
Research Article
Positioning a Handshake Bay for Twin Stacking Cranes in an
Automated Container Terminal Yard Block

Zhi-Hua Hu ,1,2 Xi-Dan Tian ,1,2 Yu-Qi Yin ,2 and Chen Wei 2

1Qingdao Institute, Shanghai Maritime University, Shanghai 201306, China
2Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China

Correspondence should be addressed to Zhi-Hua Hu; zhhu@shmtu.edu.cn

Received 6 December 2019; Revised 12 December 2021; Accepted 27 December 2021; Published 18 January 2022

Academic Editor: Vincent F. Yu

Copyright © 2022 Zhi-Hua Hu et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

At automated container terminals (ACTs), twin automated stacking cranes (ASCs) can carry out the tasks—store and retrieve
containers simultaneously in a yard block using a handshake bay, where a primary ASC stacks the container at the handshake bay
and the other crane carries it to the destination bay. Although the handshake bay increases the degree of crane utilization, the
ASCs will interfere with each other at the bay, decreasing the stacking efficiency. +is study formulates a mixed-integer linear
program (MILP) to position the handshake bay and simultaneously schedule the twin ASCs to minimize the tasks’ makespan.+e
proposed formulation considers the safe time interval to avoid crane collisions during adjacent crane movements. To solve the
model, we developed a random-key genetic algorithm with a priority-based decoding scheme to optimize the task sequences and
tasks assigned to the cranes.+e priority-based GA can always generate feasible solutions by ranking the container-handling tasks.
Numerical experiments prove that the safe temporal interval affects the makespan and the handshake bay’s position. An optimal
handshake bay reduces 35% of the makespan compared with a nonoptimal bay, and the proposed algorithm is competitive
compared with the on-the-shelf MILP solver and can solve medium- and large-scale instances in short computing time with gaps
lower than 5% compared with ideal solutions.

1. Introduction

Globalization promotes container transportation through
seaborne shipping that undertakes 90% of the world trade
[1]. In 2015–2017, the seaborne trade volume by container
ships increased from 1,660 million tons to 1,834 million tons
[2]. Many containers are daily delivered by a large number to
container terminals [3]. +e maritime transportation flows
and container demand have increased over time, although
the COVID-19 pandemicmay slow down [4].+e increasing
volume in the container shipping industry exerts much
pressure on the container terminals [5]. Shanghai Port, as
the global busiest container terminal, achieved a throughput
of 42.01 million twenty-foot equivalent units (TEUs, a
20 ft× 8 ft× 8.5 ft container) in 2018 [6], which indicates that
the terminal had to handle 110 thousand TEUs daily. In
response to the massive throughput challenge, container
terminals have to increase the efficiency of terminal

operations, especially by utilizing advanced equipment [7].
Automated stacking crane (ASC) is such a kind of equip-
ment that improves stacking productivity in automated
container terminals (ACTs) [8]. To improve the operation
efficiency of the yard, the twin automated stacking cranes are
used to store and retrieve containers simultaneously with the
help of the handshake bay. +e prime stacking crane stacks
the container into the handshake bay, and the cooperative
crane transports the container to the target bay. +e ASCs
stack and retrieve containers in the stacking blocks under the
control of terminal operating systems. +e ACT operators
have developed the automation technologies and operation
optimization tools to schedule ASCs efficiently. Many
containers are daily delivered by a large number of external
trucks (ETs).

+e twin ASC solution examined used two cranes that
conduct container storage and retrieval tasks cooperatively
in a single block [9–11]. +e ASCs store and retrieve the

Hindawi
Journal of Advanced Transportation
Volume 2022, Article ID 5738254, 17 pages
https://doi.org/10.1155/2022/5738254

mailto:zhhu@shmtu.edu.cn
https://orcid.org/0000-0003-4099-3310
https://orcid.org/0000-0002-3060-9533
https://orcid.org/0000-0001-9204-952X
https://orcid.org/0000-0003-1804-0468
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5738254


containers through the transfer points (for input/output (I/
O)) at the ends of blocks. Generally, the two ASCs can
handle containers simultaneously in the block but cannot
pass each other. Figure 1 depicts a typical twin ASC layout
used at Shanghai Yangshan ACT [12]. At the seaside I/O
point, an ASC picks up the storage containers or drops off
the retrieval containers onto the internal automated guided
vehicles (AGVs). At the landside I/O point, the other ASC
exchanges the containers with external container trucks. An
ASC cannot crossover the other and can only serve the I/O
point at its side. +e conflict is notable when the twin cranes
handle a batch of tasks via only the seaside or landside I/O
point because the crane at the other side is blocked to reach
the point and has to stay idle.

When the twin ASCs are independent, like two crossable
ASCs, they can be scheduled in two separate programs. Each
ASC operates according to a batch of container-handling
tasks with constraints (e.g., time windows and sequence-
dependent orders). While the two ASCs use the same track/
orbit, they cannot cross each other, so theymust synchronize
along the orbit. We call this constraint time-space syn-
chronization that demands a safety clearance distance be-
tween two ASCs.+is study introduces the handshake bay as
a critical bay between the two ASCs for the following rea-
sons. First, only one ASC can simultaneously handle con-
tainer storage/retrieval tasks at the handshake bay. +en, we
can represent a container-handling task by two subtasks. An
ASC retrieves and stores the container at the handshake bay,
and then, the other ASC retrieves the container from the
handshake bay and stores it to its destination. So, the ASCs
must synchronize the retrieval/storage operations at the
handshake bay. +e handshake bay can be a fixed bay of the
block or can be dynamically determinant. Its position is
critical for improving efficiency. Figure 2 depicts the
handshake bay’s operations: a crane stacks container to the
handshake bay, while another crane carries it to the desti-
nation. To store a container in a block bay, the seaside ASC
picks it up, carries it to the handshake bay, drops the
container, and then returns to the seaside I/O point for
incoming container-handling tasks; meanwhile, the landside
ASC moves to the handshake bay, picks up the container,
carries the container, and finally drops it to its destination
bay. By utilizing the handshake bay, the ASCs reduce the idle
time and potentially save the makespan. However, addi-
tional operations are required for the cranes to hand over
containers. +us, optimizing the handshake bay and twin
ASC scheduling solutions is crucial.

Under optimizing operational efficiency for a batch of
storage/retrieval tasks in an ACT yard block, some studies
developed models to minimize the makespan (the com-
pletion time of the last task) [13, 14]. We jointly determine
the task sequences of the cranes and the location of the
handshake bay in a block. +e tasks whose origin and
destination are the handshake bay that are operated by two
ASCs sequentially.

+is study contributes to three streams of studies in the
literature. Firstly, we developed a mixed-integer linear pro-
gram to decide the optimal handshake bay coupled with the
ASC scheduling problem under synchronization constraints.

Pioneering studies aim at these problems using methods
based on simulation and heuristics [14]. We developed so-
lutions based on formal MILP models. Secondly, we devised a
priority-based GA [15, 16] for the handshake bay positioning
problem. GA provides us great flexibility to hybridize with
domain-dependent heuristics to efficiently implement the
specific problem. +e priority-based GA can always generate
feasible solutions by ranking the container-handling tasks.
Finally, we compared the MILP (solved by an on-the-shelf
solver), a greedy insert algorithm, and the GA to examine
their performances in small-, medium-, and large-scale in-
stances and validate the efficiency of the proposed methods.

Compared with other literature studies, this study takes
the handshake bay as the decision variable and considers the
cooperation between the handshake bay and two ASCs to
avoid conflict and improve the efficiency of ASC. We design
the task-based priority coding and the ASC-based priority
coding rules in terms of algorithm.

In the rest of the study, Section 2 is a literature review.
Section 3 illustrates the research problem and formulates the
mathematical model. Section 4 presents an insert algorithm
and a priority-based GA to solve the model efficiently.
Section 5 discusses the experimental results by examining
the performances of the proposed algorithms. Section 6 is
the conclusion and highlights further research directions.

2. Literature Review

2.1. Stacking Crane Scheduling. +e studies on ASC
scheduling generally include storage optimization, retrieval
optimization, pre-marshaling, and their combinations [17].

Rail-mounted gantry (RMG) cranes and rubber-tired
gantry (RTG) cranes are essential equipment used in con-
tainer yard blocks. +eir efficiency is the performance
bottleneck of container terminals [11]. Ng and Mak [18]
devised a branch-and-bound algorithm to minimize the
waiting time of tasks for a single-yard crane. Gharehgozli
et al. [19] proposed a two-phase method for a single-yard
crane optimization problem: first, they formulated the
original scheduling problem into an assignment model;
then, they developed a branch-and-bound algorithm to solve
the problem. Sharif et al. [20] proposed an agent-based
approach for scheduling and deploying multiple yard cranes
that can travel among blocks. +ey examined various syn-
chronization rules for crane assignments and schedules.
Galle et al. [21] scheduled multiple yard cranes simulta-
neously by considering future relocations. +ey devised a

Figure 1: Twin ASC stacking blocks at Yangshan automated
container terminal.

