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Abstract

 

Spatial data quality is a paramount concern in all GIS applications. Existing spatial

data accuracy standards, including the National Standard for Spatial Data Accuracy

(NSSDA) used in the United States, commonly assume the positional error of spatial

data is normally distributed. This research has characterized the distribution of the

positional error in four types of spatial data: GPS locations, street geocoding, TIGER

roads, and LIDAR elevation data. The positional error in GPS locations can be

approximated with a Rayleigh distribution, the positional error in street geocoding

and TIGER roads can be approximated with a log-normal distribution, and the

positional error in LIDAR elevation data can be approximated with a normal

distribution of the original vertical error values after removal of a small number of

outliers. For all four data types considered, however, these solutions are only

approximations, and some evidence of non-stationary behavior resulting in lack

of normality was observed in all four datasets. Monte-Carlo simulation of the

robustness of accuracy statistics revealed that the conventional 100% Root Mean

Square Error (RMSE) statistic is not reliable for non-normal distributions. Some

degree of data trimming is recommended through the use of 90% and 95% RMSE

statistics. Percentiles, however, are not very robust as single positional accuracy

statistics. The non-normal distribution of positional errors in spatial data has

implications for spatial data accuracy standards and error propagation modeling.

Specific recommendations are formulated for revisions of the NSSDA.
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1 Introduction

 

Data quality is a key component of any spatial data used in a Geographic Information

System (GIS). In the context of spatial data, a number of components of data quality

can be identified, including accuracy, precision, consistency and completeness as well as

a number of dimensions, including space, time and theme (e.g. Veregin 2005). The

combination of components and dimensions leads to more specific characterizations of

spatial data quality; for example, in the case of accuracy a distinction can be made

between spatial accuracy, temporal accuracy and thematic accuracy.

Concerns for data quality issues are clearly expressed in the development of stand-

ards for spatial data acquisition and dissemination. In the United States, the most

commonly used standards are the Spatial Data Transfer Standard (SDTS) and the Content

Standards for Digital Geospatial Metadata developed by the Federal Geographic Data

Committee (FGDC). The FGDC was established to promote coordinated development

and dissemination of geospatial data. The FGDC has been involved in several activities

related to geospatial data quality, including the development of metadata content standards

and spatial data accuracy standards.

In the following the emphasis will be on positional accuracy (or spatial accuracy)

of vector data as one example of spatial data quality, although the accuracy of a con-

tinuous surface in the form of LIDAR elevation data will also be discussed. Accuracy in

this context is defined as the absence of error, and therefore techniques to characterize

accuracy rely on developing quantitative estimates of error. Positional accuracy of vector

data depends on dimensionality; metrics are relatively well defined for point entities, but

widely accepted metrics for lines and areas have not been established. For points, error

is usually defined as the discrepancy (normally Euclidean distance) between the encoded

location and the reference location derived from a data set of known and very high

positional accuracy. Error can be measured in any of the three dimensions of spatial

direction and in any combination of the three; the most common measures are horizontal

error (distance measured in X and Y simultaneously) and vertical error (distance measured

in Z).

Various metrics have been developed to summarize positional error for a set of

points. The first one is mean error, which tends to zero for a single dimension when bias

is absent. Bias refers to a systematic pattern of error – when bias is absent error is said

to be random. Another common metric is Root Mean Square Error (RMSE), which is

computed as the square root of the mean of the squared errors. RMSE is a measure of

the magnitude of error and does incorporate bias in the X, Y and Z domains (Maling

1989). Under the assumption that the positional error follows a statistical distribution

(like the normal distribution), statistical inference tests can be performed and confidence

limits derived for point locations.

For lines and areas the situation is more complex since there is no simple statistical

measure of error that can be adopted. Errors in lines arise from the errors in the points

that define those lines. However, as these points are not randomly selected, the errors

present at points cannot be regarded as typical of errors present in the line (Veregin

2005). Several approaches for characterizing the positional error in lines and areas have

been proposed, from relatively simple buffering techniques (Goodchild and Hunter

1997, Tveite and Langaas 1999) to more complex stochastic simulation techniques

(Leung and Yan 1998, Zhang and Kirby 2000, Shi and Liu 2002) and fractal geometry

(Duckham and Drummond 2000). In practice most spatial data quality standards have
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circumvented the complexities of characterizing positional errors in lines and areas by

specifying the use of “well-defined points” as part of the standards, requiring the selec-

tion of a sample of points from line and area vector data.

The most established map accuracy standard in the United States is the National

Map Accuracy Standard (NMAS) (USGS 1999). NMAS was developed in 1947 (US

Bureau of the Budget 1947) specifically for printed maps. It has lost some of its meaning

in recent years for digital spatial data but it remains a widely employed standard.

NMAS contains both a horizontal and vertical component. For horizontal accuracy,

NMAS reads as follows:

“For maps on publication scales larger than 1:20,000, not more than 10

percent of points tested shall be in error by more than 1/30th of an inch,

measured on the publication scale. For maps on publication scales of 1:20,000

or smaller, 1/50th of an inch. These limits of accuracy shall apply in all cases to

positions of well-defined points” (US Bureau of the Budget 1947).

The 1/30th and 1/50th of an inch are referred to as the Circular Map Accuracy Standard

(CMAS); the underlying assumption is that the errors in the X and Y directions are of

similar magnitude.

Vertical accuracy in NMAS is specified in terms of the contour interval at the 90th

percent confidence interval as follows:

“Vertical accuracy, as applied to contours maps on all publication scales, shall

be such that not more than 10 percent of the elevations tested shall be in error

more than one-half the contour interval. In checking elevations taken from the

map, the apparent vertical error may be decreased by assuming a horizontal

displacement within the permissible horizontal error for a map of that scale”

(US Bureau of the Budget 1947).

This one-half contour interval is referred to as the Vertical Map Accuracy Standard

(VMAS).

Despite the widespread use of NMAS, limited guidelines were developed on how to

determine exactly if the vertical and horizontal standards for a particular publication

scale were met. For example, with the exception of digital elevation data, there is no

specific minimum number of points to be used in the evaluation nor are there specific

guidelines for how to select the sampling locations and how to determine the positional

error at those locations. NMAS also leaves every map producer in charge of the decision

whether to test or not, and in fact most map products are not tested, even when claimed

they comply with NMAS (Chrisman 1991). Most US agencies infer that a particular map

product would pass the test based on compliance with certain specified procedures and

equipment.

