M2]+_P;Ot+···)a: 

+-&((q+ fttY-[q+ ft t ,p2/2M21x+···)::2 

__ 1 ((q+L t)3 + ... )L+ ... )¢ leX) 
3! M ax 3 

-

_(-.l.[L X-q] -~t+ ... )£ 
2 M' + 2M2 at 

+(-.l.[L q+Lt] x + ... )~+ ... }¢ (x) 
2 M' M + axat ° 

+ { 1 - ( ( q + ft t + ... ) a: - ( ftx + ... ) ~ + ... } ¢l (x) 
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(2'20) 

where 

and 

¢I (x) = (loCt )¢'--I(X) 

+ jd2yg(x, y){Fo2[¢_I(y)]+ F2°[¢_I(y)]¢02(y)/2!}, 

¢2(X) = (ll( t )¢'--I(X) 

+ jd2yg(x, y){F/[¢-I(y )]¢o(y)+ F30[¢_I(y)]¢03(y )/3! 

1f{(· . 1·· (lICt) = 2M dx x [¢I(X), ¢o(x)]+-3[¢I(X), ¢o(x)]+ 

(2'21) 

(2'22) 

(2'23) 

- ~ [¢I(X), ¢~(x)]+- j Fo2[¢_I(x)]¢I(x»)- ~ [¢I(X), ¢o'(X)]+}, 

(2'24) 

(2·25) 

(2'26) 

A detailed account of the calculational method used to arrive at Eq. (2' 20) 
can be found in Ref. 5). The solution of the zero mode problem consists of the 
computation of the quantities (loCt) and (ll (t) and is also outlined in Ref. 5). It 
can be shown that, given equations (2'14) and (2'15), the commutation relation 
(2'2) is satisfied by the above solution. In Eqs. (2'23) and (2'26), V02[¢_I(X)] is 
the one-loop counterterm which occurs in the Hamiltonian density, 

(2'27) 

To the order considered, Eq. (2·20) contains the one-loop counterterms. 
When the operator products are normal ordered, the contractions combined with 
the counterterms constitute the one-loop corrections to the soliton solution, the 
physical particle wavefunction and the physical particle energy.B) 

From Eq. (2'20) the generalized coordinates are 
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Position Operators for Extended Objects in Quantum Field Theory 1625 

(2'28) 

1 [ P ] p2 T=t-z M,(x- q ) ++2M2t +···. (2'29) 

The spatial generalized coordinate contains the renormalized Hamiltonian, Ii 0, 

of the physical particles and therefore F<O!X!O> F is a finite renormalized quantity. 
This result explicitly confirms the general expression for the generalized coordi­
nate given in Ref. 3). 

In the next section the collective coordinate will be examined. 

§ 3. The collective coordinate 

The collective coordinate, X( t), and its conjugate momentum, p( t), are 
defined by the ansatz 

¢(X) = ¢-l(X - XU» + x(x - XU), t), 

¢(x)=Ilo(x)=Jr(x-XU), t) 

- 21- [¢'-l(X - X(t» 1 +~/M (p(t)+ jdYX'(Y)Jr(Y» 

+(pU)+ jdYJr(Y)x'(Y» 1 +~/M ¢'-l(X- XU»] 

with the constraints 

where 

and M is defined in Eq. (2·17). 
It can be shown9

) that the algebra 

[X(X), Jr(Y) ]xo=yo = i ~(x, y), 

[X(t), p(t)]= i , 

(3'1) 

(3'2) 

(3·3) 

(3'4) 

(3'5) 

(3'6) 

[XU), X( t) It=xo = [XU), JrU) ]t=xo = [p(t), x(x ) ]t=xo = [pU), Jr(x) ]t=xo = 0 , 

(3'7) 

together with Eq. (3'1) ~ (3' 3) lead to the equal time commutation relation (2' 2). 
Equations (3·1)~(3·3) can be used, together with Eqs. (2'20) to write the 
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1626 C. Semenojf, H. Matsumoto and H. Umezawa 

dynamical maps of the operator set {XU), pU), x(x), n(x)}. A straightforward 
calculation using Eqs. (3'1) ~ (3' 3) and (2' 20) leads to 

pU)= p, (3'8) 

