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In VANETs, frequent beacon broadcasting can lead to high bandwidth consumption and channel congestion. In this paper, a
position prediction based beacon approach is proposed to reduce beacon frequency and decrease bandwidth consumption. Vehicles
track their neighbors using the predicted position instead of using periodic beacon broadcasting. Only when the prediction error is
higher than a prede�ned tolerance will a beacon broadcasting be triggered. For improving the prediction accuracy, we classify the
motion of vehicles into two typical patterns: a constant speed pattern and a maneuvering pattern. A maneuver detection module is
responsible for recognizing current motion patterns, and a variable dimension �lter that can switch dynamically between the two
patterns is employed to generate high accurate position prediction. 
e simulation results show the proposed scheme can reduce
signi�cantly the number of beacons than three existing beacon approaches.

1. Introduction

Vehicular ad hoc networks (VANETs) are receivingmore and
more attentions from academia and industry, since various
kinds of applications can be provided for improvement of
road safety and other potential bene�ts. VANETs generally
consist of on-board unit (OBU), roadside unit (RSU), and
central trusted authority (TA). Vehicles can communicate
with each other (vehicle-to-vehicle, or V2V) as well as with
a nearby RSU (vehicle-to-infrastructure, or V2I) [1]. 
is
immediately enables driving safety applications, that is, coop-
erative collision avoidance, by detecting potentially dan-
gerous situations and making warning messages available
beyond the driver’s horizon of awareness. Recent researches
have shown that road safety can be improved signi�cantly
using a V2V communication based cooperative vehicle safety
(CVS) system [2].

Two types ofmessages are used in drivingVANETs safety-
related applications [3]: periodic vehicle tracking messages
and event-driven alert messages. 
e periodic vehicle track-
ing messages (beacon messages) are broadcasted by each
vehicle to inform its neighborswith its current state (position,
velocity, heading, and other necessary measures). Receivers
parse these messages, accurately track the position of the

target vehicle, and predict potential collisions. When an
abnormal condition (such as an airbag explosion, a crash) or
a sudden change of vehicular state (such as a hard braking) is
detected, alert messages are generated and disseminated with
the highest priority.

Due to the high velocity of vehicles, the position infor-
mation contained in beaconmessages becomes outdated very
quickly. Existing solutions handle this problem by increasing
beacon frequency; that is, a 10Hz beacon frequency is
suggested in [3]. 
e main issue of this design is that it leads
to heavy channel overhead. In very dense areas such as urban
regions, frequent beacon broadcasting can cause channel
congestion. Moreover, according to the WAVE/IEEE 802.11p
standard [4], alert messages and beacon messages are oper-
ated on 5.9GHz band and share a common channel referred
to as the “control channel.” Neighbors cannot successfully
decode beacon messages, and the reliability of dissemination
of alert messages can be degraded. It is particularly critical for
the 802.11p standard that is based on the CSMA/CA protocol
that could increase its instability and overload its operation.
As de�ned by FCC (Federal Communication Commission
of the USA) [5], we assume a single 10MHz wide control
channel is used.
edata rate provided by IEEE802.11p ranges
from 3 to 27Mbps. 
e size of beacon messages can reach
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more than 800 bytes due to security-related overhead [6]. In
dense areas, for instance, with more than several hundred
vehicles broadcasting beaconmessage at a frequency of 10Hz
at once, the channel load can exceed the available bandwidth
provided by 802.11p.