The American Society for Photogrammetry and Remote Sensing (ASPRS) also developed

map accuracy standards (ASPRS Specifications and Standards Committee 1990), which

provide accuracy tolerances for maps at a scale of 1:20,000 and larger. These guidelines

are similar to NMAS in that they specify standards that have to be met at a particular

map scale. The statistic employed, however, is the Root Mean Square Error (RMSE) and

the error components are considered separately in the X, Y and Z directions.

With the advent of digital spatial data, the NMAS and the ASPRS guidelines

became technically obsolete, since within a computerized environment the display scale

is independent of the scale for which the data was created. Nevertheless, many users of
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geospatial data still commonly think about spatial data in NMAS terms, in part because

that is how much of the data in use today were created. The ASPRS guidelines are also

still in widespread use, since many digital photogrammetry products are often still

treated as paper-like products when it comes to reporting accuracy specifications.

In 1998 the FGDC published the National Standard for Spatial Data Accuracy

(NSSDA) (FGDC 1998), which superseded NMAS for digital mapping products. The

ASPRS guidelines have also undergone revision following the publication of the NSSDA,

in particular for vertical accuracy reporting (ASPRS LIDAR Committee 2004). The

NSSDA implements a testing methodology for determining the positional accuracy of

locations on maps and in digital spatial data relative to clearly defined georeferenced

positions of higher accuracy. NSSDA also provides specific guidelines for what type of

reference data to use (i.e. data of known and higher accuracy, or ground control points

derived using surveying or GPS), the minimum number of points to be used (20), as well

as their spatial distribution (a minimum of 20% in each quadrant of the study area, and

no points closer together than 1/10th of the length of the diagonal of study area) (FGDC

1998).

One key assumption of the NSSDA is that the data do not contain any systematic

errors and that the positional errors follow a normal distribution. Based on this assump-

tion the NSSDA specifies a 95% confidence interval between test locations and reference

locations. Horizontal accuracy is defined as a radial error, and the X and Y components

of the error are not evaluated separately.

Horizontal accuracy in the NSSDA is defined as the “radius of a circle of uncer-

tainty, such that the true or theoretical location of the point falls within that circle 95%

of the time” (FGDC 1998). The horizontal accuracy statistic is determined as 1.7308 X

RMSE. Horizontal accuracy is defined as a circular (or radial) error and therefore the

annotation RMSE

 

r

 

 is used. Vertical accuracy in the NSSDA is defined as “the linear

uncertainty value, such that the true or theoretical location of the point falls within of

that linear uncertainty value 95% of the time” (FGDC 1998). The vertical accuracy

statistic is determined as 1.9600 X RMSE. Vertical accuracy is defined as a linear error

in the Z direction and therefore the annotation RMSE

 

z

 

 is used.

It is important to note that the NSSDA uses a 95% confidence interval, but that

this is derived from the calculation of the RMSE; the values of 1.7308 and 1.9600 for

horizontal and vertical accuracy, respectively, are directly derived from observations on

the normal distribution as described by Greenwalt and Schultz (1968). This assumes

there are no systematic errors and no major outliers, and that the distributions of both

vertical and horizontal errors are independent and follow a normal distribution. However,

these assumptions have not undergone much testing and are not elaborated upon in the

original FGDC documents on NSSDA. The NSSDA does provide an alternative charac-

terization of horizontal error if the X and Y components of the RMSE are different

(FGDC 1998).

The Greenwalt and Schutz (1968) approximations used in the NSSDA have been

criticized by MCollum (2003) as inappropriate, in particular when the values for RMSE

 

x

 

and RMSE

 

y

 

 are very different, or when the error distribution in the X and Y directions

are not independent. McCollum (2003) has suggested the use of circular error tables

(Harter 1960, Beyer 1966, Folks 1981) as an alternative to the Greenwalt and Schutz

(1968) estimators but maintains the assumption that the errors are normally distributed.

One of the key differences with NMAS is that the NSSDA does not specify thresholds

for positional accuracy; instead, it provides a framework for determining and reporting
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the positional accuracy of spatial data, and agencies are free to set thresholds of tolerances

for their product specifications.

The NSSDA has been widely endorsed by major federal and state agencies, although

its adoption as an actual reporting standard in the metadata for spatial data has not

been very rapid. One of the major strengths of the NSSDA is that is provides very clear

guidance on how to select reference locations and calculate the RMSE values. In addition

to the original FDGC documents, there is also a very easy-to-follow Positional Accuracy

Handbook (Minnesota Planning 1999), complete with worked examples and ready-to-use

spreadsheets.

The NSSDA has received widespread adoption in other spatial data accuracy standards

and guidelines. For example, the Guidelines for Digital Elevation Data (NDEP 2004)

include very specific references to the NSSDA and its protocol using the RMSE. The

vertical accuracy test of the NDEP guidelines are directly copied from the NSSDA

documents: “fundamental vertical accuracy is calculated at the 95% confidence level as

a function of vertical RMSE” (NDEP 2004, p. 31). In addition, however, the NDEP

guidelines provide some discussion of the fact that large errors are known to occur in

the evaluation of elevation data and that therefore a normal distribution cannot be

assumed. As a result, the 95th percentile statistic is suggested as a supplemental accuracy

test, but not required. The experience of NDEP in the evaluation of many different

elevation datasets has resulted in a proposal to the FGDC to revise the NSSDA (NDEP

2003). The proposal in effect suggests that the NDEP guidelines should be incorporated

into the NSSDA. The recommendation is to maintain the current procedure to utilize

the vertical RMSE statistic, but to limit its use to check points in open terrain. For areas

with substantial ground cover, where the error distribution is more likely to deviate

from the normal distribution, the 95th percentile is suggested as an alternative statistic.

NDEP also proposes that the NSSDA include the recommendation to report vertical

accuracy separately for different ground cover types

The NSSDA is also being adopted by the GPS community and is starting to replace

other existing accuracy measures for GPS-collected data such as Circular Error Probable

(CEP) and Spherical Error Probable (SEP). The use of the RMSE statistic and the 95th

percentile is already very common in GPS, so the adoption of NSSDA does not present

a very major conceptual change. Nevertheless, the GPS community in the United States

has not had a single unified standard to report accuracy, so several agencies have taken

the opportunity to develop GPS data standards that comply with the NSSDA, including

guidelines for test procedures (e.g. USFS 2003).

The discussion of NMAS and NSSDA so far has been limited to positional errors

in point locations; for line and area data the standards specify that a sample of “well-

defined points” is to be used. The use of such “well-defined points”, however, is somewhat

open to interpretation, and can lead to bias and error (Van Niel and McVicar 2002).