_ ~ _ p
2
a ~J ' -0 _ _~L p1to 

XU)-q+ Mt 2M2 + M2 dx X¢-I(X)¢O(X) (loU) 2 M3 t-~t 

- 2~3 f dx [(x - a)¢:"l(x )¢o'(x) + X2¢:"I(X )/jo(x)] 

+ };2fdx X¢:"I(X)¢I(X) 

+ ~ };3[fdx X¢:"I(X)¢O(x), fdY¢':I(Y)¢O(Y)]+ 

-21 [(lOU), fdX¢':I(x)¢o(x)l-(lIU)+"" 

X(x) = ¢o(x)+ 2~2 (x - a)¢:"l(x) - ~ f dy ~(x, Y )y¢o(y) + :tl(X) 

+ 2~2 f dy ~(x, y )[(y - a) ¢o'(y) + y2 ¢o(y) - t¢o(y)] 

- ~fdY ~(x, Y)Y¢I(Y) 

+ 2~2 [fdy fP(x, y)¢o'(y), fdz Z¢:"I(Z)¢O(z)]+ 

- ~ [fdy ~(x, y)¢o'(y), (loU)l + :t2(X)+"', 

n(x)= ¢o(x)- ~fdy ~(x, y)[¢o'(y)+y¢o(y)]+ Jl(y) 

-2~3[(x-a)¢':I(X)+ ~ ¢:"I(X)] 

(3'9) 

(3'10) 

+ 2~2 fdY ~(x, y )[(3y- a) ¢o'(y)+ ¢o(y)+ y2J;~(y)- t¢o(y)] 

(3'11) 
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Position Operators for Extended Objects in Quantum Field Theory 1627 

where 

(3'12) 

and 

(3'13) 

Equation (3'8) is in fact exact. 
It can be verified by direct computation that the commutation relations (2'l4) 

and (2'15) lead, through Eq. (3'8)~(3'1l) to the algebra of Eq. (3·5)~(3·7). 
An interesting feature of the collective coordinate, X( t), is that it has a 

complicated time dependence, quite different from the quantum coordinate 

(3'14) 

which satisfies 

Q(t)=O. 

The Hamiltonian, H, is given by j p2 + (M + HO)2 . The complicated time 
dependence of X( t) arises from the mixture of quantum mechanical operators 
and particle-like fields it must contain in order that the condition (3'3) is satisfied. 

In fact, X ( t) contains parts which are purely particle-like. Even when q and 
p are disregarded, X(t) has the form 

(3'15) 

where ao( t) and al ( t) are defined in Eqs. (2' 23) and (2' 24). These parts are time 
dependent and therefore cannot be removed by a time-independent canonical 
transformation. 

In light of this property of X( t), great care must be taken in the computation 
of explicitly space-dependent renormalized quantities in the collective coordinate 
formalism, as 

(3'16) 

and 

will contain contractions between X( t) and the other operators in the bracket as 
well as those within X(t). 
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§ 4. Discussion 

The relationship between the quantum coordinate and the collective coordi­
nate has been discussed in detail from the point of view of renormalized perturba­
tion theory. The quantum coordinate is a position operator which is related to 
the center of mass of a quantum system. The quantum coordinate and the total 
momentum form a quantum mechanical set of operators which are independent of 
the physical particle fields. This means that the position of an extended object 
can be chosen without interference from the quanta at one instant. The time 
evolution of the position is then given by 

Q(t)=q+Qt, (4'1) 

where 

Q=i[H, q]=pH- 1 (4·2) 

and 

Q=O. (4'3) 

The collective coordinate is, on the other hand, a combination of the quantum 
coordinate and the physical particle fields as seen in Eq. (3' 9). It has a com­
plicated time dependence due to the presence of the physical fields. Even though 
X( t) and x(x) commute at equal times, X( t) does not commute with the physical 
field operators. 
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