In this paper, we propose a position prediction based
beacon rate (PPBR) approach to alleviate high channel
occupancy caused by frequent beacon broadcasting. In PPBR,
vehicles run a program to predict the position of each neigh-
bor. 
e predicted position is used to track neighbors when
the prediction error is less than a tolerable level. 
us, bea-
con frequency can be reduced e�ectively if the prediction
accuracy is high enough. Our contribution is threefold in this
paper. Firstly, in order to provide accurate enough position
predictions, we propose a prediction approach based on
a variable dimension �lter (VDF). Two vehicular dynamic
models are established to capture motion characteristics of
vehicles according to two typical motion patterns, nonma-
neuvering and maneuvering. A maneuver detector is respon-
sible for recognizing the current pattern and dynamically
switching the �lter between two dynamic models. Secondly,
a large-scale vehicular traces dataset based analysis signi�es
temporal stability of vehicular mobility. 
e probability that
vehicles do not change their velocity and heading is as high
as 84.9% and 40.8% over 1 s and 5 s timewindow, respectively.

is demonstrates that it is feasible to predict vehicular posi-
tion within the next several seconds in the highly dynamic
vehicular mobility scenario. Finally, we test our approach
with a simulation to investigate the e�ects under two di�erent
tra�c scenarios. Compared to existing approaches using
�xed-rate 3Hz beacons, extended Kalman �lter (EKF), and
time series forecasting (TSF), the simulation results show that
the proposed scheme can reduce signi�cantly the number of
beacons.


e remainder of this paper is organized as follows. We
discuss the relatedwork in Section 2. Section 3 gives a detailed
description of the proposed PPBR approach. Section 4
presents the simulation setup and the results analysis. Finally,
we draw concluding remarks in Section 5.

2. Related Work

To avoid channel overload caused by periodic beacon mes-
sages, researchers have focused on the various aspects of the
adapted beacon mechanism, and some solutions have been
proposed to reduce channel overhead [7]. In our opinion,
these existing solutions can be classi�ed into two categories:
transmission power control based schemes and frequency
control based schemes.

Torrent-Moreno et al. [8] assumed that two types of
messages are used for tra�c safety-related vehicle-to-vehicle
communication: beacon messages and alter messages. Fre-
quent beacon broadcasting leads to saturated channels, while
interference and packet collisions can degrade the perfor-
mance, causing failure of the reception of safety-related infor-
mation. A distributed transmit power control method was
proposed to control channel load caused by periodic beacon
messages below a prede�ned upper bound. A strict fairness

criterion was proposed under which not only available
bandwidth is reserved for the high priority altermessages, but
also vehicles are treated with “equal rights” for channel occu-
pation.A realistic tra�c scenario based simulationwas drawn
using an ns-2 simulator. 
e results show that the proposed
scheme always performs better than existing �xed-power
beacon scheme under all simulation scenarios.

Fallah et al. [9] argued that physical dynamics of vehicles,
the process of tracking neighbors, and the communication
process should be tightly coupled in the design process of
adapted beacon mechanisms. A design method of such a
system was proposed from a cyber-physical system (CPS)
standpoint. 
e system architecture, subcomponent model-
ing, and their interaction method were given the design pro-
cedure for such a tightly coupled system, for simplicity. 
e
simulation results proved that the tracking accuracy can be
signi�cantly improved due to coupling the design of di�erent
components of a CPS system.

Since beacon activity is visible to the application layer, it
is feasible to dynamically adjust beacon frequency according
to vehicular density from an application layer standpoint.
Park and Kim [10] proposed an application-level adapted fre-
quency control schemeof beacon broadcasting.
eproposed
scheme estimates tra�c density and adjusts beacon frequency
by imposing a timing structure on applications in the absence
of feedback information from theMAC layer.
e simulation
results show that the proposed scheme can increase the
delivery ratio by over 20%.

Boukerche et al. [11] attempted to add some historical
state information (such as past position, velocity, and head-
ing) into periodic beacons for vehicles to know the sender’s
current position and for them to predict its position within
the next few seconds. If the prediction error is less than a
prede�ned reasonable threshold, the predicted position can
be used for tracking neighbors instead of using the one
through beacon broadcasting.
us, beacon frequency can be
decreased to a low level. 
e proposed scheme works well
when vehicles are moving under a constant velocity, but it
is di�cult to precisely predict the position in maneuvering
when the vehicular velocity changes suddenly. Rezaei et al.
[12] proposed a position prediction based beacon rate adap-
tion scheme. Vehicles run a Kalman �lter to predict the future
position for vehicles. A beacon is triggered only if the predic-
tion error is higher than a prede�ned maximum tolerance.
For the same reason, it loses accuracy in maneuvering state.