More sophisticated approaches to characterize positional errors in line and area features

have been developed (Harvey et al. 1998, Zhang and Kirby 2000, Shi and Liu 2000), but

these have not been implemented as standards. In addition, these approaches also assume

that the errors in the composite points follow multi-dimensional normal distributions.

There have been several empirical descriptions of the distribution of positional error

in different types of spatial data. Earlier work by Vonderohe and Chrisman (1985) on

the positional error of USGS DLG data found evidence of non-normality. The work by

Bolstad et al. (1990) on the accuracy of manually digitized map data also found small

but statistically significant differences between the observed error distribution and a
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normal distribution. Positional accuracy of lines and areas has also been extensively

studied by the Institut Géographique National (IGN), the French mapping agency,

including studies by Vauglin (1997) and Bel Hadj Ali (2002). Their empirical validation

using the Hausdorff distance (Munkres 1999) suggests that the error distribution is

largely normal. More recent empirical studies have used small sample sizes which do not

allow for proper distribution testing (e.g. Van Niel and McVicar 2002).

One application where error distributions have received much attention is the

characterization of vertical error in Digital Elevation Models. One recent example is the

study by Oksanen and Sarjakoski (2006) which determined the vertical error in a high

resolution DEM. Results indicate that the error distribution was non-normal in nature

and could not be characterized with a single estimator of dispersion. Similar evidence of

non-normality of the error distribution has been found by other studies (Fisher 1998,

López 2000, Bonin and Rousseaux 2005). This research on vertical error in DEMs

suggests a number of explanations for the non-normality of the error distribution: (1)

the frequent occurrence of gross errors (or blunders), in particular when data is inter-

polated from contours; (2) large positive spatial autocorrelation of the vertical error in

DEMs; and (3) non-stationary processes underlying the occurrence of vertical errors in

DEMs. One critical source of non-stationary behavior in DEMs obtained through Light

Detection and Ranging (LIDAR) is the variability of vertical error with land cover

(Hodgson and Bresnahan 2004, Hodgson et al. 2005).

A second application where the distribution of positional error has also received

some attention is street geocoding. The positional accuracy of street geocoding appears

to follow a log-normal distribution (Cayo and Talbot 2003, Karimi and Durcik 2004,

Whitsel et al. 2004) but limited distribution testing has been performed on this type of

positional error. Despite this (limited) evidence of non-normal behavior, most existing

research on geocoding quality continues to assume a normal-distribution that can be

characterized with statistics such as the mean, standard deviation or RMSE (Dearwent

et al. 2001, Ratcliffe 2001, Bonner et al. 2003, Ward et al. 2005).

The error distribution of spatial data collected with Global Positioning System

(GPS) has also received some attention. GPS equipment specifications commonly use

error statistics such as Root Mean Square Error (RMSE) or CEP (Circular Probable

Error of 50% of the error distribution, identical to median). Equipment specifications

also often assume the RMSE is equivalent to the 63rd percentile of the error distribution

and that two times the RMSE value (referred to as 2dRMSE) is equivalent to the 95th

percentile of the error distribution. Much of the published literature on the empirical

validation of positional errors in GPS locations uses the mean value or standard devia-

tion (e.g. Bolstad et al. 2005, Wing et al. 2005). Very few studies have tried to properly

characterize the error distribution of GPS observations. An exception is Wilson (2006)

who argues that the distribution can be approximated by a bivariate normal distribution

with no correlation between the two variables; only a slice in any direction will be a

normal distribution. If the variance is assumed to be the same in each direction (empirical

evidence by Wilson (2006) suggests this is not completely true), then the error distribution

can be described by the Weibul distribution with shape factor 

 

β 

 

= 2, or the Rayleigh distribu-

tion. The Rayleigh distribution usually occurs when a two dimensional vector has its

two orthogonal components normally and independently distributed (Papoulis 1984).

The assumptions of the Rayleigh distribution are not perfectly met for GPS errors

since the error in the easting and northing are not exactly identical, in part due to the

slight variability of GPS error with latitude resulting from poor satellite visibility at
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higher latitudes (Parkinson 1996). However, the Raleigh distribution represents the best

known distribution to approximate the GPS error distribution (Wilson 2006). This has

received very limited attention in the GPS literature and no mention is made of this in

the spatial data standards discussed previously.

The positional error in TIGER road networks has also received some attention. The

initial TIGER database was created by the US Census Bureau from a variety of sources,

including the US Geological Survey’s 1:100,000 scale maps series. The occurrence of

relatively large positional errors in TIGER data has been widely recognized (e.g. O’Grady

and Goodwin 2000, Trainor 2003, Wu et al. 2005) and a major effort to enhance the

quality of the TIGER data was initiated in 2002. The MAF/TIGER Enhancement

Program is expected to result in substantial improvements in the positional accuracy of

the TIGER data, including road networks (US Census Bureau 2006).

In many other applications rigorous characterization of the error distribution has

not received a lot of attention, and the assumption that the error is driven by a stationary

random process is widespread. The non-normal distribution of positional error observed

in several applications presents a serious challenge to current map accuracy standards

which rely on assumptions of normality and utilize simple statistics to characterize its

distribution, such as RMSE. The objective of this study, therefore, is threefold:

1. To develop a more rigorous characterization of the distribution of positional errors

in spatial data, using a range of applications. These applications include Global

Positioning Systems (GPS), street address geocoding, TIGER road networks and

LIDAR elevation data.

2. To test the reliability of the RMSE statistic to characterize the positional error

distribution as well as a comparison of alternative descriptors. These alternatives

include: 90th and 95th percentile, and 90% and 95% RMSE. The underlying hypoth-

esis is that the positional error of most spatial data is not normally distributed, and

that the RMSE statistic as employed in the NSSDA protocol is unreliable to charac-

terize the error distribution.

3. To develop recommendations for the revision of spatial data accuracy standards

with specific reference to the NSSDA.

 

2 Methods

 

2.1 Data Collection

GPS.

 

GPS observations were recorded using a mapping grade receiver (Trimble GeoXM).

