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Abstract— Social network analysis is a methodology used
extensively in social and behavioral sciences, as well as in
political science, economics, organization theory, and industrial
engineering. Positional analysis of a social network aims to find
similarities between actors in the network. One of the the most
studied notions in the positional analysis of social networks
is regular equivalence. According to Borgatti and Everett, two
actors are regularly equivalent if they are equally related to
equivalent others. In recent years, fuzzy social networks have
also received considerable attention because they can represent
both the qualitative relationship and the degrees of interaction
between actors. In this paper, we generalize the notion of regular
equivalence to fuzzy social networks based on two alternative
definitions of regular equivalence. While these two definitions
are equivalent for social networks, they induce different general-
izations for fuzzy social networks. The first generalization, called
regular similarity, is based on the characterization of regular
equivalence as an equivalence relation that commutes with the
underlying social relations. The regular similarity is then a fuzzy
binary relation that specifies the degree of similarity between
actors in the social network. The second generalization, called
generalized regular equivalence, is based on the definition of role
assignment or coloring. A role assignment (resp. coloring) is a
mapping from the set of actors to a set of roles (resp. colors).
The mapping is regular if actors assigned to the same role have
the same roles in their neighborhoods. Consequently, generalized
regular equivalence is an equivalence relation that can determine
the role partition of the actors in a fuzzy social network.

I. INTRODUCTION

Granular computing (GrC) is a novel problem-solving con-
cept deeply rooted in human thinking. Many objects can be
granulated into “sub-objects”. For example, the human body
can be granulated into the head, the neck, and so forth;
while geographic features can be granulated into mountains,
plains, etc. Although the notion of granulation is essentially
fuzzy, vague, and imprecise, mathematicians have idealized
it into partitions (equivalence relations) and developed a
fundamental problem-solving methodology based on it. The
notion has played a major role in solving many important
problems throughout the history of mathematics. In recent
years, rough set theory [1], [2] has introduced the idea to
computer science, where it has been successfully applied to
data analysis and uncertainty management. Nevertheless, the
notion of partitions, which does not permit any overlap among
granules (equivalence classes), is too restrictive for real-world
applications. Even in the natural sciences, classifications per-
mit a small degree of overlap. For example, there are creatures
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that are the proper subjects of both zoology and botany. A
more general theory is thus needed. GrC is a new, rapidly
emerging paradigm designed to meet this need [3]-[11].

Currently, there are no widely-accepted formal definitions of
GrC. However, informally, any computing theory/technology
that processes elements and granules (subsets) of the universe
of discourse may be regarded as GrC. Mathematically, rough
set theory has two perspectives: algebraically, it is a theory
of equivalence relations; and geometrically, it is a theory of
topological spaces (approximations).

In rough set theory, objects are partitioned into equivalence
classes based on their attribute values, which essentially rep-
resent functional information associated with the objects. A
natural generalization considers granulation defined by the
relational information between objects. Such information is
defined by general binary relations, which are extensions of
the functional attributes of the objects. Geometrically, such
granulation is derived from the neighborhood system of topo-
logical spaces [12], where each point/object is assigned at most
one neighborhood/granule. This kind of granulation is called
relational granulation, while granulation based on attribute
values only is called functional granulation [13], [14].

Interestingly, social scientists have applied the same tech-
niques of relational granulation (albeit by different names)
to positional analysis in social networks [15]-[19]. Social
network analysis (SNA) is a methodology used extensively in
social and behavioral sciences, as well as in political science,
economics, organization theory, and industrial engineering
[20]-[22]. Positional analysis of a social network tries to
find similarities between actors in the network. While many
traditional clustering methods are based on the attributes of the
individual actors, SNA is more concerned with the structural
similarity between the actors. In SNA, a category, called a
social role or social position, is defined in terms of the
similarities of the patterns of relations among the actors, rather
than the attributes of the actors. For example, one useful way
to think about the social role “husband” is to consider it as
a set of patterned interactions with a member or members of
some other social categories: “wife” and “child” (and probably
others) [20]. One of the the most studied notions in the
positional analysis of social networks is regular equivalence
[15], [23]-[25]. According to Borgatti and Everett [15], two
actors are regularly equivalent if they are equally related to
equivalent others.



In recent years, fuzzy social networks have also received
considerable attention because they can represent both the
qualitative relationship and the degrees of interaction between
actors [26]. In this paper, we generalize the notion of regular
equivalence to fuzzy social networks based on two alternative
definitions of regular equivalence. While these two definitions
are equivalent for social networks, they induce different gener-
alizations for fuzzy social networks. The first generalization,
called regular similarity, is based on the characterization of
regular equivalence as an equivalence relation that commutes
with the underlying social relations [16]. The regular similarity
is then a fuzzy binary relation that describes the degree of
similarity between actors in the social network. The sec-
ond generalization, called generalized regular equivalence, is
based on the definition of role assignment or coloring [18]. A
role assignment (resp. coloring) is a mapping from the set of
actors to a set of roles (resp. colors). The mapping is regular
if actors assigned to the same role have the same roles in their
neighborhoods. Consequently, generalized regular equivalence
is an equivalence relation that can determine the role partition
of actors in a fuzzy social network.