ZrarGhafoor et al. [13] proposed a fuzzy logic based adap-
tive beaconing rate control approach. 
e proposed scheme
considered tra�c characteristics, the percentage of vehicles
traveling in the same direction, and the state of vehicles as
the inputs of the fuzzy decision making system in order to
tune the beaconing rate according to the vehicular tra�c
characteristics. Since reducing the beacon rate can decrease
the accuracy of shared position information, Schmidt et al.
[14] proposed a scheme for an adaptive beacon rate according
to the VANET tra�c behavior and tried to make a tradeo�
between the accuracy of position information and channel
occupancy. However, some tra�c parameters, such as direc-
tion, density, and state of a vehicle, have not been considered
in the scheme.
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Figure 1: System architecture.

Since vehicular trajectory commonly can be represented
by a series of time-ordered position sampling, time series
forecasting is an e�ective method to predict vehicular further
position based on its current and past position. Autoregres-
sive moving integrated average model is an early method
which assumes every time series can be regarded as the
realization of a stochastic process. Its variants and extensions
have popularized use in many �elds of science and engi-
neering. In recent years, arti�cial neural networks (ANN)
model have exhibited superior performance and attracted a
great deal of attention in the time series forecasting �eld. Its
unique characteristics, that is, nonlinear, having no require-
ment for an explicit underlying model, make it more �exible
and universal. Heravi et al. [15] made a comparison study
between ANN and linear model using 24 time series measur-
ing the annual change in monthly seasonally industrial pro-
duction in three countries. Zhang and Kline [16] investigated
the e�ectiveness of several data preprocessing and model-
ing approaches based on a large data set of 756 quarterly
time series. 
ey identi�ed the best models using both para-
metric and nonparametric statistical analyses, and the anal-
ysis results have shown that simpler models achieve higher
performance generally than more complex models. Yan [17]
proposed an automatic arti�cial neural networks modeling
scheme that is based on a special type of neural network,
generalized regression neural network (GRNN). Since mul-
tiple GRNNs were fused, the proposed scheme can e�ectively
model large-scale business time series.

3. The Proposed Scheme


e general architecture of the proposed PPBR approach is
shown in Figure 1. In this architecture, the target vehicle,
denoted by �, runs four modules. A localization module is
responsible for obtaining absolute vehicular position using
localization devices, that is, GPS. Its position output is called

“measured position.” A maneuver detector is used to recog-
nize the current motion pattern of the vehicle. A Kalman
�lter-based position predictor, called “self-predictor,” gener-
ates “predicted position” of the vehicle. 
e prediction error
is de�ned as the di�erence between “measured position” and
“predicted position” which is calculated by a beacon genera-
tor at every discrete timeslot. A beacon message is generated
and broadcasted only if the prediction error is higher than
a prede�ned tolerance. On the other hand, the neighbors
of vehicle � run a copy of the self-predictor, called “remote-
predictor.” If no beacon message is received at a timeslot, the
predicted position generated by the remote-predictor is used
to track the position of vehicle �. When a beacon message is
received, the measured position of vehicle � contained in the
beacon is used by its neighbors to correct the prediction error.