2 Journal of Advanced Transportation



MILP to determine the task sequences and solved the model
using a relaxation method and a local search algorithm.
Considering inter-crane interference, clearance distances,
and time windows for simultaneous stacking and retrieving
containers by two cranes, Li et al. [22] also developed aMILP
that is solved by rolling horizon heuristics. Ng [23]
scheduled multiple yard cranes that shared one bidirectional
traveling lane and handled tasks with different ready times
by a MILP and dynamic programming considering inter-
crane interferences. Fotuhi et al. [24] introduced an agent-
based approach to sequence multiple cranes to minimize the
waiting time of external trucks. +ey used reinforcement
learning to optimize the operations considering historical
data. Sha et al. [25] scheduled multiple cranes with turning
distance and operation rules under energy minimization. He
et al. [26] studied the energy-saving solution for scheduling
yard cranes using an integrated simulation method.

ASC is a kind of unmanned RMGs that uses automation
technologies to control the crane movements and container-
handling operations. Gharehgozli and Zaerpour [27]
scheduled a single ASC for stacking outbound containers by
considering an alternative stacking policy (stacking con-
tainers of different types at the same row to increase stacking
space utilization while increasing the complexity of crane
scheduling).

+e twin ASC configuration introduces difficulties in
modeling the cranes’ interferences, affecting the algorithm
development. Boysen et al. [28] developed a classification
scheme for the interferences between two cranes. Some

pioneering studies formulated the twin ASC scheduling
problem as formal or descriptive MILPs while developing
different solution algorithms, e.g., graph-based polynomial
algorithm [29], rule-based heuristics [30], reward-based
heuristics [31], dynamic programming, and beam search
algorithm [32].

As discussed in Section 1, the handshake bay will affect
the solutions for ASC task sequences. Carlo and Mart́ınez-
Acevedo [8] optimized the handshake bay by considering
fourteen priority rules. Jaehn and Kress [33] scheduled the
twin cranes in a single block considering handshakes based
on discrete-time model and heuristic algorithms. Ghar-
ehgozli et al. [14] studied the effect of handshake bay on the
makespan and waiting time in a twin ASC configuration and
proposed several priority-based operations rules to simulate
the stacking operations. +e handshake bay is pre-
determined (as a constant) in the proposed models in all
these studies.

Table 1 summarizes the studies on stacking crane
scheduling with four aspects: synchronization (Syn),
handshake (HS), model type, and solution algorithm.
Most studies deal with the synchronization, while
handshake bay is ignored, which simplifies the ASC
scheduling problem. Moreover, most algorithms are
designed based on task priority. We consider the syn-
chronization of handshake bay and ASCs, taking the
handshake bay as a decision variable and transferring the
moving interference between double stacker cranes to
handshake bay position.

Landside I/O

Container arrival location

Temporary location

Container destination

(a)

Container arrival location

Temporary location

Container destination

Landside I/O

Prime
cranes

Cooperative
cranes

(b)

Seaside I/O

ASC

Handshake bay

Container arrival location

Temporary location

Container destination

Landside I/O

(c)

Figure 2: Twin ASCs’ operations for a storage task with handshake bay. (a) Seaside ASC picks up imported container from the I/O point. (b)
Seaside ASC drops off the container at the handshake bay. (c) Landside ASC carries the container to the destination.

Journal of Advanced Transportation 3



2.2. Synchronization Constraints in Scheduling Problems.
In routing and scheduling problems, synchronization occurs
among devices’ operations due to spatial, temporal, and ca-
pacity constraints [35–37]. +e pioneering studies investi-
gated in Section 2.1 generally conceptualized the interference
considered in twin ASC scheduling as synchronization
constraints that are generally similarly considered in vehicle
routing problems (VRPs) [38]. Drexl [39] reviewed the VRPs
withmultiple synchronization constraints among distribution
tasks, cargo handling operations, vehicle movements, cargo
loads, and service resources. Schiffer et al. [40] reviewed VRPs
and location routing problems with intermediate stops, re-
plenishment, and unloading, where the routes are synchro-
nized at locations. Gschwind and Irnich [41] synchronized
two sequential operations by dynamic time windows in a dial-
a-ride scheduling problem. Crainic et al. [42] synchronized
the movements of urban vehicles and city freighters at logistic
satellites in an integrated scheduling and resource manage-
ment problem. +e space-time synchronization constraints
are formulated among operations in the two-tiered city lo-
gistic system. Agatz et al. [43] synchronized the vehicles
(trucks here) and drones at the drone departure and arrival
locations in a VRP with a drone to make deliveries. +ey
formulated the synchronization problem as a MILP and
solved the model by a route-first cluster-second heuristic
algorithm. Derigs et al. [44] studied the synchronization effect
of time windows and load transfers between trucks and
trailers on the performance of routes. Belenguer et al. [45]
synchronized the trucks and trailers at satellite facilities using
heuristics as solution methods. Chao [46] synchronized main
and sub-routes in the two-stage VRPs using cluster-first-
based heuristics and a Tabu search algorithm.

Besides, synchronization is also a typical concept and
constraint in many domains, e.g., chaotic systems [47],
multi-agent systems [48], and machine learning [49]. Syn-
chronization is an emergent property in a broad range of
dynamical systems. Synchronization may be explained and

formulated differently in other fields. However, synchro-
nization generally represents the closeness relations in time
or space dimensions in transportation and logistics.

2.3. Incremental Contribution. +is study contributes to the
related studies in the following aspects. First, we concep-
tualize the interferences between the twin ASCs as combined
time-space and critical resource synchronizations. Based on
the pioneering studies in Table 1, as an incremental con-
tribution, we developed a continuous-time MILP to opti-
mize the handshake bay and sequence stacking tasks for the
ASCs. Second, the proposed MILP integrates the handshake
bay’s decisions, the two ASC scheduling solutions, and the
crane interference avoidance used to synchronize the crane
operations at the handshake bay. Based on the pioneering
studies on ASC scheduling with handshake bays, this study
combines the routing and handshake bay positioning
problems in a single formal MILP. Finally, most conven-
tional heuristics usually conduct a local search. +e use of
evolution operators makes GA very effective in performing a
global search. Using the MILP as a base, we develop a
random-key genetic algorithm with ASC priority and task
priority coding scheme to study the impacts of handshake
bay positioning on twin ASC scheduling solutions. +e
collision of synchronous operation is avoided from the
model and algorithm, which is more practical.

3. Problem Description and the Model

3.1. Problem Description. +is study investigates the prob-
lem of positioning a handshake bay and scheduling twin
ASCs for a batch of containers’ arrival at one I/O point in a
yard block. +e block consists of nb bays, several rows, and
two I/O points at its two ends. We denote the bays by a set,
e.t., 1, 2, . . . , nb . We denote the set of stacking bays by
B � 0, 1, . . . , nb . Here, 0 refers to a virtual bay representing

Table 1: Pioneering studies on scheduling yard cranes in container blocks.

Paper Syn HS Model Solution methods
Gharehgozli and Zaerpour [27] No No DTIP Simulated annealing
Ng and Mak [18] No No IP Branch-and-bound algorithm
Gharehgozli et al. [19] No No IP Branch-and-bound algorithm
Ng [23] Yes No IP Dynamic program-based heuristic
Galle et al. [21] Yes No IP Approximate algorithm
Li et al. [22] Yes No MILP Rolling horizon heuristics
He et al. [26] Yes No MILP GA and particle swarm algorithm
Briskorn et al. [30] Yes No MILP Bucket brigade algorithm
Sha et al. [25] Yes No MILP Scheduling algorithm
Zhang et al. [34] Yes No MILP Approximate approach
Sharif et al. [20] Yes No Simulation ABM with DP
Fotuhi et al. [24] Yes No Simulation ABM; reinforcement learning
Briskorn and Angeloudis [29] Yes No Simulation Graphical model and polynomial algorithms
Ozcan and Eliiyi [31] Yes No Simulation Reward-based stacking algorithm
Kress et al. [32] Yes No Simulation Bounded DP
Jaehn and Kress [33] Yes Yes DTIP Bucket brigade algorithm
Carlo and Mart́ınez-Acevedo [8] Yes Yes MILP Priority rules
Gharehgozli et al. [14] Yes Yes Simulation Priority and operation rules
Note. Syn� synchronization, HS� handshake, IP� integer program, DTIP� discrete-time IP; ABM� agent-based modeling; DP� dynamic programming.

4 Journal of Advanced Transportation



the I/O point of the arrival containers. +e set of the twin
ASCs is denoted by K � p, c , where p represents the crane
near the I/O point of arrival containers and c represents the
other crane. +e ASC moves along the bays at a speed of Tm

per bay and uses a trolley to grasp the containers.+e time of
hoist/dropping off one container is denoted by Th.

A set of tasks are available at the beginning of the scheduling,
denoted by N � 1, 2, . . . , n{ }. Each task specifies a container
movement by an original location (bay) Oi and a destination
(bay) Di, where Oi, Di ∈ B for all i ∈ N. We can determine the
data (Oi, Di) in advance.+e primary purpose of this study is to
optimize a handshake bay denoted by w in B, namely w ∈ B.
+e container carried across the handshake bay is handled by
the twin ASCs sequentially: the crane p carries the container
from its original location to the handshake bay, and then, the
crane c takes it from the handshake bay to the destination.