The remainder of this paper is organized as follows. In
Section II, we review some basic concepts about social net-
works and fuzzy relations. In Sections III and IV, we present
the definitions of regular similarity and generalized regular
equivalence respectively. We also discuss the computational
process based on the definitions. Finally, in Section V, we
present our conclusions and indicate some future research
directions.

II. SOCIAL NETWORKS AND FuzZzZY RELATIONS
A. Social networks

Social networks are defined by actors and relations (or nodes
and edges in terms of graph theory) [20]. A social network is
generally defined as a relational structure 9t = (A, (a;)ier),
where A is the set of actors in the network, I is an index
set, and for each i € I, a; C A% is a k;-ary relation on
the domain A, where k; is a positive integer. If k; = 1, then
«; is also called an attribute. In practice, most SNA literature
considers a simplified version of social networks with only
binary relations. For ease of presentation, we focus on a
social network with only one binary relation. Thus, the social
network considered in this paper is a structure M = (4, a),
where A is a finite set of actors and « is a binary relation on
A. In terms of graph theory, 91 is a directed graph, where A
is the set of nodes and « denotes the set of (directed) edges.
For each a € A, the out-neighborhood and in-neighborhood
of a, denoted respectively by N (a) and N (a), are defined
as follows:

Ny (a)={be A|(a,b) € a},
N, (a)={be A] (b,a) € a}.

A binary relation p on A is called an equivalence relation if
it satisfies the conditions of reflexivity (Va € A, (a,a) € p),
symmetry (Va,b € A, (a,b) € p = (b,a) € p), and transitivity

(Va,b,c € A,(a,b) € pA(byc) € p= (a,c) € p). Given
an equivalence relation p on A and an actor a € A, the p-
equivalence class of a is defined as [a], = N (a) = N, (a).
Note that the latter equality holds because of the symmetry of
p. If (a,b) € p, then a and b have the same equivalence class.
For any B C A, we denote [B], by the set {[a], | « € B}.
Several equivalence relations have been proposed for explor-
ing the role similarity between actors. Among them, regular
equivalence has been extensively studied [15]-[19]. There
are several alternative definitions of regular equivalence. We
consider two of them in this paper. The first is based on the
characterization given by Boyd and Everett [16], which states
that an equivalence relation p is a regular equivalence with
respect to a binary relation « if it commutes with ¢, i.e.

ap = pa,

where ap = {(a,b) | 3¢ € A, (a,c) € a A (c,b) € p} is the
composition of o and p. By this definition, if p is a regular
equivalence with respect to « and (a, b) € p, then for each ¢ €
N7 (a)(resp. N; (a)), there exists ¢’ € N} (b)(resp. N; (b))
such that (c¢,¢’) € p. The property naturally leads to an
alternative definition of regular equivalence [18], which states
that an equivalence relation p is a regular equivalence with
respect to a binary relation « if for a,b € A,

(a,b) € p= [Ng (a)l, = [Ng (D)], and [N (a)], = [Ny (b)],.

According to this definition, if a and b are regularly equiv-
alent, then they are connected to equivalent neighborhoods.
Obviously, the above definitions are equivalent. However, the
situation is quite different when we consider fuzzy social
networks. In this paper, a fuzzy social network is defined as
a structure § = (A, ), where « is a binary fuzzy relation on
A, which is defined below.

B. Fuzzy relations

It is well-known that a binary relation « on A can be
represented as its characteristic function (adjacency matrix)
ta : Ax A — {0,1}. A binary fuzzy relation « on A can thus
be characterized by its membership function p,, : A X A —
[0,1]. Obviously, a binary fuzzy relation is a generalization
of a binary relation, so the lower-case Greek letters a, 3, p, A,
etc., are used to denote both fuzzy and crisp relations. Since we
only consider binary fuzzy relations in this paper, we call them
fuzzy relations hereafter, and the term “binary relation” means
crisp relations only. A fuzzy relation « is included in another
fuzzy relation (8, denoted by o C S, if pa(a,b) < pg(a,bd)
for all a,b € A. Several basic operations for binary relations
[16] can be easily generalized to fuzzy relations.