In the aforementioned PPBR approach, the di�culty for
e�ectively reducing the beacon frequency can be understood
as providing a high enough accuracy of position prediction.
Commonly, the motion process of vehicles can be classi�ed
into two patterns: nonmaneuvering and maneuvering [18].
In the nonmaneuvering pattern, vehicles keep rectilinear
motion with constant velocity. 
e maneuvering pattern
refers to changes in velocity or heading caused by accelera-
tion, braking, or turning operations taken by drivers. Due to
the lack of adaptivemechanisms, existing EKF based position
prediction schemes [19, 20] cannot cope with rapid changing
of vehicular motion pattern; thus, they fail to provide high
accuracy prediction position. Firstly, the nonmaneuvering
�lter is based on the nonmaneuvering model. It loses some
accuracy because the �ltering gain is too small to capture
maneuvers. Moreover, the maneuvering �lter results in per-
formance degradation relative to the nonmaneuvering �lter
whenever the vehicle is moving with constant velocity. In
this paper, we employ a variable dimension �lter (VDF) [21]
in which a maneuver detector (Figure 1) is integrated. 
e
�lter can recognize the currentmotion pattern of vehicles and
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switch dynamically its workmode.
e �lter runs in a normal
mode in the absence of any maneuvers, when a lower order
nonmaneuvering model is used. Upon detecting a maneuver,
the �lter switches to a higher-order maneuvering model.

3.1. Vehicular Dynamic Models. According to the two afore-
mentioned motion patterns, we establish the nonmaneuver-
ing model and maneuvering model as follows.

Nonmaneuvering Model. In the absence of a maneuver, the
vehicular velocity is assumed to be a constant with some
process noise that represents small velocity �uctuations and
unpredictable modeling error. We assume that vehicular
motion can be represented by the following state-space
model:

�� = Φ��−1 + ��. (1)

Here,�� is the state vector of vehicles at discrete timeslot�, �� is the process noise (assumed to be a white Gaussian
noise vector with mean zero),Φ is the state transitionmatrix,
and

�� = [�(�), V�(�), 	(�), V�(�)]� , (2)

where �(�), 	(�), V�(�), and V�(�) are the �- and 	-
components of the vehicular position and velocity at time �.
We assume the vehicular absolute position can be measured
using the localization module. 
e measurement equation is
established as follows:

�� = ��� + �. (3)

Here, �� is measurement vector, � is the measurement
noise vector, and � is the measurement transformation
matrix. Moreover, we assume that �� and � are indepen-
dent, and the covariance is

Cov (��,��) = � [����] = ����,
Cov (�, �) = � [��] = ����.

(4)

Maneuvering Model. When the driver performs a control on
the target vehicle, such as braking, turning, or accelerating,
the instantaneous acceleration of the target vehicle deviates
from zero-mean, and using nonmaneuvering model will lead
to high prediction error. For ensuring high accuracy, the
instantaneous acceleration of the target vehicle should be
estimated in real-time. Considering a maneuver commonly
continues for several seconds, for example, when a driver
performs an acceleration operation and the target vehicle has
a positive value of instantaneous acceleration at time �, it is
likely to be accelerating at � + � for a small time interval �.

us, it is reasonable that modeling the instantaneous accel-
eration as a time series and an autoregression model can be
established as follows:

� (�) = �∑
�=1

� (�) � (� − �) + � (�) . (5)

Here, � is a positive integer, �(1), �(2), . . . , �(�) are
parameters, {�(�)} is a white noise series with mean zero.
e
augmented state vector of the target vehicle can be repre-
sented as

�	� = [����] , (6)

where �� = [��(�), ��(�), ��(� − 1), ��(� − 1), . . . , ��(� −
�), ��(� − �)]� in which ��(�) and ��(�) are the �- and 	-
components of the instantaneous acceleration �(�).
3.2. Position Prediction and Beaconing Schemes. In the self-
and remote-predictor, a Kalman �lter is responsible for
predicting the future position of the target vehicle based on its
past state. 
e prediction procedure at the target vehicle is as
follows. Firstly, the target vehicle predicts the instantaneous
acceleration �(�) based on its past value �(� − 1), �(� −2), . . . , �(� − �), if the maneuvering model is used cur-
rently. For convenience of calculations, we use a constant
for parameter �. 
e target vehicle estimates parameters�(1), �(2), . . . , �(�) using Yule-Walker equation [22]. A�er
the instantaneous acceleration �(�) is predicted, the target
vehicle calculates the one-step-ahead state prediction of time� through