+e objective of scheduling the twin ASCs is to minimize
the makespan, represented by the last task’s completion
time.+e decisions involve positioning the handshake bay w

and the handling sequences of ASCs. +e crane p drops a
container to the handshake bay before the crane c can pick
up the container. +e two cranes can use the handshake bay
exclusively as it is a critical resource (conceptualized as
critical resource synchronization). Besides, considering the
crane interference, the sequences of twin ASCs have to keep
a safe time interval with each other to avoid crane collision
(conceptualized as time-space synchronization). Figure 3
depicts these two kinds of synchronization. Table 2 sum-
marizes the notations mentioned above.

3.2. Mathematical Model. We formulate the handshake bay
positioning and twin ASC scheduling problem as follows.
+e binary variable xijk formulates the tasks’ allocation to
cranes and their sequence: it equals 1 if ASC k handles task i

directly before task j; otherwise, it is 0. +e notations sik and
eik denote the start and completion times of task i handled
by ASC k individually. A binary variable uij synchronizes the
prime crane’s storage and cooperative crane’s retrieval
operations for avoiding the interference of the twin ASCs at
the handshake bay: if the prime crane (p) finishes task i

before the cooperative crane (c) starting task j, then uij

equals to 1; otherwise, uij is 0. If task i involves storage/
retrieval operations at the handshake bay, yi equals to 1;
otherwise, yi equals to 0.

+e model assumptions are reflected in the two aspects.
First, the ASC must be handed over through a buffer. ASC
shall not cross the buffer during task processing. Second,
ASC can avoid collision and achieve synchronization by
maintaining a safe time interval.

min z

subject to,
 (1)


j

xijk ≤ 1,∀i, k,
(2)


i,j

xijp � |N| − 1, (3)


i,j

xijc � 
i

yi − 1, (4)

eip ≥ sip + T
m

dip − bip  + 2T
h
,∀i, (5)

eic ≥ sic + T
m

dic − bic(  + 2T
h

+ M yi − 1( ,∀i, (6)

sjk ≥ eik + T
m

dik − bjk  + M xijk − 1 ,∀i, j, k, (7)

eik ≥ sik,∀i, k, (8)

z≥ eik,∀i, k, (9)

sjc ≥ eip + T
s

+ M uij − 1 ,∀i, j, (10)

eip ≥ sjc − M · uij + M 1 − yj  + 2T
h

+ T
s
,∀i, j, (11)


j

uij ≤ |N| · yi,∀i, (12)

uii � yi,∀i, (13)

bip � Oi,∀i (14)

Di ≥dip − M · yi,∀i (15)

dip ≥Di − M · yi,∀i, (16)

w≥dip + M yi − 1( ,∀i, (17)

dip ≥w + M yi − 1( ,∀i, (18)

w≥ bic + M yi − 1( ,∀i, (19)

bic ≥w + M yi − 1( ,∀i, (20)

Di ≥ dic + M yi − 1( ,∀i, (21)

dic ≥Di + M yi − 1( ,∀i, (22)

M · yi ≥dip − w,∀i, (23)

2yi ≥ 
j

xijc + 
j

xjic,∀i, (24)

sik ≥ 0,∀i, k, (25)

max
∀i

Di ≥w, (26)

Journal of Advanced Transportation 5



xijk, yi, uij ∈ 0, 1{ },∀i, j, k. (27)

+e objective function (1) minimizes the makespan of
the twin ASCs, subject to the following five groups of
constraints:

(1) Sequencing constraints. Constraint (2) ensures that
each task has at most one successor task. As

constrained by (3) and (4), the cranes finish all the
tasks. +ese constraints imply a flow balance, en-
suring that the two cranes handle the tasks indi-
vidually once and in sequence.

(2) Time constraints.We compute the start time and end
time of prime crane (p) near the I/O point of arrival
containers handling task i by the moving time and
loading/unloading time, given in (5). +e start time

Table 2: Notations.

(1) Set
B � 0, 1, . . . , nb  A set of bays in yard block, where 0 is the I/O points of arrival containers
N � 1, . . . , n{ } A set of tasks, generally indexed by i, j

K � p, c  K consists of the prime and cooperative cranes (p, c), indexed by k

(2) Known data
Oi ∈ B Original bay of task i

Di ∈ B Destination bay of task i

Ts +e safe time interval between the handlings of ASCs
Tm +e time of crane moving one bay
Th +e time of crane hoisting/dropping off one container
M A large enough number, M � |N| · (Tm · |B| + 2 · Th)

(3) Decision variables
bik ∈ B +e initial bay of task i handled by crane k

dik ∈ B +e target bay of task i handled by crane k

sik +e beginning time of crane k handling task i

eik +e finish time of crane k handling task i

xijk ∈ 0, 1{ } 1, if crane k handles task i directly before task j; 0, otherwise.
yi ∈ 0, 1{ } 1, task i is transhipped by the handshake bay; 0, otherwise.
uij ∈ 0, 1{ } 1, if p finishes task i before c starting task j; 0, otherwise.
z +e makespan of the twin ASCs completing all the tasks
w +e handshake bay, w ∈ B

La
nd

sid
e1

Safety time 
interval

1

1 Task No.
ASC working
ASC empty moving

Container arrival location
Temporary location
Container destination

Time

Make-
span

Bay

3

3

2

1

2

3

1

1
2

3 3

Figure 3: Time-space diagram of twin ASCs’ operations with a handshake bay.

6 Journal of Advanced Transportation



and end time of the cooperative crane (c) handling
the container at the handshake bay are computed by
(6). +e direct travel time of the crane from task i to
task j is given in (7). As constrained by (8), the end
time of the task must be later than the start time. In
(9), the makespan is later than the end time of every
task.

(3) Synchronization constraints. +e safe time interval
between the handlings of cranes at the handshake bay
helps avoid crane collision. In (10), if the prime crane
(p) handles task i before the cooperative crane handling
task j, task j must start later than the end time of task i

plus the safe time interval. Reversely, in (11), if we
handle the task j before task i, the end time of task i

must be later than the start time of task i plus safe time
interval and the loading time of the two tasks. If j is
staked at the handshake bay (yj � 1) and the task i is
not performed just before j (uij � 0), the inequality,
eip ≥ sjc + 2Th + Ts, should be met, which is studied in
Figure 3. In (12), the cranes handle the containers at the
handshake bay in a sequence. In (13), the prime crane
(p) always handles the tasks before the cooperative
crane (c).

(4) Handshake bay location constraints. In (14), the
prime crane starts a task at the original location of the
container. In (15) and (16), if the container is not
stacked at the handshake bay, the prime crane finishes
the task at its destination; otherwise, the prime crane
finishes the task at the handshake bay, as constrained
in (17) and (18). Constraints (19)–(22) ensure that the
cooperative crane starts a temporary stacked task at
the handshake bay and finishes it at its destination. In
(23), if the prime crane stacks the container of a task at
the handshake bay, its destination must be on the
other side of the handshake bay. In (24), the coop-
erative crane transports the container at the hand-
shake bay to its destination.

(5) Domain constraints. In (25)-(26), the start times of
tasks are nonnegative, and the handshake bay must
locate before the destinations of tasks.

Notably, the distances, (dik − bik) and (dip − w), in (5)-
(7) and (23), should be (bik − dik) and (dip − w) for retrieval
tasks to ensure that their values are nonnegative.

Proposition 1. -e problem of scheduling twin ASCs and
optimizing the handshake bay is NP-hard.

Proof. By relaxing the decision on the handshake bay’s lo-
cation, the twin ASC scheduling model determines the optimal
task sequences of the cranes. Since the prime crane handles all
the tasks one by one, we can obtain the prime crane’s task
sequence by solving a traveling salesman problem (TSP) where
a traveler sequentially visits a set of vertices. As for the coop-
erative crane, the sequence consists of the tasks using the
handshake bay for staking containers temporarily. We can also
solve it with a TSP.+us, the relaxed model is NP-hard because
the TSP is such [50]. □

4. Solution Algorithms

+e MILP is hard to be solved for a practical problem with
more than ten tasks (see Section 5) because of the complexity
of integrating handshake bay positioning and twin ASC
scheduling. We developed an insert algorithm with a greedy
strategy and priority-based GA [15, 16] with better com-
putational efficiency.

4.1. Greedy Insert Algorithm. Inspired by scheduling ex-
periences from the Yangshan ACT, the algorithm inserts
tasks to the handling sequences of the ASCs to minimize
the crane idle time. First, the algorithm selects one bay in
the block as the handshake bay. Second, the algorithm
alternately inserts a long-time task and a short-time task to
the ASC close to the I/O point of arrival containers until all
the tasks are assigned. +ird, the algorithm adds the tasks
using the handshake bay to tranship the containers to the
cooperative ASC, considering the safety time interval.
Fourth, the algorithm computes the makespan, as denoted
by zi. Fifth, the algorithm enumerates the available bays as
handshake bay, computes the makespan, and then outputs
the bay with the minimal makespan and the corresponding
scheduling as the solution. Algorithm 1 presents the outline
of the insert algorithm.

Proposition 2. -e computational complexity of Algorithm
1 is O(m · n2), where n is the number of tasks and m denotes
the number of bays in a block.