Definition 1: Given fuzzy relations o and 5 on A, the
following fuzzy relations can be derived:

1) the identity relation ¢:

1, ifa=0",
. (a,b) = { 0, otherwise;

2) the converse of o, a™:

Ha— (a’v b) = ,uoz(b7 a);



3) the composition of « and (3, af:

Hap(a,b) = Sup min(ua(a,c), ps(c,b));

4) the union of o and 3, a U f3:

/”'auﬁ (a7 b) = ma‘X(,ua (CL, b)7 /,[,[3(0,7 b))a
5) the intersection of o and 3, N G:

fana(a, b) = min(pa(a, b), ps(a, b));

6) the right residual of o by (3, «/f3: the largest fuzzy

relation A\ such that G\ C «;

7) the left residual of a by (3, «\(: the largest fuzzy

relation A such that A3 C o;

8) the symmetric interior of o, a®: a®* =aNa™.

The composition of o with itself & times is denoted by a*
and the transitive closure of « is defined as o™ = J,, oF.
The equivalence relation is generalized to a similarity relation
in the fuzzy case.

Definition 2: A fuzzy relation p is called a similarity rela-
tion if it satisfies:

o reflexivity: ¢ C p,

e symmetry: p = p~, and

e (sup-min) transitivity: p? C p.

Intuitively, if p is a similarity relation, then p(a,b) specifies
the degree of similarity between a and b. As in the case of
equivalence relations, the set of all similarity relations on a
domain A form a lattice. The meet and join of two similarity
relations « and (3 in the lattice are defined as M B =anNpg
and a U 8 = (a U 3)> respectively.

Given any S C A x A and fuzzy relation o on A, the a-
membership image of S is pia(S) = {la(a,b) | (a,b) € S}.
Note that |uq(S)| < |S], where | - | denotes the cardinality
of a set. In particular, p,(A X A) is a finite subset of [0,1],
since A is finite. The following lemma shows that the range of
the membership function of a compound fuzzy relation only
comprises membership values occurring in the components’
fuzzy relations.

Lemma 1: Let o and 8 be two fuzzy relations on a finite
set A, * denote the converse or symmetric interior, ® denote
composition, union, or intersection, and | denote the right
residual or left residual. Then,

1) Moz*(A X A) c Ma(A X A),

2) taws(A X A) C ialA x A) U jis(A x A),

3) fajp(A x A) C pa(A x A) U{L}.

From this lemma, we can derive the following corollary
straightforwardly.

Corollary 1: Let ¢ be any relational expression composed
from a set of fuzzy relations Rel(y) by the operations intro-
duced in Definition 1. Then, 1,(A x A) € U,cRei(p) Ha(A X
A)u{1}.

III. REGULAR SIMILARITY

Just as regular equivalence determines a role partition based
on social network data, we can induce a kind of structural
similarity between actors from fuzzy social network data.

Such similarity is modeled by regular similarity. Formally, a
similarity relation p is called a regular similarity with respect
to a fuzzy relation « if it commutes with «, i.e., ap = pa.

As in the case of regular equivalence, regular similarities are
closed with respect to the usual join of similarity relations. The
closure property makes it possible to define the regular interior
of any similarity relation. Let 7 be any similarity relation.
Then, the (similarity-based) regular interior of m (with respect
to a fuzzy relation «), denoted by 7, is defined as the join of
all regular similarities (with respect to «) included in 7, i.e.,
7 =|HKp|p Cm,pis a regular similarity (with respect to
a)}.

Several basic properties of regular equivalences also hold
for regular similarities. These properties, which we summarize
in the following lemma, are useful in the computational
characterization of the regular interior operator.

Lemma 2:

1) Let o be any fuzzy relation and p be a fuzzy relation

satisfying reflexivity and transitivity. Then,

(pa)/a = (pa)/(pa) and (ap)\ev = (ap)\(ep)-

2) A similarity relation p is a regular similarity with respect
to a fuzzy relation « iff pap C ap and pap C pa.
3) If pis aregular similarity with respect to a fuzzy relation
. then p C ((ap)\a) N ((pa) /).
The next theorem shows that the regular interior can be
computed iteratively. It is analogous to Theorem 11 in [16].
Theorem 1: Let « be a fuzzy relation and 7 be a similarity
relation, both on a finite set A. Then, the regular interior of 7

is equal to
=
i>0

where 7y = 7 and
Tiv1 = [((am)\a) N ((me) /o) N i)°.

Recall that -® is the symmetric interior of a fuzzy relation.

By this theorem, we have an effective way to obtain
regular similarities of a fuzzy social network. Once the regular
similarities of a fuzzy social network are obtained, traditional
similarity-based clustering methods [27] can be applied to
analyze the network data.