�̂�|�−1 = Φ�̂�−1|�−1. (7)


e measurement residual �̃� is calculated through

�̃� = �� − ��̂�|�−1. (8)

If ‖�̃�‖2 is greater than the prede�ned position tolerance!, the target vehicle generates and broadcasts a beacon
message to inform its neighbors with newmeasured position,
and themeasurement residual also is used to correct the error
of the one-step-head state prediction:

�̂�|� = �̂�|�−1 + "��̃�. (9)

Here, "� is the Kalman gain and can be derived through

"� = #�|�−1��� [��#�|�−1��� + ��]−1 ,
#�|�−1 = Φ�,�−1#�−1|�−1Φ��,�−1 + ��−1,

#�|� = [1 − "���] #�|�−1.
(10)

Otherwise, �̂�|� = �̂�|�−1. Besides, when a new neigh-
bor vehicle just gets into the communication range of the
target vehicle, the prediction error commonly is high since
no historical information of the target vehicle is available.

e prediction error decreases only a�er several beacons
are received. We solve this problem by containing some
additional parameters in each beacon message broadcasted
by the target vehicle, that is, the Kalman gain "�, the instan-
taneous acceleration �(� − 1), . . . , �(� − �), and parameter�(1), �(2), . . . , �(�).
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e prediction procedure at the neighbor vehicle is as
follows. If no beacon message is received at time �, the
neighbor vehicle calculates one-step-ahead state prediction

�̂�|�−1 according to (7) and obtains predicted position of the
target vehicle. Otherwise, if a beacon is received, the neighbor
vehicle obtains the measured position from it, calculates the
measurement residual, and updates the �lter according to (8)
to (10).

3.3. Maneuvering Detection and Model Switching. 
e
maneuvering detection module uses a double logic decision
[21] to detect the starting and ending of a maneuver. A
typical operation process is shown in Figure 2. Since the
velocity of vehicles is assumed to be constant with a small
amount of Gaussian noise in the nonmaneuveringmodel, the
measurement residual sequence should have a mean of zero
if no maneuver occurs. 
us, it is reasonable to assume a
maneuver has occurred if themeasurement residual sequence
deviates signi�cantly from zero. 
e target vehicle calculates
the measurement residuals at every timeslot and sums them
over a sliding window �
. A chi-square test is used to judge
if the measurement residual deviates signi�cantly from zero.
When a maneuver is detected, a decision window �� with& timeslots is triggered, and a parallel maneuvering model
based �lter is initialized. At the end of the decision window,
a second decision is activated to verify if a maneuver indeed
occurred by comparing the prediction errors of the two
�lters. If the maneuver-based �lter is more precise than the
nonmaneuver �lter, it is supposed that amaneuver has indeed
occurred. 
e nonmaneuver model will stop. Otherwise, the
�rst decision is denied.

�e First Decision. A chi-square signi�cance test is employed
to detect if a maneuver has occurred. 
e target vehicle

calculates the measurement residual �̃� and its normalized

squared '� = �̃�� *−1�̃� at every timeslot. Since it is well

known that ‖	−	‖2Σ−1 = (	−	)�Σ−1(	−	) is/2 distributed for
any 0-dimensional Gaussian random vector 	 ∼ &(	, Σ), the
chi-square test provides a check of the goodness of �t to judge
if 	 indeed has the assumed distribution:

'� ∼ /2� , '
� ∼ /2
� . (11)

Here, 0� is the dimension of vector 4 and 5 is the
length of the decision window. '
� is the sliding sum of the

measurement residual �̃� over the decision window [� − 5 +1, �] and is calculated through

'
� =
�∑
�=�−
+1

'�. (12)

It is supposed that a maneuver occurs if the following
equation holds:

'
� > 6 = /2
� (7) . (13)

Here, 1−7 is the level of con�dence that commonly is set
to 95% or 99%.