Proof. We can decompose Algorithm 1 into two procedures
that sequence the tasks by sorting according to their op-
eration times. +e worst sorting time is n(n + 1)/2, when all
the tasks are temporarily stacked. So, the computational
complexity of calculating the makespan once is O(n2).
+rough the algorithm, the makespan is calculated m times
according to the number of candidate handshake bay. +us,
the whole computational complexity is O(m · n2). □

4.2. -e Genetic Algorithm. +e greedy insert algorithm
(Algorithm 1) can produce a feasible solution within a
short computing time. However, the greedy search
generates a single solution due to limited search space.
We developed a GA using a real number encoding scheme
and a priority-based decoding strategy. +e GA is a
typical representative intelligent algorithm and can in-
corporate many other successful heuristics developed for
other algorithms, e.g., simulated annealing and various
neighbor searches.

+e GA derives from evolutionary computation and
follows natural selection as the principle for searching for
improved global optimization solutions in various appli-
cations [51], such as scheduling [52, 53] and routing [54].
+e critical components include (1) encoding solution into
individuals, (2) repetitively performing crossover and mu-
tation operations to generate new individuals, and (3) re-
serving individuals with high-performance value by the
fitness function. A GA organizes a population of individuals

Journal of Advanced Transportation 7



to devise solutions and form generations. New individuals
are produced based on the existing individuals and the next
generation is composed, with some elite individuals selected
from the current generation. Over massive generations and
superior selection, the population evolves toward the best
individuals. +e crossover operator guarantees the local
improvement during the generations, and mutation ensures
that the GA searches widely in the feasible region. Crossover
fraction and mutation rate are control parameters to exploit
and explore optimal solutions.

4.2.1. -e Algorithm Procedures. Algorithm 2 presents the
procedures of GA. +e algorithm randomly generates indi-
viduals to form the initial population and then improves the
population iteratively. At each generation, firstly, the individuals
are decoded into task sequences for the twin ASCs based on the
decoding scheme; secondly, the fitness function computes the
solutions’ performances as the makespan of their tasks.+irdly,
the process transfers some elite individuals with the highest
fitness value to the next generation. Fourthly, the process fol-
lows the crossover fraction to select some individuals as parents
to generate child individuals. Fifthly, the process mutates the
rest of the current individuals, and finally, the process decides
on the excellent child individuals coupled with the elite indi-
viduals to form the next population. +e algorithm terminates
when it achieves the maximal generations or maintains the
optimal solution for limited iterations.

4.2.2. Encoding Scheme. We use random keys [55] in a real
number vector v to represent the priorities of tasks for
permuting the task in the ASC handling sequences. +e
vector v contains 2 · |N| elements, namely v � [vi]1×(2|N|) and
vi ∈ [0, 1]. +e vector values represent the priorities of N

tasks of the prime ASC and N tasks of the cooperative ASC.
Figure 4 illustrates an individual containing five tasks.

A high value of vi indicates a high priority of corre-
sponding task i for insertion into the sequence. +e algo-
rithm adds the candidate task with the highest priority to the
tail of the corresponding ASC’s task sequence.

4.2.3. Decoding Scheme. +e decoding scheme interprets a
value vector into a solution and calculates the raw fitness value
to provide evaluation value for further GA operators. Derived
from the MILP, we designed Algorithm 3 to interpret a vector
into feasible sequences for the two ASCs while considering the
synchronization constraints. By the vector’s values, the priorities
of the ASC to the tasks are determined sequentially in the
decoding scheme, which extends the solution method using
constant crane priority [8].

To simulate the yard crane performances, Carlo and
Mart́ınez-Acevedo [8] and Gharehgozli et al. [14] developed
schemes for sequencing the yard crane tasks using crane
priorities. In this study, we implement this method in Al-
gorithm 4 as a decoding scheme for comparison studies (see
Section 5). Algorithms 3 and 4 use the priorities as decoding
orders to construct a sequence of tasks gradually. However,
Algorithm 3 uses the random keys’ task priorities in a GA,

while Algorithm 4 sequences the tasks according to the given
yard cranes. In practice, the operators generally use crane-
based priorities to schedule the crane operations, possibly
because the method is intuitive. However, it cannot utilize
the empty time. +e task-based priorities provide a way to
utilize the cranes by considering the empty time. However, it
is not always true. So, we will study them through com-
putational experiments.

4.2.4. Initialization. +e GA generates a group of solutions
as the initial population. As introduced in the decoding
scheme (Section 4.2.3), we decode any real value vector v

into the task sequences as a feasible solution. To start with a
good initialization, we add the solution of the greedy insert
algorithm (Algorithm 1) as one of the initial solutions.
+erefore, the initial population is randomly generated in
the initialization process, with one solution resulting from
Algorithm 1.

4.2.5. Crossover and Mutation. As mentioned in 4.2.3, the
decoding scheme allows various crossover and mutation
operators designed for both discrete and continuous GAs.
To get better performance of the decoding scheme, we test
the operators proposed from literature and applied in
practical solvers such as MATLAB. Finally, we select the
two-point crossover and Gaussian mutation [56] to out-
perform other operators in tests among various designed
operations. +e two-point crossover selects two vector
positions of one parent pair and exchanges the corre-
sponding vector values between the two individuals to form
a new individual. Gaussian mutation adds a random
number taken from a Gaussian distribution with a mean 0
to each value of the parent vector and then scales them to
form a new individual.

4.2.6. Fitness Evaluation. We use the fitness value to eval-
uate the performance of the solution represented by the
individual. As formulated in Section 3, we prefer lower-
makespan solutions; therefore, a low makespan z returned
by the decoding scheme is of high performance. We convert
the makespan z to the raw fitness value that is reciprocal to z.
We use a rank-based method for scaling the fitness values.
+e method ranks the individuals based on the raw fitness in
descending order and sets the fitness value of individual
ranked at position nd equal to ��

nd

√ [57].

4.2.7. Elite and Selection. +e selectionmethod chooses high
fitness values with high possibilities to form parents of the
next generation. We use a roulette selection scheme to select
the candidate parents by making up a roulette wheel. +e
section size of the wheel corresponding to an individual is in
proportion to the individual’s fitness value and then
selecting several individuals with a probability as the parents.
+e probability (α) determines the fraction of individuals
operated by crossover.

8 Journal of Advanced Transportation



5. Experiments

We conduct extensive numerical experiments to evaluate the
formulated model’s effectiveness, the greedy insert algo-
rithm (Algorithm 1), the crane priority-based GA, and the
task priority-based GA (Algorithm 2). +e model and al-
gorithms were coded and implemented in the MATLAB
2016a platform on a computer with Intel (R) Core i7-5500U
CPU Dual 2.4GHz, 8GB memory, and Windows 10 op-
erating system. We solve the MILP with Gurobi 725 (http://
www.gurobi.com) using MATLAB.

5.1. Data and Experimental Settings. We use the following
data to construct the instances and settings in the experi-
ments. +e data are set based on the investigations to the
Shanghai Yangshan ACT. +e authors provided mathe-
matical modeling courses and assistants to the ACT de-
signers, managers, and operators. +e block consists of 28
bays and two I/O points at the ends. +e travel speed of ASC
is set to 2.5m/s. +at is, an ASC takes 6 s to travel a bay. +e
hoist/drop speed of ASC is set to 2m/s. In practice, ASC
needs a calibration time of 25–30 s for orienting the con-
tainer location to be operated. +erefore, we set the hoist/
drop time to 30 s. +e task number n is set to 5, 10, 20, 50,
and 100. For each number of tasks, we generate four sce-
narios of task distributions (denoted as “s,” “c,” “l,” and “u”)
so that tasks are distributed from the I/O point of arrival
container to 1/3 length of the block, from 1/3 length of the
block to 2/3 length of the block, from 2/3 length of the block
to the end of the block, and distributed uniformly in the
block. +e safe time interval between two crane handlings is
set to 9 s, indicating a minimal half-bay distance between
twin ASCs. In summary, we represent the model parameters
described above by a value vector,
(nb, Tm, Th, Ts) � (28, 6, 30, 9).

+e parameters of GA include maximal generation G,
stall generation φ, population size ρ, crossover fraction α,

and mutation ratio β. In the parameter tuning experiment,
we adjust one parameter and fix other parameters simul-
taneously. Section 5.2.1 presents more details of tuning the
parameters. +e default values of the parameters are
(G,φ, ρ, α, β) � (1000, 450, 20, 0.6, 0.55).

In Table 3, we devise three experiments with purposes
and parameter settings.

5.2. Experimental Result

5.2.1. Parameter Tuning. We demonstrate the parameter
tuning experiments using instances with 50 tasks uniformly
distributed in a container yard block. Figure 5 depicts the
results for each tuned parameter. +e objective value

decreases dramatically at the beginning of execution, and the
decreased speed slows down after 100 generations. +e al-
gorithm result converges to an optimal value and holds
stable after 800 generations. +e algorithm terminates after
the stall generation, and the best value is 450. In Figure 5(c),
the lowest objective value incurs at population size 20; after
that point, computation time increases, while the objective
value is unchanged. +e crossover fraction (α) and mutation
ratio (β) jointly determine the GA’s progress. Figure 5(d)
produces a contour plot for these two parameters and their
corresponding makespan. +e objective value drops to the
lowest when the crossover fraction reaches 0.6 and the
mutation ratio to 0.55. We mark two regions of combina-
tions that lead to good performances by grey colors in
Figure 5(d).