The unit was placed on a tripod on top of a surveyed bench-mark of 1st order horizontal

accuracy located on the campus of the University of South Florida. GPS positions were

logged every second for an 8-hour interval during which the unit was not moved. The

coordinate system employed was UTM Zone 17N NAD 1983. No real-time differential

correction was employed and no post-processing corrections were applied, since this

could introduce a potential bias related to base-station characteristics. The raw GPS

locations were plotted in GIS software and a random selection of 1,000 points was

created for further analysis. The location of the surveyed benchmark was also plotted

in the same UTM coordinate system, and the Euclidean (horizontal) distance between

each GPS location and the surveyed benchmark was determined, as well as the X (easting)

and Y (northing) error components.
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One of the most critical components in achieving accurate GPS locations is the

satellite geometry at the time the position fix is determined, which is captured in the

values for Position Dilution of Precision (PDOP). Low PDOP values (i.e. < 6) suggest

that GPS observations will be accurate to within the equipment specifications (Trimble

2002). The average PDOP value for the 1,000 positions was 2.06, with a minimum of

1.5, a maximum of 4.30 and a standard deviation of 0.37. The number of satellites used

for position fixes varied between 6 and 8 (GPS receiver was limited to 8 channels) with

an average of 7.7 and a standard deviation of 0.5. These values suggest that variability

of satellite geometry was limited and not expected to be a major factor in influencing

the error distribution. Multivariate regression analysis using PDOP and number of sat-

ellites as independent variables and positional error as dependent variables did not result

in significant relationships. The sample was also split into quintiles based on PDOP

values; the error distributions with the highest and lowest PDOP values were not statis-

tically different based on the Kolmogorov-Smirnov (K-S) two-sample test. Under more

variable conditions the effect of satellite geometry on positional accuracy would be

considerable, but in this particular test design conditions were nearly ideal during the

entire data collection period.

 

Geocoding.

 

Student enrollment records for 2005 were obtained from the Orange

County School Board for all public schools in Orange County, Florida. These records

contain the home residence of each student, including street number, street name and

postal codes (in the form of 5-digit United States ZIP code). These 163,886 addresses

were street geocoded using a 1:5,000 street centerline network from Orange County for

2005 and parcel geocoded using a 1:2,000 parcel database of the Property Appraisers

Office of Orange County for 2005, both using ArcGIS 9

 

®

 

. A small offset of 10 m was

used in the placement of the street geocoded locations to indicate the side of the street

the address was located on. The coordinate system employed was UTM Zone 17N NAD

1983. Only those records which could reliably be geocoded using both techniques were

used in further analysis. Duplicate locations resulting from siblings residing at the same

physical address were also removed, resulting in a total of 62,142 records. A random

selection of 1,000 points was created for further analysis. The positional accuracy of the

street level geocoded locations was determined by measuring the Euclidean distance

between the street level geocoded point and the centroid of the associated parcel.

 

TIGER Roads.

 

A TIGER 2000 road network was obtained for Orange County, Florida

from the US Census Bureau. A topological data structure was enforced, creating a

dataset of all endpoints and intersections in the road network. The TIGER road network

was compared to 1 m digital color orthophotography for 2005 and a 1:5,000 street

centerline network from Orange County for 2005. The coordinate system employed was

UTM Zone 17N NAD 1983. The orthophotography was originally created to meet NMAS

for 1:12,000 maps, i.e. the 90th percentile of the error distribution is 10 m or less, but

no formal accuracy testing for this particular area has been performed. While the error

in the orthophotography and the street centerlines presents a confounding factor, the

error in the TIGER data is approximately an order of magnitude higher, suggesting that

improved accuracy in the determination of intersections would produce similar results.

Intersections were randomly selected from the TIGER road network and a determina-

tion was made whether a meaningful comparison to the street centerlines could be

identified. (Note: the representation of the road network in TIGER data is sometimes
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so poor that it does not approximate the network as represented by the orthophography,

making it often impossible to determine which intersections it is supposed to represent).

Where a logical match could be made, the Euclidean (horizontal) distance between the

two intersections was determined as a measure of the positional error in the TIGER

data. This process was repeated until 1,000 reliable comparisons were identified to

produce the final dataset for further analysis.

 

LIDAR.

 

LIDAR accuracy assessment data was obtained from the North Carolina

Flood Mapping Program for the combined Neuse and Tar-Pamlico river basins. The raw

LIDAR data for this area was collected in 2002 and processing of the data was completed

in 2004. A 20 feet bare earth DEM was created by the North Carolina Flood Mapping

Program. The coordinate system employed was State Plane North Carolina NAD 1983

in US survey feet. Details on the collection, processing and accuracy assessment of the

LIDAR data are provided in a series of Issue Papers produced by the North Carolina

Flood Mapping Program (2006); a brief summary follows. The original LIDAR data

was collected with a ground spacing of sampling points of approximately 3 m. To

produce the bare earth DEM a combination of manual and automated cleaning

techniques were employed. These post-processing techniques included the use of auto-

mated procedures to detect elevation changes that appeared unnatural to remove buildings,

as well as the use of last returns to remove vegetation canopy.

As part of the data collection, the North Carolina Flood Mapping Program also

completed a County-by-County accuracy assessment of the LIDAR data using independent

survey contractors, which employed a combination of traditional surveying and Real-Time

Kinematic GPS to achieve a target vertical survey accuracy of 5 cm (North Carolina

Flood Mapping Program 2005). The survey reports for all Counties within the Neuse

and Tar-Pamlico river basins were obtained; these reports include the accuracy assessment

of the LIDAR data derived through a comparison with the elevation at each surveyed

location with a Triangulated Irregular Network (TIN) elevation model based on the

bare-earth LIDAR elevation points. Vertical accuracy was reported in meters as a

positive or negative value with three significant digits. The locations of all survey points

were plotted. River basin boundaries were used to select only those survey points falling

exactly within the basin; 1,000 random locations within the basin were selected for

further analysis. Both the original error values and the absolute error values were used

to account for the fact that the RMSE statistic does not distinguish between positive and

negative error values.

 

2.2 Positional Error Characterization

 

The positional error distributions were characterized in a number of ways to determine

the degree to which they follow a normal distribution. First, basic descriptive parame-

ters of the distributions were derived, including mean, median, minimum, maximum,

standard deviation, and inter-quartile range. Second, the degree of normality of the

distribution was determined using skewness and kurtosis, in addition to standard nor-

mality tests, including the Lilliefors test (Lilliefors 1967) and the Shapiro-Wilk test

(Shapiro and Wilk 1995). Third, histograms and normal Q-Q plots were created and

compared to the normal curve. Since initial findings and previous studies suggested that

some error distributions appear to follow a log-normal distribution, error distributions

were log

 

10

 

 transformed, and the characterization steps above were repeated. The log

 

10
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transformation was not performed on the original values of the LIDAR errors because

of the presence of many negative values; only the absolute values were used in the

transformation. In addition, the GPS error distribution was tested against the Raleigh

distribution, based on previous work by Wilson (2006) suggesting that this distribution

is commonly observed in GPS errors. This also included characterizing the GPS error

distribution separately in the X and Y directions. Testing against the Raleigh distribu-

tion and characterizing the error separately in the X and Y directions was also performed

for the errors in geocoding and TIGER roads, but did not provide a more meaningful

description than using the Euclidean horizontal distance alone and are therefore not

reported here.