Time

Nonmaneuvering
model

First
decision

Decision 
window

Maneuvering
model Decision

window

Second
decision

First
decision

Second
decision

Figure 2: Sequencing of operations.


e condition for switching to the nonmaneuver model
is de�ned to be when the sliding sum of the measurement

residuals of the maneuver model �̃	� falls below some thresh-
old 6:

�∑
�=�−
+1

�̃	� �*−1�̃	� < 6. (14)

�e Second Decision. 
is decision compares the sum of the
measurement residual sequences for two parallel �lters and
determines if amodel switching is required.
emaneuvering
�lter will be performed if

�∑
�=�−
+1

�̃	� < �∑
�=�−
+1

�̃�. (15)

Otherwise, the nonmaneuvering �lter is performed.
Once the target vehicle decides to switch the current

model, it generates and broadcasts a beacon message to
inform its neighbors to perform a synchronous switching
operation.

4. Simulation

In this section, we conduct a large-scale real world vehicular
traces based experiment to analyze the characteristics of
vehicular mobility. Moreover, we evaluate the performance
of the proposed PPBR approach and compare it with three
existing beacon approaches.

4.1. Vehicular Mobility Analysis. 
e vehicular traces dataset,
collected byMicroso�ChinaResearch Institute [23], contains
the GPS trajectories of 10,357 taxis in a period of over 7 days
in Beijing, China. 
e trajectory for each taxi is represented
by a sequence of time-ordered sampling points collected by
an on-board GPS, each of which contains the timestamp,
latitude, and longitude. 
e total number of sampling points
is about 15million.
e sampling interval is between 1 s and 10
minutes, and the intervals below 10 s account for 23.6% of the
total. Since we only focus on short-term position prediction,
sampling points with an interval above 10 s are abandoned.

We de�ne the normalized velocity change (NVC) [18] as
follows:

NVC (�, �) ≜ ‖V⃗ (�, �) − V⃗ (�, � − 1)‖2
mean�,� (‖V⃗ (�, �)‖2) . (16)
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Here, V(�, �) is the velocity vector of vehicle � at time �. ‖ ⋅‖2
is the ℓ2-norm and mean�,�(‖V⃗(�, �)‖2) calculates the mean for

all ‖V⃗(�, �)‖2. We calculate the sum of NVC over a time win-
dow, and its cumulative distribution function (CDF) is given
in Figure 3. It can been seen that the probability that NVC
remains zero is 84.9%, 40.8%, and 19.1% over timewindows of
1 s, 5 s, and 10 s, respectively. Over a time window of 1 s, NVCs
below 0.1 account for more than 99% of the total. It proves
that the vehicular motion has temporal stability in real-world
tra�c scenarios. Since vehicles rarely change velocity, a short-
term position prediction is feasible and high accuracy can be
achieved in this situation. However, during the rest of the
time, the velocity vector changes with time. Moreover, the
temporal stability may vary with di�erent tra�c scenarios.
Once a maneuver occurs, velocity changes make it more
di�cult to precisely predict vehicular position, and the accu-
racy may be degraded.
us, to e�ectively reduce beacon fre-
quency, an adapted mechanism is necessary to achieve high
enough accuracy.

4.2. Performance Evaluation

4.2.1. Simulation Setting. In this section, we simulate the pro-
posed PPBR approach to evaluate its performance and com-
pare it with existing beacon approaches. We implemented
the proposed PPBR approach and integrated it into a NS-2
simulator. All simulations were done on a Linux computer
with an Intel Core Duo 2.66MHz CPU and 4GB RAM. 
e
version of gcc is 4.6.3. We set maximal beacon interval as 2 s.
Moreover, the length of the discrete timeslot is set as 0.1 s.

e length of the slidingwindow�
 and the decisionwindow�� is 1 s. In the chi-square signi�cance test, the signi�cance
level 7 is set as 0.05. 
e simulation parameters are shown in
Table 1. Two tra�c scenarios are established using the tra�c
simulation so�ware SUMO [24].