IV. GENERALIZED REGULAR EQUIVALENCE

Regular similarity is a fuzzy relation, but we sometimes
need a crisp role partition of a fuzzy social network. In
such cases, we can use the concept of generalized regular
equivalence (GRE). To define GRE, we need to consider the
neighborhoods in fuzzy social networks. Let § = (4, «)
be a fuzzy social network. Then, for each a € A, the out-
neighborhood and in-neighborhood of a, denoted by N (a)
and N (a) respectively, are two fuzzy subsets of A with the
following membership functions:

MN;(a)(b) = fta(a,b)
UN;(a)(a) = (b, a).



Let B be a fuzzy subset of A and p be an equivalence relation
on A. Then, [B], is a fuzzy subset of the quotient set A/p =
{la], | @ € A} with the following membership function:
= ma b).
wm, ([a]) gé[;]WB( )
Thus, an equivalence relation p is a GRE with respect to a
fuzzy relation « if (a,b) € p implies
[Na (@)], = [Ng (0)], and [N (a)]l, = [Ng (0)],.

[e3

Let us somewhat abuse the notation and write
pala, [b],) and  po([a],,b) to denote max.ep) tal(a,c)
and maxX.c[q] Ha(c,b) respectively. Then, we have an
alternative formulation of GRE.

Lemma 3: An equivalence relation p is a GRE with respect
to a fuzzy relation « iff for a,b € A, (a,b) € p implies
Ha(a, [C}p) = pa(b, [C]p) and Moz([c]p?a) = Moz([c]p»b) for all
ce A
Based on this formulation, we can establish the connection
between regular similarity and GRE.

Lemma 4: Let a be a fuzzy relation and p be an equivalence
relation on a finite set A. Then, p is a GRE with respect to «
iff ap = pa.

Since an equivalence relation can be seen as a special case
of a similarity relation, Lemma 4 shows that regular similarity
and GRE are equivalent for equivalence relations.

Like regularity equivalences, GRE is also closed with re-
spect to the usual join of equivalence relations. Thus, given an
equivalence relation 7w, we can define the generalized regular
interior of m (with respect to a fuzzy relation «), denoted by
79, as the join of all GRE’s (with respect to «) included in 7
(i.e., the largest GRE included in 7). The next theorem shows
that the well-known CATREGE algorithm [28] can be used to
compute the generalized regular interior of a given equivalence
relation. Given an equivalence relation 7 and a fuzzy relation «
on the domain A, the shorthand ne(a, w) (meaning the neigh-
borhood equality) is used to denote the equivalence relation
{(@,5) | [NF (@)l = [N (D) A [N (@) = [Ny (0)]}-

Theorem 2: Let « be a fuzzy relation and 7w be an equiv-
alence relation, both on a finite set A. Then, the generalized
regular interior of 7 with respect to « is equal to

= ()m,

i>0
where 7y = 7 and

Tip1 = m; Nne(a, m;).

Note that though GRE is equivalent to regular similarity
for equivalence relations, the generalized regular interior and
similarity-based regular interior are not necessarily the same
for a given equivalence relation.

Example 1: Let us consider a trivial two-actor fuzzy social
network ({1,2}, a) with «, as shown in Figure 1, where we
assume that 71 # 79.

Then, the largest GRE with respect to « is the identity relation,
but the largest regular similarity is specified by the following

Fig. 1. A fuzzy social relation between two actors

matrix equation

0 m 1 x| . (1 0 m
re 0 r 1] |z 1 re 0 |’
which can be rewritten into
min(rq, ) 71 1 _ [ min(re, z) ™
ro min(ry, ) | | ro min(ry, x)
Since the largest solution of min(ri,x) = min(re,z) is

& = min(ry, ), the adjacency matrix of the largest regular
similarity with respect to « is

1 min(rl, 7“2)
min(ry, r2) 1 ’

which is obviously not equal to the identity matrix if
min(ry,7g) # 0.

V. CONCLUSION

We have generalized the notion of regular equivalences to
fuzzy social networks. There exist different but equivalent
definitions of regular equivalences in the literature. However,
when generalized to fuzzy social networks, these definitions
may result in inequivalent notions of similarity. We consider
two kinds of generalizations in this paper. The regular similar-
ity is generalized according to the commutativity between the
similarity relation and the underlying fuzzy relation, while the
GRE is generalized according to the equality of neighborhoods
of equivalent actors. We show that, in some special cases,
these two generalizations are still equivalent; however, the
regular interiors based on them may be different. We also
present effective procedures for computing the regular interiors
of a given equivalence relation or similarity relation. Though
these procedures are effective, they are not efficient enough
for large-scale networks. In the future, we will explore the
possibility of adapting the more efficient RCPP (relational
coarsest partition problem) algorithm [18] to the fuzzy case.
Furthermore, in addition to regular equivalences, we will also
consider generalizing other notions of equivalence in SNA [18]
to fuzzy social networks.
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