 

2.3 Evaluating Error Statistics

 

For each of the four different error distributions the following error statistics were

determined using the original 1,000 points in each sample: (1) 90th percentile – the

maximum error value of 900 points, disregarding 100 points with the highest error

values; (2) 95th percentile – the maximum error value of 950 points, disregarding 50

points with the highest error values; (3) 90% RMSE – Root Mean Square Error using

only 900 points, disregarding 100 points with the highest error values; (4) 95% RMSE

– Root Mean Square Error using only 950 points, disregarding 50 points with the

highest error values; and (5) 100% RMSE – Root Mean Square Error using all 1,000

points.

For each of the four spatial data types used in this study, only the untransformed

positional error distributions were employed in the evaluation of the accuracy statistics.

For the GPS data the horizontal error was used and not X and Y separately. For the

LIDAR data the absolute value of the vertical error was used. This approach most

closely reflects the implementation of current spatial data accuracy standards, including

the NSSDA.

The original error statistics were based on the complete sample of 1,000 locations.

To determine the robustness of these error statistics, a Monte Carlo simulation technique

was employed for each of the four error distributions which is briefly described below.

The NSSDA protocol for testing the positional accuracy of spatial data requires a

minimum of 20 points. The Monte Carlo simulation employed in this study carries out

the NSSDA protocol and then repeats it 100 times by using a conditional stratified

random selection of 20 points from the sample of 1,000. A stratified random selection

is necessary since the NSSDA protocol imposes additional limitations on the selection

of sample points: no less than 20% of sample points have to be selected within each of

the four quadrants, and individual sampling locations can be no closer together than

1/10th the diameter of the study area. To accomplish these requirements, each sampling

location was assigned a quadrant (NW, NE, SE or SW) and 25% (or 5 out of 20)

locations were randomly chosen from each quadrant. A 1,000 

 

×

 

 1,000 proximity matrix

was constructed using GIS for each of the error distributions to limit the selection of

points within close proximity of each other. If a selected point was found to be within

the minimum allowed distance of another selected point in the sample, another point

was selected at random within the same quadrant. This process was repeated until

the minimum distance condition was met for the complete sample of 20 points. This

stratified-random sampling process was not employed for the GPS data, since all 1,000

GPS positions are estimates of the same location. Sampling restrictions by quadrant and/or
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proximity would therefore introduce undesirable bias towards selecting points at greater

distances from the reference location. For each sample of 20 points the same error

statistics were determined: 90th percentile, 95th percentile, 90% RMSE, 95% RMSE and

100% RMSE. The Monte Carlo simulation was implemented using a Macro in Microsoft

Excel

 

®

 

.

For each spatial data type, the average values based on 100 estimates for each error

statistic were compared to the original values based on the complete sample of 1,000

points. The variability in the 100 estimates for the error statistics was also determined

by comparing the standard deviation of the estimates for each error statistic to the

average value. An error statistic is considered robust in this study if the average value

approximates the original value and if the relative variability is small.

The chosen approach to testing the robustness of the error statistics has a very

practical application: if the NSSDA protocol were applied as specified (a single sample

of a minimum of 20 well-defined and evenly distributed points) what is the likelihood

that results would be very different from the original error statistic? The hypothesis is

that RMSE statistics in general are more robust than percentiles since RMSE uses the

entire distribution. However, for non-normally distributed positional errors the 100%

RMSE is not expected to be very robust relative to statistics that “trim” a small percent-

age of outliers.

 

3 Results

 

3.1 Description of Positional Error Distributions

 

Table 1 provides descriptive statistics of the positional errors in the four types of spatial

data considered. For the GPS data the horizontal error, the error in the X direction and

the error in the Y direction are reported separately. For the LIDAR data, both the

original error value and the absolute values are reported. Each of the four types of error

will be described below, accompanied by a diagram showing the locations of the 1,000

observations.

Figure 1 shows a map of the 1,000 GPS positions, including the location of the

surveyed benchmark. The mean error is 2.470 m and the largest observed horizontal

error is 7.800 m. These values are typical for uncorrected GPS position fixes using a

mapping-grade receiver (Bolstad et al. 2005). The median error of 2.215 m is a bit

Table 1 Summary descriptive statistics of positional errors (in meters) in four types of spatial

data (n = 1,000)

Statistic GPS GPS-X GPS-Y Geocoding Roads LIDAR Orig. LIDAR Abs.

Mean 2.470 0.019 0.002 30.420 38.467 −0.045 0.146

Median 2.215 −0.081 0.101 17.668 29.869 −0.045 0.109

Standard Deviation 1.419 2.008 2.022 40.731 37.232 0.214 0.162

Minimum 0.126 −6.104 −6.821 0.725 1.327 −1.921 0.000

Maximum 7.800 6.040 6.778 600.345 628.515 2.335 2.335

Interquartile range 1.847 2.580 2.550 34.412 29.639 0.215 0.141
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smaller than the mean, providing a first indication the distribution is not normal. Table 1

also reveals that the X and Y components of the GPS error are very similar, but not

identical. The mean and median values for the X and Y components are very similar,

suggesting both distributions could be normal.

Figure 2 shows the locations and magnitude of the positional error in street geoco-

ding results within Orange County, Florida. The spatial distribution reflects the overall

population density within the study area. The spatial pattern in the magnitude of the

errors does not reveal any spatial bias, i.e. errors of varying magnitude occur in all parts

of the study area, and there are no neighborhoods with only small or only large errors.

The mean error is 30.420 m, which is similar to those reported in previous studies on

Figure 1 Uncorrected GPS positions collected over an 8-hour period (n = 1,000)
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the positional error in street geocoding (Dearwent et al. 2001, Bonner et al. 2003, Cayo

and Talbot 2003, Karimi and Durcik 2004). The maximum is around 600 m, representative

of a small number of large outliers. The median error of 17.668 m is much smaller than

the mean, suggesting the distribution is not normal.