Tra	c Scenario 1. 
is scenario uses the trajectory of a single
vehicle that includes maneuvering and nonmaneuvering
motion patterns. As shown in Figure 4, the vehicle keeps

Table 1: Simulation parameters setting.

Parameter Value

Simulation area size 2 × 2 km

Vehicular density 100 vehicles/km

Wireless transmission range 250m

MAC layer protocol 802.11 DCF

Channel bandwidth 3Mbps

Beacon message size 1000 bytes

Simulation time 720 seconds

Settling time 120 seconds

Maximal beacon interval 2 seconds

Position tolerance 1m

rectilinear motion with constant speed V = 13.9m/s until � =6.6 s when it undertakes a braking action. Its velocity drops to
zero at 14.4 s and remains at rest until � = 21 s.
en, it acceler-
ates and takes a 90-degree le�-hand turn. Its velocity reaches
7.7m/s at � = 30 s.
Tra	c Scenario 2. As shown in Figure 5, an urban tra�c
scenario is established based on the road topology of Xi’an
city, China, using the electronic map provided by the Open-
StreetMap project [25]. 
e size of the simulation area is 2 ×
2 kilometers, and all roads are set to be two-way, with three
lanes per direction.
emaximumvelocity of vehicles is set to
be 50 km/h, and the traveling route is chosen randomly. For
each simulation run, the total simulation time is 720 seconds.
We used a settle time of 120 seconds at the beginning of each
simulation run to avoid the e�ect of transient behavior on the
results. Each simulation is run 50 times repeatedly and the
points in the following plots are the average of all simulation
runs.


e following metrics are employed to evaluate perfor-
mance of the proposedPPBRapproach.
e prediction error is
de�ned as rootmean square (RMS) value of themeasurement
residual. 
e beacon interval is the average number of
timeslots between two consecutive beacons broadcasted by a
vehicle. 
e number of beacons is the average number of bea-
conmessages per vehicle during the simulation.
e reception
ratio is the probability that the neighboring vehicle located
within the communication range of the target vehicle success-
fully decodes a beacon message.

4.2.2. Simulation Results. Firstly, we evaluate the prediction
error and the beacon interval of the proposed PPBR approach
under tra�c scenario 1 and compare it with the EKF based
beacon approach introduced in [12] and the arti�cial neural
network based TSF approach that use amultilayer perceptron
model [22]. Figure 6 shows the prediction error of the three
approaches with time. It is seen that EKF and PPBR appear
to be equally e�ective when no maneuver occurs (from 14.4 s
to 20.4 s). 
is is due to the fact that the velocity and heading
of the vehicle do not change in the nonmaneuvering pattern;
thus, both predictors can achieve a high accuracy of predic-
tion.However, PPBRhas a signi�cantly lower RMS error than
the EKF based predictor during the remaining maneuvering
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Figure 4: Tra�c scenario 1.

Figure 5: Urban tra�c scenario.

periods. It can be explained by the fact that the PPBR is
able to detect maneuvers and to switch the predictor to the
maneuvering model for achieving higher accuracy. For the
same reasons, PPBR achieves smaller prediction error than
TSF. Moreover, since the system parameters are contained in
beacons, it is helpful for neighbor vehicles to rapidly converge
the �lter error; thus, it can be seen that the prediction error
of PPBR is smaller signi�cantly than EKF and TSF from 0 s
to 6.6 s.

Figure 7 shows the beacon interval of three approaches as
a function of time. It is seen that the beacon interval of the
three approaches reaches a prede�ned maximum of 2 s in the
nonmaneuvering period. It proves that the three approaches
can achieve su�cient accuracy. Moreover, PPBR achieves
signi�cantly higher beacon intervals than the EKF and
TSF schemes in remaining maneuvering period.