+e parameters are sensitive to the number of tasks and
even their distributions. Here, we mainly demonstrate the
processes and typical results for tuning the parameters. In
application scenarios, after testing the distribution of the
tasks and the size of a batch of tasks in scheduling, we can use
it to determine the parameters before regular production.

5.2.2. Algorithm Performances. We evaluate the proposed
model’s performance and algorithms in computation time
(CT) and optimal objective value (Obj). It is found in the
experiments that a feasible solution of MILP solved by the
on-the-shelf solver takes several hours. So, it is not appli-
cable to use the MILP solver in practice. In the following
experiments, we set the time limit of two hours for solving
the MILP. We conduct 500 runs of the priority-based GA
and take the final objective values as ideal objective values,
which are “ideal” bounds when theMILP solver cannot solve
the model within two hours.

As presented in Table 4, the MILP solver can solve
optimally for small-scale instances with five tasks. +e
performance of the MILP solver decreases for the medium-
scale instances with ten to twenty tasks since the running
time reaches the limit. For the instances of more than 50
tasks, the MILP solver cannot find feasible solutions within
the time limit (remarked as the notation “–” in the table).
+e greedy insert algorithm (Algorithm 1) can find a so-
lution in less than 0.2 seconds, and its gaps between the ideal
solutions narrow down when the problem scales grow. +e
crane priority-based GA (Algorithm 1 using the decoding
scheme in Algorithm 4) is robust in computation time. +e
task priority-based GA improves the greedy algorithm and
outperforms other contenders in objective value. For small-
scale instances, the task priority-based GA found the optimal
results equal to those from the MILP solver. In the medium-
and large-scale instances, the task priority-based GA can
reduce the gaps between the ideal solutions by 5%, even to

0.16 0.32 0.81 0.21 0.41 0.63 0.73 0.06 0.56 0.84

The scores of 5 tasks
of the prime ASC

The scores of 5 tasks of
the cooperative ASC

Figure 4: An individual representation of five tasks for the twin ASCs.

Journal of Advanced Transportation 9

http://www.gurobi.com/
http://www.gurobi.com/


0.06%.+e computation times show that the efficiency of the
task priority-based GA is related to the number of tasks
because the synchronization of the two crane scheduling
tasks takes much time to determine the feasible task se-
quences avoiding crane interference.

Figure 6 presents the results of solving the model and
algorithms for seven uniformly distributed tasks. All
methods generated an optimal handshake location at the
bay of No. 11. +e crane priority-based GA found a near-
optimal solution with an extra six seconds compared with
optimal makespan, and the greedy insert algorithm (Al-
gorithm 1) is uncompetitive. +e MILP and task priority-
based GA optimized the identical objective value as the
optimal result, while the crane handlings’ sequences ob-
viously differ.

5.2.3. Parameter Sensitivity. We examine the effect of the
synchronization strength (length of the safe time interval,
Ts) and handshake bay positions on the solutions in the
following.

Figure 7 displays the impact of safe time intervals on the
incremental makespan of the tasks in the four scenarios.
With the makespan of safe time of Ts � 6 seconds as the

benchmark, the makespan rises to 13.5% after Ts increasing
to 30 seconds. We can observe a notable makespan incre-
ment in the scenario of tasks distributed in the block seaside,
and the curve is steep during the safe time prolonging.

Figure 8 displays the incremental makespan of various
handshake bays compared with the optimal handshake bay,
which locates at the bay of No. 5 in this instance. +e
makespan decreases when the handshake bay moves close
toward the optimal bay. After the handshake bay reaches
optimal, we can observe a dramatic increment in makespan,
and the prime crane carries most tasks to their destination,
while the other crane cooperates with fewer tasks. Compared
with the incremental makespan, the optimal buffer location
can save 35% working time than the handshake bay’s worst
assignment.

+e following practical insights are evaluated based on
the results shown in Figures 7 and 8. Firstly, the impact of
synchronization strength on the makespan relates to the
distribution of tasks. An extensive time delay is needed to
synchronize the two cranes when the cranes have to work in
a compact space of dense tasks. Secondly, a proper hand-
shake bay helps to relieve the time of delay caused by the
synchronized operations. +e temporal space can reassign
each device’s tasks, therefore balancing the workload

Inputs Oi, Di, Ts, Tm, Th, N, K

Outputs bik, dik, sik, eik, z, w

Steps
Step 1 Initialize z � |N| · (Tm · |B| + 2 · Th)

Step 2 Initialize a set of candidate handshake bays, denoted by Ω � min
i

(Oi),min
i

(Oi) + 1, . . . ,max
i

(Di) . Use Ωj to index the jth
element in Ω

Step 3 For each Ωj

Step 3.1 Initialize two sets Np and Nc, and two sequence vectors Vp and Vc

Step 3.2 Let l � Ωj

Step 3.3 For each i ∈ N

Step 3.3.1 Set b∗ip � Oi

Step 3.3.2 If Di > l, then set d∗ip � l, b∗ic � l, d∗ic � Di, add i to Np and to Nc

Step 3.3.3 else, set d∗ip � Di, b∗ic � −1, d∗ic � −1, and add i to Np

Step 3.3.4 End for
Step 3.4 Initialize a set of tasks as Θ � Np⋃ Nc

Step 3.5 While Θ is not empty
Step 3.5.1 Select the task with the longest distance |Di − Oi|, i ∈ Θ, and append i to Vp

Step 3.5.2 If b∗ic > 0
Calculate (s∗ic, e∗ic) by the safe time interval Ts, and append i to Vc

End If
Step 3.5.3 Remove i from Θ
Step 3.5.4 Select the task i with the shortest distance |Di − Oi|, i ∈ Θ, and append i to Vp

Step 3.5.5 If b∗ic > 0
Calculate (s∗ic, e∗ic) by Ts, and append i to Vc

End If
Step 3.5.6 Remove i from Θ
Step 3.5.7 End while

Step 3.6 Calculate z∗ � max
i∈N,k

(e∗ik)

Step 3.7 If z∗ < z

bik←b∗ik, dik←d∗ik, sik←s∗ik, eik←e∗ik, z←z∗, w←l,∀i, k

End If
Step 3.8 End For

Step 4 Output bik , dik, sik, eik, z, w,∀i, k

ALGORITHM 1: Greedy insert algorithm.

10 Journal of Advanced Transportation



0 500 1000 1500 2000 2500 3000
Generations

7000

7500

8000

8500
M

ak
es

pa
n 

(s
)

Best
Mean

(a)

200 250 300 350 400 450 500 550
Stall generation

7000

7050

7100

7150

7200

7250

7300

M
ak

es
pa

n 
(s

)

(b)

20 40 60 80 100 120 140
Computation Time (s)

6950

7000

7050

7100

7150

7200

M
ak

es
pa

n 
(s

) Fitting curve: ρ={5, 10, 15, 20, 25, 30}

ρ=20

ρ=5

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Crossover fraction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

ut
at

io
n 

ra
te

7000

7100

7200

7300

7400

7500

7600

(d)

Figure 5: Impacts of the GA parameters on solutions. (a) Objective value of GA. (b) Tuning of stall generation. (c) +e effect of population
sizes (ρ) on makespan versus computation time. (d) +e outperformed regions of combinations of crossover fraction and mutation ratio.

Steps
Step 1 g← 0
Step 2 Generate the initial population P(g)

Step 3 Evaluate P(g) and select the elite solutions E(g)

Step 4 While (termination criteria are not satisfied) do
Step 4.1 Crossover P(g) to generate CX(g)

Step 4.2 Mutate P(g) to generate CM(g)

Step 4.3 Merge CX(g) and CM(g) as C(g)

Step 4.4 Improve C(g) by crossover and mutation operator
Step 4.5 Evaluate C(g) based on a decoding scheme
Step 4.6 Move best solutions from P(g) and C(g) to E(g)

Step 4.7 Select P(g + 1) from P(g) and C(g) by roulette wheel selection
Step 4.8 g←g + 1
Step 4.9 End While

ALGORITHM 2: Genetic algorithm.