Figure 3 shows the locations and magnitude of the positional error in the TIGER

road network within Orange County, Florida. The spatial distribution is more dispersed

than the results of street geocoding, reflecting the presence of major arterial roads in

areas of low population density. The spatial pattern in the magnitude of the errors

reveals that some of the larger errors occur in the lower density suburban and rural

areas of the County, in particular in the southeastern portion. These locations reflect

intersections of arterial roads with local roads in rural areas or in newly developed

suburban communities. The mean error is 38.467 m, while the maximum of more than

600 m represents a small number of large outliers. The median error of 29.869 m is

smaller than the mean, providing a strong indication the distribution is not normal.

Figure 2 Location of parcel centroids and error magnitude in street geocoding of associated

addresses (n = 1,000)
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Figure 4 shows the locations and magnitude of the vertical error in the LIDAR

DEM. The survey points are located throughout the entire river basin, but some degree

of local clustering can be observed. This reflects the nature of the collection of the survey

data: within a County a number of study areas of several square miles are identified,

and several dozen samples in relative close proximity are taken within each study area

across several land cover types. Individual survey locations are typically not closer

together than several hundred meters, but still appear as clustered at the scale shown in

Figure 4. For the original error values, both the mean and the median are 

 

−

 

0.045 m,

suggesting a very symmetrical distribution around zero. The minimum value is 

 

−

 

1.921

m and the maximum value is 2.335 m; these observations clearly do not meet the typical

accuracy expectations for LIDAR data, but reflect a very small number of outliers.

When considering the absolute error values, the mean (0.146) and median (0.109) are

different, and the standard deviation and range have logically been reduced.

Figure 3 Location of TIGER road network intersections and error magnitude compared to

1:5,000 street centerlines (n = 1,000)
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3.2 Normality Testing

 

The descriptive summaries so far have provided some initial indication that several of

the error distributions are not normal. This is more fully described using measures of

normality (skewness and kurtosis), normality testing (Lilliefors and Shapiro-Wilk) and

distribution plots (histogram and Q-Q plots). Table 2 reports the results for the meas-

ures of normality and normality testing, and Figures 5 through 9 show the distribution

plots for each of the four spatial data types considered.

 

GPS.

 

The distribution plots of the positional error of GPS locations are shown in

Figure 5. The distribution of the horizontal error is somewhat skewed with a tail towards

the right. As reported in Table 2, values for skewness and kurtosis exceed the standard

error for these parameters and confirm the lack of symmetry and strong clustering.

Normality tests confirm the distribution is not normal. Log-transformation of this

Figure 4 Location of survey points and error magnitude of LIDAR elevation data (n = 1,000)
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Table 2

 

Results of normality testing of positional error distribution for four types of spatial data (

 

n

 

 = 1,000)

GPS Geocoding Roads LIDAR Orig. LIDAR Abs.

Orig. X Y Log10 Orig. Log10 Orig. Log10 Orig. Log10 Orig. Log10

Normal distribution

Skewness

 

1

 

0.812 0.157

 

−

 

0.075

 

−

 

0.882 5.48

 

−

 

0.081 5.823

 

−

 

0.290

 

−

 

0.134

 

−

 

5.995

 

−

 

0.952

Kurtosis

 

2 0.411 0.365 0.134 1.042 53.264 −0.111 69.955 0.757 27.271 − 61.786 1.577

Tests of normality

Lilliefors3 0.083 0.040 0.038* 0.063 0.228 0.058 0.170 0.035 0.072 − 0.185 0.080

Shapiro-Wilk3 0.953 0.993 0.997* 0.957 0.594 0.987 0.642 0.991 0.833 − 0.612 0.948

1 Standard Error for Skewness: 0.077
2 Standard Error for Kurtosis: 0.155
3 All tests of normality significant at P < 0.001 (rejecting the hypothesis of a normal distribution), with the exception of the marked results for GPS-Y

* P > 0.001
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Figure 5 Distribution of positional errors in GPS locations (n = 1,000)
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distribution does not result in any improvement: values for skewness and kurtosis

are further from normal than before. Distribution plots in Figure 5 confirm that log-

transformations do not provide a more meaningful characterization.

When considering the X and Y components of GPS errors separately, both distribu-

tions are very close to normal. The distributions are very symmetrical, with low values for

skewness and kurtosis, although only the values for the Y component are lower than the

standard error. The histograms and Q-Q plots for both X and Y components visually

suggest the distributions are normal, but formal testing only confirms that the distribution

of the Y component is normal. Comparing the histograms of the X and Y components

with the horizontal error (X and Y combined) reveals an interesting pattern. While the

distributions for the X and Y component are symmetrical with a peak around zero, the

distribution of the horizontal error is skewed with a peak around 2 m. The implication

of this is that the true position is much more likely to be 1 to 2 m away from a GPS position

fix than it is to be 0 to 1 m away. The reason for this is that although the probability of

a position fix being within any unit area falls off with distance from the true position, the

circumference at that distance gets larger (meaning there is more area at that distance),

which increases the probability of the true position being at that distance. These opposite

effects on the probability play against each other and yield the observed histogram.

Since normal distributions for the X and Y component were expected, the horizon-

tal error (X and Y combined) was expected to follow the Rayleigh distribution. This is

explored in Figure 6, which plots the cumulative distribution function of the observed

error compared to normal and Rayleigh distributions with the same standard deviation.

The Rayleigh distribution indeed approximates the observed distribution much closer,

in particular for low positional errors of < 1 m. The differences between the observed

and Rayleigh distributions can be attributed to the (small) difference in the distributions

of the X and Y components and the (small) deviation from normality of the X component.

Figure 6 Cumulative distribution function of positional errors in GPS locations (n = 1,000)

compared to normal and Raleigh distributions
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Geocoding. The distribution plots of the positional error of street geocoding are shown

in Figure 7. The distribution of the errors is highly skewed with a long tail towards the

right. As reported in Table 2, very high values for skewness and kurtosis confirm the

lack of symmetry and strong clustering. Normality tests confirm the distribution is not

normal. Log-transformation of this distribution results in a substantial improvement:

values for skewness and kurtosis are slightly negative and very close to the standard

error for these parameters. Distribution plots in Figure 7 confirm that log-transforma-

tion results in a distribution that is much closer to normal, but some evidence of non-

normal behavior is observed, such as the occurrence of a major peak to the left of the

mean. Normality tests confirm the error distribution of street geocoding is not log-normal,

although the general shape of the distribution approximates a log-normal distribution.