Figure 8 compares the number of beacons generated by
PPBR, EKF, TSF, and �xed-rate 3Hz (FR = 3) beacon schemes
under the urban tra�c scenario. We notice that the number
of beacons in the four approaches is increasing proportionally
with time. However, FR = 3 generates many more beacon
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messages than others. At the end of the simulation, 1800
messages are broadcast for each vehicle in the FR = 3
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scheme. On the contrary, only 349, 439, and 490 beacons per
vehicle, on average, are generated under the PPBR, TSF, and
EKF approaches. Since PPBR can more precisely predict the
position of vehicles, it has the smallest number of beacons
among four approaches. Compared to FR = 3, EKF and TSF,
the proposed PPBR approach can reduce number of beacons
by 80.6%, 28.8%, and 20.5%, respectively.

We evaluate the tradeo� between accuracy and cost under
various average velocities and the result is shown in Figure 9.

e result follows the expected behavior where the number
of beacons decreases with increasing position tolerance. Even
under a minimal position tolerance (0.5m) only 446 beacons
are generated by PPBR when average vehicular velocity is
50 km/h. Comparing to 1800 beacons in the FR approach,
75.2%of beacons are reduced.
is demonstrates that the pro-
posed PPBR approach does not lead to signi�cant accuracy
loss; thus, it is suitable for high-accuracy tracking applica-
tions. Moreover, it can be seen that increasing average vehic-
ular velocity does not lead to signi�cant increase in number
of beacons.When velocity reaches 70 km/h, only 478 beacons
are generated under 0.5m position tolerance.

Figure 10 evaluates the impact of increasing vehicular
density on the reception ratio. Since high density of vehicles
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can aggravate hidden node interference and packet collision,
reception ratio decreases signi�cantly with increasing density
in all four beacon approaches. PPBRhas the highest reception
ratio under all values of vehicular density because fewer bea-
cons are generated. Even though the density of vehicles is as
high as 200 vehicle/km, 86% of beacons are decoded success-
fully. 
e reception ratio is the lowest in the FR = 3 scheme,
where only 35% of beacons are decoded under the same
vehicular density. 
is demonstrates that the reliability of
beacon dissemination is improved by reduced beacon fre-
quency.

Since some beacons are missed, vehicles cannot track
the position of targets in real time. We de�ne tracking
error as the distance between the vehicular position obtained
from beacons and its real position at each discrete timeslot.
We evaluate the impact of increasing vehicular density on
tracking error of PPBR andmake comparison with the FR = 3
approach.
e results are shown in Figure 11. As shown in the
�gure, when vehicular density is at a low level, the position
tracking error is smaller than PPBR. It is mainly due to the
fact that FR= 3 generatesmanymore beacons thanPPBR, and
notmany of them are lost under low vehicle density.However,
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its tracking error rapidly increases with increasing vehicle
density, while the tracking error of PPBR only increases
slightly. 
e simulation results proved the validity of the
proposed PPBR scheme.

5. Conclusion

In VANET, vehicles need to exchange information to support
various applications. Frequent beacon broadcasting leads to
heavy channel load and channel congestion. Since vehicular
mobility exhibits temporal stability, a short-term position
prediction can be used to update the position of the neigh-
bors; thus, beacon frequency can be reduced e�ectively. 
is
paper proposes a position prediction based beacon approach.
Each vehicle runs a position prediction algorithm to obtain
real-time position estimation for its neighbors. Only when
the prediction error is higher than a prede�ned tolerance
will beacon broadcasting be triggered. To decrease the error
of the position prediction, we classify the vehicular motion
process into constant speed patterns and maneuvering pat-
terns. A maneuvering detector module is responsible for
dynamically recognizing the current motion pattern and a
variable dimension �lter is employed to generate position
predictions which can switch dynamically between the two
patterns, improving accuracy. A real world vehicular traces
based analysis shows that the temporal stability of vehicular
mobility and the probability that the vehicles do not change
speed and heading are 84.9% and 40.8% under 1 s and 5 s time
windows, respectively. It proves that a short-term position
prediction is feasible and high accuracy can be achieved. 
e
simulation results show that the proposed scheme can reduce
signi�cantly the number of beacons than three existing
approaches.
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