Journal of Advanced Transportation 11



between devices to reach an optimal result in a whole
scheduling perspective. +e location of the temporal space
affects the assignment of tasks to cranes and the moving
distances of the crane handling tasks. +erefore, the location

is significant in balancing the cranes’ workloads and opti-
mizing the tasks’ makespan. Finally, the handshake bay
positioning and ASC scheduling must be optimized as in-
tegrated decisions because they are mutually affected and

Inputs Oi, Di, Ts, Tm, Th, c, N, K

Outputs bik, dik, sik, eik, z, w

Steps
Step 1 Initialize z � |N| · (Tm · |B| + 2 · Th) and a set NW � ∅ containing uncompleted tasks and the corresponding cranes
Step 2 Select the bays between min

i
(Oi) and max

i
(Di) to form a candidate bay set Ω. Use Ωj to index the jth element in Ω

Step 3 For each Ωj

Step 3.1 Let l � Ωj, initialize sequence Vk, k ∈ K, initialize an occupied time set Γ � ∅. Use Γj to index the jth element in Γ.
Step 3.2 Insert all the tasks of the prime crane into NW, i.e., NW � (1, p), . . . , (n, p) .
Step 3.3 While NW is not empty
Step 3.3.1 Select (i, k) from NW with the highest vector value in v, and insert i to the sequence tail of Vk

Step 3.3.2 Calculate b∗ik, d∗ik, s∗ik, e∗ik
Step 3.3.3 If k is the prime crane

Step 3.3.3.1 If e∗ik violates the safe time interval, namely e∗ik ∈ Γj,∃j
Delay e∗ik to a conflict-free time value, and add [e∗ik − Th − Ts, e∗ik + Ts] to Γ

End If
Step 3.3.3.2 Add (i, c) to NW if task i is stacked at l for operated by the other crane.

Step 3.3.4 else
Step 3.3.4.1 If s∗ic violates the safe time interval, namely, s∗ic ∈ Γj,∃j

delay s∗ic to a conflict-free time value, and add [s∗ic − Ts, s∗ic + Th + Ts] to Γ
End If

Step 3.3.5 End If
Step 3.4 End While
Step 3.5 Set z∗ � max

i∈N,k
(e∗ik)

Step 3.6 If z∗ < z

bik←b∗ik, dik←d∗ik, sik←s∗ik, eik←e∗ik, z←z∗, w←l,∀i, k

End If
Step 4 End For
Step 5 Output bik , dik, sik, eik, z, w,∀i, k

ALGORITHM 3: Decoding scheme based on task priorities.

Inputs Oi, Di, Ts, Tm, Th, c, K, N � 1, . . . , n{ }

Outputs bik, dik, sik, eik, z, w

Steps
Step 1 Initialize z � |N| · (Tm · |B| + 2 · Th)

Step 2 Select the bays between min
i

(Oi) and max
i

(Di) to form a candidate bay set Ω. Use Ωj to index the jth element in Ω
Step 3 For each Ωj

Step 3.1 Let l � Ωj, initialize sequence Vp and Vc, initialize an occupied time set Γ � ∅. Use Γj to index the jth element in Γ.
Initialize two sets Np and Nc containing the task for prime crane and split task for cooperative
Step 3.2 Sort vi, i � 1, . . . , n in descending order, and insert i into Vp sequentially.
Step 3.3 Calculate b∗ip, d∗ip, s∗ip, e∗ip according to Vp, Tm, Th.
Step 3.4 Insert the occupied time of each split task at handshake bay into Γ
Step 3.5 Sort vi+n, i � 1, . . . , n in descending order, and insert i into Vc sequentially.
Step 3.6 Calculate b∗ip, d∗ip, s∗ip, e∗ip according to Vp, Tm, Th, Γ
Step 3.7 Set z∗ � max

i∈N,k
(e∗ik)

Step 3.8 If z∗ < z

(bik←b∗ik, dik←d∗ik, sik←s∗ik, eik←e∗ik, z←z∗, w←l),∀i, k

End If
Step 3.9 End For

Step 4 Output (bik , dik, sik, eik, z, w),∀i, k

ALGORITHM 4: Decoding scheme based on crane priorities.

12 Journal of Advanced Transportation



jointly affect the solution optimality. +e position of the
handshake bay affects the reassignment of tasks to ASCs, the
moving distances, and the working time of each task by the
ASCs.

5.3. Discussion

(1) Based on the algorithms’ comparisons (Table 4), the
greedy insert algorithm succeeds in computing time
and space complexities. When many tasks are in-
volved, the computing performance is still com-
petitive compared with the MILP solver and GAs.
+e MILP solvers (e.g., Gurobi and Cplex) are
suitable for solving small-scale instances, and gen-
erally, optimal solutions are achievable within an
acceptable time. +e GA takes more computation

time than that of the greedy insert algorithm.
Nevertheless, the GA can stop using the number of
maximal generations as a termination criterion. So,
the optimality and computing time of using GA can
be balanced, while the solution method based on the
MILP solver may not find a feasible solution within
acceptable times. Comparatively, the greedy insert
algorithm can only find a feasible solution by ex-
perience-based rules. +e MILP solver can find
optimal solutions optimistically, while it cannot find
a feasible solution always due to computing com-
plexities (in time or space requirements).+eGA can
find improved solutions, ideally when it runs for
enough generations. In summary, three solution
methods are capable of different scales of problem
instances. As revealed by the experiments, the task

Table 3: Experimental settings.

No. Purposes Parameter settings

1 Tune the GA to determine the robust parameter value

(1) Set max generations (G) to 5000;
(2) Set stall generations (φ) to 200, 300, 400, 500, and 600, and run the
GA for 20 times individually;
(3) Set the crossover fraction (α) to 0.05, 0.10, . . ., 0.95, and set the
mutation rate (β) to 0.05, 0.10, . . ., 0.95. Use these values for cross
experiments and then run the GA for each combination of crossover
fraction and mutation rate five times.

2 Compare the optimality and computation time of the MILP
and proposed algorithms

(1) Use the settings in No. 1;
(2) Set the run time limitation of the MILP solver to 900 s;
(3) Use the MILP solver, the greedy insert algorithm, and GA
(Algorithms 1 and 2) to solve the problem.

3 Examine the impacts of synchronization constraints and
handshake location on the makespan and ASC operations

(1) Apply GA with its default settings;
(2) Set the safe time interval (Ts) to 6, 12, 18, 24, and 30 s;
(3) Set a handshake bay (w) to an available bay.

Table 4: Objective value and computation time of solving the model and algorithms.

Instance
MILP Greedy insert Crane priority-based GA Task priority-based GA Ideal

Obj. CT/s Obj. CT/s Gapb (%) Obj. CT/s Gapb (%) Obj. CT/s Gapb (%) Obj.c

5s 495 5.05 555 0.12 12.12 504 6.76 1.82 495 3.87 0.00 495
5c 753 1.67 765 0.02 1.59 759 7.26 0.80 753 3.88 0.00 753
5l 1065 4.85 1065 0.01 0.00 1071 8.02 0.56 1065 3.78 0.00 1065
5u 630 1.65 747 0.01 18.57 633 7.63 0.48 630 4.83 0.00 630
10s 999 7200.00a 1035 0.01 13.18 1020 5.58 11.54 933 6.35 2.02 915
10c 1569 7200.00a 1611 0.01 9.91 1557 9.46 6.22 1479 6.08 0.90 1466
10l 2145 7200.00a 2019 0.01 4.00 2067 9.15 6.47 1989 6.09 2.45 1941
10u 1419 7200.00a 1527 0.00 15.12 1395 12.83 5.17 1380 6.50 4.04 1326
20s 2376 7200.00a 1983 0.01 11.08 1968 5.80 10.24 1824 15.85 2.18 1785
20c 4305 7200.00a 3141 0.00 8.32 3306 9.60 14.01 2919 20.01 0.67 2900
20l 6159 7200.00a 4317 0.01 7.34 4323 16.44 7.49 4113 13.64 2.27 4022
20u 4398 7200.00a 3207 0.01 7.42 3228 8.23 8.12 3045 17.33 1.99 2986
50s — 7200.00a 4731 0.01 6.61 5322 7.90 19.93 4632 42.50 4.38 4438
50c — 7200.00a 7845 0.01 6.46 9936 22.33 34.84 7419 35.34 0.68 7369
50l — 7200.00a 10689 0.01 9.10 12429 22.52 26.85 10269 69.93 4.81 9798
50u — 7200.00a 7335 0.01 2.97 8688 10.12 21.97 7152 86.12 0.40 7123
100s — 7200.00a 9195 0.01 0.67 11052 12.40 21.01 9201 137.12 0.74 9133
100c — 7200.00a 15681 0.01 5.44 20574 31.98 38.34 15111 164.95 1.61 14872
100l — 7200.00a 21285 0.02 3.98 26259 45.37 28.28 20673 161.15 0.99 20471
100u — 7200.00a 14733 0.01 2.91 20040 17.12 39.97 14325 219.40 0.06 14317
Note. aTerminated by Gurobi after 2 hours, “—” indicates no feasible solution found. b Gap� ((Method Obj.)− (Ideal Obj.))/(Ideal Obj.)× 100%. cIdeal Obj. is
obtained by running the task priority-based GA for 500 times.

Journal of Advanced Transportation 13



Ti
m

e (
s)

Bay
0 5 10 15 20 25 30

0

500

1000

1500
Makespan is 1425 Buffer bay is 11

1

1

2

2

3

3

4

4

5

5

6

6

7

7

(a)

Bay
0 5 10 15 20 25 30

Ti
m

e (
s)

0

500

1000

1500
Makespan is 1443 Buffer bay is 11

1

1

2

2

3
3

4

4

5

5

6

6

7

7

(b)

Bay
0 5 10 15 20 25 30

Ti
m

e (
s)

0

500

1000

1500
Makespan is 1419 Buffer bay is 11

1

1

2

2

3

3

4

4

5

5

6

6

7

7

(c)

Bay
0 5 10 15 20 25 30

Ti
m

e (
s)

0

500

1000

1500
Makespan is 1419 Buffer bay is 11

1

1

2

2

3

34

4

5

5

6

6

7

7

(d)

Figure 6: Time-space diagrams of seven tasks scheduled by the proposed methods. (a) Crane priority-based GA. (b) Greedy insert. (c)
MILP. (d) Task priority-based GA.