TIGER roads. The distribution plots of the positional error of the TIGER roads are

shown in Figure 8. The distribution of the error is highly skewed with a long tail

towards the right. As reported in Table 2, very high values for skewness and kurtosis

confirm the lack of symmetry and strong clustering. Normality tests confirm the distri-

bution is not normal. Log-transformation of this distribution results in a substantial

Figure 7 Distribution of positional errors in steet geocoding (n = 1,000)
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improvement: values for skewness and kurtosis are smaller but are still not close to the

standard error for these parameters. Distribution plots in Figure 8 confirm that log-

transformation results in a distribution that is much closer to normal, but some evidence

of non-normal behavior is observed, such as a slightly asymmetrical peak and a tail at

the left side of the distribution. Normality tests confirm the error distribution of street

geocoding is not log-normal, although the general shape of the distribution approximates

a log-normal distribution.

LIDAR. The distribution plots of the positional error of LIDAR data are shown in

Figure 9. The distribution of the original error values is very symmetrical with a low

value for skewness. Kurtosis, however, is very high as a result of very long tails at both

ends. Normality tests confirm the distribution is not normal. The distribution plots

reveal an interesting pattern, which is most clearly observed in the Q-Q plot; the distri-

bution follows the normal curve very closely with the exception of a very small number

of outliers on both ends of the distribution. This confirms the occurrence of non-stationary

behavior in elevation data reported by other studies (Bonin and Roussseaux 2005,

Oksanen and Sarjakoski 2005).

Figure 8 Distribution of positional errors in TIGER roads (n = 1,000)
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It should be noted that the sampling design of the original LIDAR accuracy assessment

was not random. Sampling locations were clustered in selected areas to facilitate the field

work and stratified across land cover types: 20% bare earth and low grass, 20% high grass,

weeds and crops, 20% brush lands and low trees, 20% urban areas and 40% forested. Sepa-

rate analysis (not reported here) has revealed non-normal behavior for all land cover types.

 

Figure 9 Distribution of positional errors in LIDAR data (n = 1,000)
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When considering the absolute error values, the distribution becomes highly asym-

metrical with a long tail on the right. Values for skewness and kurtosis reported in Table

2 are much higher than for the original values and normality tests confirm the distribution

is not normal. The distribution plots in Figure 9 reveal strong deviation from normal

behavior.

Log-transformation of this distribution results in some improvement: values for

skewness and kurtosis are smaller but are not close to the standard error for these parame-

ters. Distribution plots in Figure 9 confirm that log-transformation results in a distribution

that is closer to normal, but the distribution is clearly asymmetrical. Normality tests

confirm the error distribution of the absolute values of LIDAR errors is not log-normal.

3.3 Evaluating Error Statistics

Table 3 reports the positional accuracy statistics for the four spatial data types.

These statistics are based on the complete sample of 1,000 observations for each

data type, employing the NSSDA methodology, i.e. using horizontal error for GPS,

geocoding and TIGER roads (not X and Y components separately) and using absolute

vertical error for LIDAR elevation data. The percentiles and RMSE values are deter-

mined from the error distributions, while the NSSDA accuracy statistic is determined by

multiplying the horizontal or vertical 100% RMSE values with 1.7308 or 1.9600,

respectively.

A comparison of the accuracy statistics reveals a number of interesting patterns.

First, the percentiles are higher than their corresponding RMSE values for every one of

the four distributions, i.e. the 90th percentile is higher than the 90% RMSE value and

the 95th percentile is higher than the 95% RMSE value. This reflects the fact that the

RMSE statistic considers all data values within the portion of the distribution consid-

ered, not just the maximum value. What is most noteworthy is that the difference

between the percentiles and RMSE value is much larger for the skewed distributions.

For example, the 95th percentile for the GPS error distribution is roughly twice the 95%

RMSE value, while the 95th percentiles for the geocoding and TIGER roads are roughly

three times the 95% RMSE values. For the skewed distributions the relative difference

Table 3 Positional accuracy statistics for entire sample of 1,000 observations for four

spatial data types

Error statistic

GPS Geocoding Roads LIDAR

(m) (m) (m) (m)

90th Percentile 4.478 68.145 74.734 0.293

95th Percentile 5.158 90.337 95.623 0.372

99th Percentile 6.439 194.596 167.045 0.663

90% RMSE 2.395 27.245 33.986 0.135

95% RMSE 2.574 31.925 38.370 0.151

100% RMSE 2.848 50.821 53.521 0.218

NSSDA 4.930 87.961 92.635 0.428
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between the 90th and 95th percentiles is also much larger than between the 90% and

95% RMSE values. This result is significant since it shows that a consistent relationship

between RMSE and percentiles cannot be assumed unless the distribution has been

empirically tested.

A second interesting comparison can be made between the calculated values for

the NSSDA statistic and the 95th percentiles. The NSSDA statistics is determined from

the 100% RMSE value and is assumed to be identical to the 95th percentile. Table 3

shows this is clearly not the case for the four datasets considered. For GPS, geocoding

and TIGER roads, the NSSDA statistic underestimates the 95th percentile by 4.4, 2.6 and

3.1%, respectively. For LIDAR, the NSSDA statistic overestimates the 95th percentile

by 15.0%.

The results of testing the robustness of the accuracy statistics using Monte Carlo

simulation are reported in Table 4. For each of the five accuracy statistics, the average

and standard deviation for 100 simulations of 20 samples are determined. The average

Table 4 Robustness of positional error statistics based on Monte Carlo simulation of 100

samples of 20 observations for four spatial data types

Avg/Original Ratio Rank SDev/Avg Ratio Rank

GPS

90th Percentile 0.928 4 0.151 4

95th Percentile 0.927 5 0.156 5

90% RMSE 0.992 2 0.133 3

95% RMSE 0.996 1 0.126 2

100% RMSE 0.983 3 0.120 1

Geocoding

90th Percentile 0.880 3 0.284 3

95th Percentile 0.857 5 0.344 4

90% RMSE 0.992 2 0.253 1

95% RMSE 1.002 1 0.254 2

100% RMSE 0.870 4 0.433 5

Roads

90th Percentile 0.881 4 0.258 3

95th Percentile 0.882 5 0.342 5

90% RMSE 1.013 1 0.167 1

95% RMSE 1.014 2 0.197 2

100% RMSE 0.926 3 0.307 4

LIDAR

90th Percentile 0.905 3 0.242 3

95th Percentile 0.860 5 0.285 4

90% RMSE 0.989 2 0.216 2

95% RMSE 0.991 1 0.215 1

100% RMSE 0.900 4 0.474 5



126 P A Zandbergen

© 2008 The Author. Journal compilation © 2008 Blackwell Publishing Ltd

Transactions in GIS, 2008, 12(1)

is compared to the original values reported in Table 3 and reported as the ratio between

average and original value. The closer this ratio is to a value of 1, the more robust the

accuracy statistic. The standard deviation is compared to the average and reported as

the ratio between standard deviation and average. The lower the value of this ratio is,

the more robust the accuracy statistic. The values of the two ratios were ranked from 1

to 5 within each of the four spatial data types considered.