6 12 18 24 30
Safe time interval

0

2

4

6

8

10

12

14

In
cr

em
en

ta
l M

ak
es

pa
n 

(%
)

seaside
centric

landside
uniform

Figure 7: Impact of safe time interval on makespan.

14 Journal of Advanced Transportation



priority-based GA is competitive for the medium-
and large-scale instances in practical and operational
environments. +e terminal can choose the corre-
sponding solution method according to different
problem instances to improve the operation effi-
ciency of an automatic container terminal.

(2) Real-world logistic optimization problems usually
involve multi-vehicle-type multistage operations.
All the vehicles and strategies function within the
constrained working places. Synchronization
constraints are general forms representing the
complex relations among facilities, vehicles,
stages, and operations in the dimensions of time,
space, and tasks. +e synchronization relation or
constraint becomes a conceptualization, classifi-
cation, and modeling tool. In ACTs, automated
quay cranes, ACTs, and AGVs are different types of
vehicles in different operations stages, while they
interact and even interconnect with each other
within the limited space of the terminals; mean-
while, we must coordinate them with the operation
facilities (e.g., berths and yard blocks). Although
this study mainly conceptualized the time-space
and critical resource synchronizations considering
the impacts of the handshake bay, various syn-
chronization relations constrain the operations in
ACTs.

6. Conclusion

+is study investigates an operational problem of posi-
tioning a handshake bay and scheduling twin ASCs in a
single container yard block at ACTs and, consequently,
discusses the management insights and operational im-
provements. A handshake bay is temporary storage to co-
ordinate the twin ASCs that sequentially stack and retrieve

containers in the block to increase the utilization degree of
cranes. We identified the time-space and critical resource
synchronizations in using a handshake bay to avoid crane
collisions. +en, we formulate a MILP to integrate the de-
cisions of the handshake bay and ASC scheduling, where we
represent the synchronization constraints by a safe time
interval to avoid crane collision. A handshake task is op-
erated by the two cranes sequentially: the cooperative crane
can retrieve a container from the handshake bay after the
prime crane drops the container to the handshake bay. +e
position of the handshake bay determines the travel distance
of ASCs. +e MILP solver is valid and efficient for the small-
scale instances; however, it is hard for the solver to optimize
the medium- and large-scale instances.+erefore, the greedy
algorithm is proposed to search for a solution efficiently, and
the task priority-based GA can sequence the handlings of
twin ASCs with a dynamic priority for the crane handlings to
search for optimal solutions globally. +e computational
experiments validated the efficiency of the algorithms for
large-scale instances. For the large-scale instances, the
proposed GA can find the near-optimal results within a 5%
gap compared with the ideal solution and outperforms the
MILP solver, the greedy insert, and the algorithm using
constant crane priorities. In addition to the methodological
studies, we conduct experiments to analyze the impacts of
stacking operations and synchronization constraints on the
makespan, such as the safe time interval and handshake bay
position. +e optimal handshake bay can save 35% working
time compared with choosing the worst handshake bay.

As for future research directions, the handshake bay and
even the ASC operations are not independent of various
operations in ACTs. First, we have formulated the hand-
shake bay positioning and scheduling model for the con-
tainers unloaded from the vessels, while the ASCs service for
the container-handling tasks from and to vessels, and from
and to hinterlands. To consider the combinations of these

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

5

10

15

20

25

30

35

0 5 10 15 20 25
0

100

200

300

400

500

600

700

1

1
2

2

3

3

4

5

6

7

7

Time-space
diagram

Time-space diagram

0 5 10 15 20 25
0

200

400

600

800

1000

1

2

2

3

34

5

6

7

Handshake bay

In
cr

em
en

ta
l M

ak
es

pa
n 

(%
)

Figure 8: Impact of handshake bay on the solutions.

Journal of Advanced Transportation 15



container-handling tasks, we must revise the proposed
model and develop new algorithms. Second, as elucidated in
Section 3, we assume that all these parameters are constants
while uncertain and even dynamically changing. Because of
the uncertain environment of ACTs, we will investigate new
stochastics or robust optimization models in the future.
+ird, we use “ideal” objective values as the lower bounds for
algorithmic comparisons. We will try to formulate the
mathematical tight lower bounds in the future. +e chal-
lenges of operation optimization in container terminals
generally relate to integrating various vehicles and resources,
which produces various synchronization constraints. We
will combine the model algorithms developed in this study
with our previous and pioneering studies in the literature.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is study was partially supported by the National Nature
Science of China (71871136).

References

[1] M. F. Gorman, J. P. Clarke, A. H. Gharehgozli, M. Hewitt,
R. de Koster, and D. Roy, “State of the practice: a review of the
application of OR/MS in freight transportation,” Interfaces,
vol. 44, no. 6, pp. 535–554, 2014.

[2] Statista, “International Seaborne Trade Carried by Container
Ships from 1980 to 2017,” 2017, https://www.statista.com/
statistics/253987/international-seaborne-trade-carried-by-
containers/.

[3] A. Azab, A. Karam, and A. Eltawil, “A simulation-based
optimization approach for external trucks appointment
scheduling in container terminals,” International Journal of
Modelling and Simulation, vol. 40, no. 5, pp. 321–338, 2019.

[4] J. Pasha, M. A. Dulebenets, A. M. Fathollahi-Fard et al., “An
integrated optimization method for tactical-level planning in
liner shipping with heterogeneous ship fleet and environ-
mental considerations,” Advanced Engineering Informatics,
vol. 48, 2021.

[5] O. +eophilus, M. A. Dulebenets, J. Pasha, Y. Y. Lau,
A. M. Fathollahi-Fard, and A. Mazaheri, “Truck scheduling
optimization at a cold-chain cross-docking terminal with
product perishability considerations,” Computers & Industrial
Engineering, vol. 156, 2021.

[6] K. Si, “Shanghai Retains crown of World’s Busiest Container
Port,” 2019, http://www.seatrade-maritime.com/news/asia/
shanghai-keeps-crown-of-world-s-busiest-container-port.
html.

[7] A. Karam, A. Eltawil, and K. H. Reinau, “Energy-efficient and
integrated allocation of berths, quay cranes, and internal
trucks in container terminals,” Sustainability, vol. 12, 2020.

[8] H. J. Carlo and F. L. Mart́ınez-Acevedo, “Priority rules for
twin automated stacking cranes that collaborate,” Computers
& Industrial Engineering, vol. 89, no. 1, pp. 23–33, 2015.

[9] H. J. Carlo and I. F. A. Vis, “New initiatives in stacking cranes
configurations,” Port Technology International, vol. 44, no. 1,
pp. 32–36, 2009.

[10] U. Dorndorf and F. Schneider, “Scheduling automated triple
cross-over stacking cranes in a container yard,” Spectrum,
vol. 32, no. 3, pp. 617–632, 2010.

[11] I. F. A. Vis and H. J. Carlo, “Sequencing two cooperating
automated stacking cranes in a container terminal,” Trans-
portation Science, vol. 44, no. 2, pp. 169–182, 2010.

[12] Straitstimes, “World’s Largest Automated Container Terminal
Opens in Shanghai,” 2017, https://www.straitstimes.com/asia/
east-asia/worlds-largest-automated-container-terminal-
opens-in-shanghai.

[13] A. H. Gharehgozli, G. Laporte, Y. Yu, and R. De Koster,
“Scheduling twin yard cranes in a container block,” Trans-
portation Science, vol. 49, no. 3, pp. 686–705, 2015.

[14] A. H. Gharehgozli, F. G. Vernooij, and N. Zaerpour, “A
simulation study of the performance of twin automated
stacking cranes at a seaport container terminal,” European
Journal of Operational Research, vol. 261, no. 1, pp. 108–128,
2017.

[15] C. Chitra and P. Subbaraj, “A nondominated sorting genetic
algorithm solution for shortest path routing problem in
computer networks,” Expert Systems with Applications,
vol. 39, no. 1, pp. 1518–1525, 2012.

[16] M. Gen, F. Altiparmak, and L. Lin, “A genetic algorithm for
two-stage transportation problem using priority-based
encoding,” Spectrum, vol. 28, no. 3, pp. 337–354, 2006.

[17] J. Lehnfeld and S. Knust, “Loading, unloading and premar-
shalling of stacks in storage areas: survey and classification,”
European Journal of Operational Research, vol. 239, no. 2,
pp. 297–312, 2014.

[18] W. C. Ng and K. L. Mak, “Yard crane scheduling in port
container terminals,” Applied Mathematical Modelling,
vol. 29, no. 3, pp. 263–276, 2005.

[19] A. H. Gharehgozli, Y. Yu, R. de Koster, and J. T. Udding, “An
exact method for scheduling a yard crane,” European Journal
of Operational Research, vol. 235, no. 2, pp. 431–447, 2014.

[20] O. Sharif, N. Huynh, M. Chowdhury, and J. M. Vidal, “An
agent-based solution framework for inter-block yard crane
scheduling problems,” International Journal of Transportation
Science and Technology, vol. 1, no. 2, pp. 109–130, 2012.

[21] V. Galle, C. Barnhart, and P. Jaillet, “Yard Crane Scheduling
for container storage, retrieval, and relocation,” European
Journal of Operational Research, vol. 271, no. 1, pp. 288–316,
2018.

[22] W. Li, Y. Wu, M. E. H. Petering, M. Goh, and R. d. Souza,
“Discrete time model and algorithms for container yard crane
scheduling,” European Journal of Operational Research,
vol. 198, no. 1, pp. 165–172, 2009.

[23] W. C. Ng, “Crane scheduling in container yards with inter-
crane interference,” European Journal of Operational Re-
search, vol. 164, no. 1, pp. 64–78, 2005.

[24] F. Fotuhi, N. Huynh, J. M. Vidal, and Y. Xie, “Modeling yard
crane operators as reinforcement learning agents,” Research in
Transportation Economics, vol. 42, no. 1, pp. 3–12, 2013.

[25] M. Sha, T. Zhang, Y. Lan et al., “Scheduling optimization of
yard cranes with minimal energy consumption at container
terminals,” Computers & Industrial Engineering, vol. 113,
no. 1, pp. 704–713, 2017.

16 Journal of Advanced Transportation

https://www.statista.com/statistics/253987/international-seaborne-trade-carried-by-containers/
https://www.statista.com/statistics/253987/international-seaborne-trade-carried-by-containers/
https://www.statista.com/statistics/253987/international-seaborne-trade-carried-by-containers/
http://www.seatrade-maritime.com/news/asia/shanghai-keeps-crown-of-world-s-busiest-container-port.html
http://www.seatrade-maritime.com/news/asia/shanghai-keeps-crown-of-world-s-busiest-container-port.html
http://www.seatrade-maritime.com/news/asia/shanghai-keeps-crown-of-world-s-busiest-container-port.html
https://www.straitstimes.com/asia/east-asia/worlds-largest-automated-container-terminal-opens-in-shanghai
https://www.straitstimes.com/asia/east-asia/worlds-largest-automated-container-terminal-opens-in-shanghai
https://www.straitstimes.com/asia/east-asia/worlds-largest-automated-container-terminal-opens-in-shanghai


[26] J. He, Y. Huang, and W. Yan, “Yard crane scheduling in a
container terminal for the trade-off between efficiency and
energy consumption,” Advanced Engineering Informatics,
vol. 29, no. 1, pp. 59–75, 2015.

[27] A. Gharehgozli and N. Zaerpour, “Stacking outbound barge
containers in an automated deep-sea terminal,” European
Journal of Operational Research, vol. 267, no. 3, pp. 977–995,
2018.

[28] N. Boysen, D. Briskorn, and F. Meisel, “A generalized clas-
sification scheme for crane scheduling with interference,”
European Journal of Operational Research, vol. 258, no. 1,
pp. 343–357, 2017.

[29] D. Briskorn and P. Angeloudis, “Scheduling co-operating
stacking cranes with predetermined container sequences,”
Discrete Applied Mathematics, vol. 201, no. 1, pp. 70–85, 2016.

[30] D. Briskorn, S. Emde, and N. Boysen, “Cooperative twin-
crane scheduling,” Discrete Applied Mathematics, vol. 211,
no. 1, pp. 40–57, 2016.

[31] S. Ozcan and D. T. Eliiyi, “A reward-based algorithm for the
stacking of outbound containers,” Transportation Research
Procedia, vol. 22, no. 1, pp. 213–221, 2017.

[32] D. Kress, J. Dornseifer, and F. Jaehn, “An exact solution
approach for scheduling cooperative gantry cranes,” Euro-
pean Journal of Operational Research, vol. 273, no. 1,
pp. 82–101, 2019.

[33] F. Jaehn and D. Kress, “Scheduling cooperative gantry cranes
with seaside and landside jobs,”Discrete AppliedMathematics,
vol. 242, no. 1, pp. 53–68, 2018.

[34] A. Zhang, W. Zhang, Y. Chen, G. Chen, and X. Chen,
“Approximate the scheduling of quay cranes with non-
crossing constraints,” European Journal of Operational Re-
search, vol. 258, no. 3, pp. 820–828, 2017.

[35] M. Fink, G. Desaulniers, M. Frey, F. Kiermaier, R. Kolisch,
and F. Soumis, “Column generation for vehicle routing
problems with multiple synchronization constraints,” Euro-
pean Journal of Operational Research, vol. 272, no. 2,
pp. 699–711, 2019.

[36] R. Liu, Y. Tao, and X. Xie, “An adaptive large neighborhood
search heuristic for the vehicle routing problem with time
windows and synchronized visits,” Computers & Operations
Research, vol. 101, pp. 250–262, 2019.

[37] R. Soares, A. Marques, P. Amorim, and J. Rasinmäki,
“Multiple vehicle synchronisation in a full truck-load pickup
and delivery problem: a case-study in the biomass supply
chain,” European Journal of Operational Research, vol. 277,
no. 1, pp. 174–194, 2019.

[38] M. Drexl, “Applications of the vehicle routing problem with
trailers and transshipments,” European Journal of Operational
Research, vol. 227, no. 2, pp. 275–283, 2013.

[39] M. Drexl, “Synchronization in vehicle routing-A survey of
VRPs with multiple synchronization constraints,” Trans-
portation Science, vol. 46, no. 3, pp. 297–316, 2012.

[40] M. Schiffer, M. Schneider, G. Walther, and G. Laporte,
“Vehicle routing and location routing with intermediate
stops: a review,” Transportation Science, vol. 53, 2019.

[41] T. Gschwind and S. Irnich, “Effective handling of dynamic
time windows and its application to solving the dial-a-ride
problem,” Transportation Science, vol. 49, no. 2, pp. 335–354,
2015.

[42] T. G. Crainic, N. Ricciardi, and G. Storchi, “Models for
evaluating and planning city logistics systems,” Trans-
portation Science, vol. 43, no. 4, pp. 432–454, 2009.

[43] N. Agatz, P. Bouman, and M. Schmidt, “Optimization ap-
proaches for the traveling salesman problem with drone,”
Transportation Science, vol. 52, no. 4, pp. 965–981, 2018.

[44] U. Derigs, M. Pullmann, and U. Vogel, “Truck and trailer
routing-Problems, heuristics and computational experience,”
Computers & Operations Research, vol. 40, no. 2, pp. 536–546,
2013.

[45] J. M. Belenguer, E. Benavent, A. Mart́ınez, C. Prins,
C. Prodhon, and J. G. Villegas, “A branch-and-cut algorithm
for the single truck and trailer routing problem with satellite
depots,” Transportation Science, vol. 50, no. 2, pp. 735–749,
2016.

[46] I.-M. Chao, “A tabu search method for the truck and trailer
routing problem,” Computers & Operations Research, vol. 29,
no. 1, pp. 33–51, 2002.

[47] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic
systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824,
1990.

[48] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings
of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[49] S. Wang, Y. Cao, T. Huang, Y. Chen, and S. Wen, “Event-
triggered distributed control for synchronization of multiple
memristive neural networks under cyber-physical attacks,”
Information Sciences, vol. 518, pp. 361–375, 2020.

[50] C. H. Papadimitriou, “+e Euclidean travelling salesman
problem is NP-complete,” -eoretical Computer Science,
vol. 4, no. 3, pp. 237–244, 1977.

[51] C. K. H. Lee, “A review of applications of genetic algorithms in
operations management,” Engineering Applications of Artifi-
cial Intelligence, vol. 76, no. 1, pp. 1–12, 2018.

[52] Y. Hou, N. Wu, M. Zhou, and Z. Li, “Pareto-optimization for
scheduling of crude oil operations in refinery via genetic
algorithm,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 47, no. 3, pp. 517–530, 2017.

[53] H. Yuan, J. Bi, and M. Zhou, “Multiqueue scheduling of
heterogeneous tasks with bounded response time in hybrid
green IaaS clouds,” IEEE Transactions on Industrial Infor-
matics, vol. 15, no. 10, pp. 5404–5412, 2019.

[54] L. Wang and J. Lu, “A memetic algorithm with competition
for the capacitated green vehicle routing problem,” IEEE/CAA
Journal of Automatica Sinica, vol. 6, no. 2, pp. 516–526, 2019.

[55] J. F. Gonçalves and M. G. C. Resende, “Biased random-key
genetic algorithms for combinatorial optimization,” Journal of
Heuristics, vol. 17, no. 5, pp. 487–525, 2011.

[56] R. Hinterding, “Gaussian mutation and self-adaption for
numeric genetic algorithms,” in Proceedings of the IEEE
Conference on Evolutionary Computation, pp. 384–388, Perth,
Australia, December 1995.

[57] N.M. Razali and J. Geraghty, “Genetic algorithm performance
with different selection strategiesin solving TSP,” in Pro-
ceedings of the World Congress on Engineering 2011, WCE
2011, pp. 1134–1139, London, U.K., July 2011.

Journal of Advanced Transportation 17