Results indicate a number of consistent patterns. First, for the GPS errors, which

most closely approximate a normal distribution of the four spatial data types consid-

ered, the three different RMSE statistics are similarly robust. The 95% RMSE is most

robust in terms of the average/original ratio and the 100% RMSE is most robust in

terms of the standard deviation/average ratio, but overall the ratios are very similar.

Second, for the three other spatial data types, the 90% and 95% RMSE statistics emerge

as the most robust, consistently ranking either 1st or 2nd. The 100% RMSE statistic

does not perform well for these distributions, ranking 3rd only once, and 4th or 5th in

all other cases. Third, the 90th and 95th percentiles do not perform well for any of the

distributions; the highest rank for the 90th percentile is 3rd (5 out of 8 comparisons)

and the highest rank for the 95th percentile is 4th (2 out of 8 comparisons).

Overall, the results presented in Table 4 suggest that the traditional 100% RMSE

used in the NSSDA protocol is robust only if the positional error in spatial data is (close

to) normally distributed. In this case, “data trimming” by removing the largest 5 to 10%

of the data is not necessary. If data is not normally distributed, the 100% RMSE does

not perform well, and some amount of data trimming is recommended to produce more

robust accuracy statistics such as the 90% and 95% RMSE. Percentiles, while useful to

describe the distribution, are not very robust as single descriptors.

4 Discussion and Conclusions

This research has presented strong evidence that the positional error distributions of

several different spatial data types are not normally distributed. Characterizing posi-

tional errors, therefore, may require different approaches for different types of spatial

data, based on an understanding of the underlying processes which cause positional

errors. A single statistic, such as the horizontal or vertical RMSE value, appears to be

insufficient to properly characterize the nature of the positional error of many spatial

datasets.

The positional error in GPS locations can be approximated with a Rayleigh

distribution, which assumes that the X and Y components are normally distributed

and independent. The positional error in street geocoding and TIGER roads can be

approximated with a log-normal distribution. The positional error in LIDAR eleva-

tion data can be approximated with a normal distribution of the original (positive and

negative) vertical error values after removal of a small number of outliers. For all four

data types considered, however, these solutions are only approximations, and some

evidence of non-stationary behavior resulting in lack of normality was observed in all

four datasets.

The characterization of positional errors requires a more thorough understanding

of the processes causing them. For example, in the case of GPS, accuracy is affected by

factors such as poor satellite geometry, receiver noise, ionospheric disturbance, obstacles,

canopy, and multi-path errors, all of which can contribute to non-stationary behavior
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in the results. In the case of street geocoding, non-stationary behavior can be introduced

by variability across urban-rural gradients, differences in parcel sizes, and accuracy of

the street reference network. For TIGER roads, non-stationary behavior can be intro-

duced by the merging of datasets from various sources and time periods, and the com-

pletion of updates by different contractors. For LIDAR elevation data, non-stationary

behavior can be introduced by variability in accuracy by land cover and terrain com-

plexity, as well as effects of signal processing and data cleaning.

One of the limitations of this research is the effect of the accuracy of the reference

data. While in all four cases the positional accuracy of the reference data is at least one

order of magnitude better than the data being evaluated, improved accuracy of reference

data may provide more robust results. A second limitation is the effect of non-random

sampling. In the case of the LIDAR accuracy assessment the reference locations are

stratified by land cover type, and a closer investigation on non-normal behavior by land

cover type is warranted. In the case of the TIGER roads accuracy assessment the reference

locations were determined by looking at intersections and this may not represent the

accuracy of the entire line segments.

The results of this research reveal some very significant recommendations for the

use of spatial data accuracy standards, in particular the NSSDA:

1. The NSSDA should consider using alternative approaches to characterize the posi-

tional error in spatial data; the emphasis on the use of a single accuracy statistic

seems overly simplistic considering the variability and complexity of error distribu-

tions of common spatial data types.

2. The assumption of normality of positional error should be reconsidered since there

is strong evidence to suggest that many spatial data types are not normally distributed.

This would also include revisiting the assumption that the 95th percentile can be

reliably determined from the 100% RMSE.

3. A broader view on the use of accuracy statistics should be embraced which allows

for proper characterization of a range of different distributions. This should

include the use of separate X and Y components for horizontal accuracy and

the use of the original (positive and negative) values for the vertical accuracy of

elevation data.

4. A minimum sample size of 20 locations seems insufficient for data types for which

the underlying distribution is not well established considering the variability and

complexity of many positional error distributions.

5. Revised techniques need to be developed to characterize commonly observed distri-

butions, such as the Rayleigh and log-normal distributions.

6. When using a single accuracy statistic for comparative purposes, some amount of

data trimming is recommend to improve the robustness of the statistic: measures

like 90% and 95% RMSE are preferred over the traditional 100% RMSE, while

percentiles are the least robust when used as single descriptors.

7. Accuracy testing procedures for line and area features need to be implemented.

The non-normal distribution of positional errors in spatial data has implications

beyond spatial data accuracy standards since most error propagation techniques for

spatial data are also based on an assumption of normality. For example, the modeled

error in numerical error propagation modeling of DEMs is usually a random error

based on the expected standard deviation of the vertical error in the DEM. The error

is modified using either an exponential (e.g. Holmes et al. 2000) or Gaussian (e.g.
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Goovaerts 1997) spatial autocorrelation model. This type of error propagation model-

ing has become widely employed for a range of applications (Ehlschlaeger 1998, Lee

et al. 1992, Veregin 1997, Lindsay and Creed 2005, Oksanen and Sarjakoski 2005)

but assumes that the vertical error in a DEM follows a distribution whose dispersion

can be described meaningfully with a single statistic, such as the RMSE. Given the

occurrence of major errors in DEMs, alternative approaches to error propagation

modeling will need to be developed.

In addition to the practical implications for spatial data accuracy standards and error

propagation modeling, a better understanding of the distributions of positional error can

provide insights into the underlying processes which explain the occurrence of errors in

spatial data.
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