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Abstract
Mosaics have been commonly used as visual maps for

undersea exploration and navigation. The position and

orientation of an underwater vehicle can be calculated by

integrating the apparent motion of the images which form

the mosaic. A feature-based mosaicking method is pro-

posed in this paper. The creation of the mosaic is accom-

plished in four stages: feature selection and matching,

detection of points describing the dominant motion, ho-

mography computation and mosaic construction. In this

work we demonstrate that the use of color and textures as

discriminative properties of the image can improve, to a

large extent, the accuracy of the constructed mosaic.

The system is able to provide 3D metric information

concerning the vehicle motion using the knowledge of the

intrinsic parameters of the camera while integrating the

measurements of an ultrasonic sensor. The experimental

results on real images have been tested on the GARBI

underwater vehicle.

1 Introduction

The task of positioning an underwater vehicle can take

advantage of the rich amount of information available at

the bottom of the sea when viewed from a camera. The

construction of a composite image that combines the set

of frames taken from the submersible can greatly help in

this task. This image is known in the literature as a mo-

saic, and is commonly used as a visual map for undersea

exploration and navigation. In order to construct ocean

floor mosaics, the individual images forming the mosaic

are usually obtained by setting a camera on a ROV or

AUV. The camera looks down, parallel to the bed of the

sea, and the acquired images cover a small area of the

ocean floor. In this way, the position and orientation of

the underwater vehicle can be calculated by integrating

the motions from one image to the next [1,2].

Unfortunately, underwater images often lack distinct

features that are commonly exploited in terrestrial vision

systems for detecting motion. Moreover, the range is lim-

ited and the need for artificial light introduces many new

properties to the image, such as low contrast, non-uniform

illumination and scattering. Quite often, small particles

suspended in the water show up as marine snow making

difficult the feature extraction and matching processes.

One of the first computer-aided systems to automate the

construction of underwater mosaics was presented by

Haywood in [3]. In this work, no feature extraction was

performed at all, and mosaicking was accomplished by

snapping images at well-known positional coordinates,

and warping them together since the registration was

known beforehand. Marks, et al. developed a completely

autonomous column-based mosaicking system in [4] by

using a constrained four-parameter semi-rigid motion

model. Some years later, unconstrained image mosaicking

was obtained by applying smoother-follower techniques

to reduce image alignment errors within the mosaic [5]. In

both cases, the registration between images was computed

by correlating binary images, after going through a

signum of Laplacian of Gaussian filtering process, which

attenuated the effect of nonuniform illumination.

Negahdaripour, et al. have detected motion from seabed

images through recursive estimation of optical flow [6].

They studied this problem in the presence of intensity

variations and underwater medium effects [7], and

developed a “Direct Method” for motion estimation [8].

This direct estimation of motion has been successfully

applied to mosaicking (e.g., [1]) and station-keeping [9].

However, the application of gradient-based techniques is

not always accurate in low contrast environments. Other

works in underwater mosaicking have made use of image

corners and gray-level pixel-correlation to detect

correspondences [2], achieving successful and accurate

underwater mosaics in well-contrasted images.

To our knowledge, none of the works described above

has addressed the problem of feature characterization as a

whole, in order to improve the correspondences between

images. We propose a method to solve the matching

problem by means of a wide study of texture and color. A

texture-based mosaicking method is proposed in this pa-

per in order to estimate the position of the GARBI under-

water submersible [10].

The paper is organized as follows: first, a brief descrip-

tion of the GARBI Underwater Vehicle is given. Next, the

main algorithm to robustly construct a mosaic in a low-

contrast scenario is detailed in section 3. Finally, the

following sections present some of the results obtained in



a sea mission with GARBI, and summarize the conclu-

sions of our work.

2 The GARBI Underwater Vehicle

GARBI [10,11] was first conceived as a Remotely

Operated Vehicle (ROV) for exploration in waters up to

200 meters in depth. At the moment, a control architecture

is being implemented to transform this vehicle into an

Autonomous Underwater Vehicle. GARBI (see Figure 1)

was designed with the aim of building an underwater

vehicle using low cost materials, such as fiber-glass and

epoxy resins. To solve the problem of resistance to un-

derwater pressure, the vehicle is servo-pressurized to the

external pressure by using a compressed air bottle, like

those used in scuba diving. Air consumption is required

only in the vertical displacements during which the de-

compression valves release the required amount of air to

maintain the vehicle’s internal pressure equal to the exter-

nal. This vehicle can also be equipped with two arms,

allowing the vehicle to perform object manipulation tasks

through tele-operation.

Figure 1: GARBI underwater vehicle at sea.

The vehicle incorporates 4 thrusters: two for perform-

ing horizontal movements (yaw motion) and two for ver-

tical movements (Z axis). Due to the distribution of

weight, the vehicle is completely stable in pitch and roll.

For this reason the vertical and horizontal movements are

totally independent. The robot has a color camera fixed to

its prow. A geometric calibration of this camera has been

carried out to obtain its intrinsic parameters. The vehicle

also includes several sensors which so far have not been

used in this work, with the exception of a sonar, which

indicates the distance from the vehicle to the bottom of

the sea. The dimensions of GARBI are 1.3 meters in

length, 0.9 meters in height and a width of 0.7 meters. The

vehicle has a maximum speed of 3 knots and its weight

reaches 150 Kg.

3 Mosaic-Based Positioning

The creation of the mosaic is accomplished in four

stages: feature selection and matching, estimation of

dominant motion, homography computation and mosaic

blending. A more detailed scheme of the algorithm is

shown in figure 2, and is explained below.

3.1 Feature selection and matching

The searching for feature correspondences is performed

in a two-step approach. First, the zones of the image

presenting high spatial gradient information are selected

by means of a corner detector. Then, the textural parame-

ters of these areas of the image are used as a matching

vector to be correlated with the next image in the se-

quence. Textures significantly help in the location of fea-

tures in the image and are specially indicated for the un-

derwater environment, where lack of image features and

lighting variations are the norm. The set of textural fea-

tures used in our implementation has been chosen for its

suitability in underwater imaging.  Moreover, since our

system is equipped with a color camera, the corner detec-

tion and texture extraction procedures are fulfilled not

only on the intensity image, but also on the hue and satu-

ration components. Since hue and saturation have the

property of scale-invariance, that is, H(R,G,B) =

H(αR,αG,αB) and S(R,G,B) = S(αR,αG,αB), they are

more stable to variations on the intensity of the illuminant

[12], being adequate for processing in underwater

imaging.

A simple corner detector has been especially developed

for this application. The main idea is to detect points with

a high spatial gradient in the X and Y directions [13]. The

corner detector is applied independently to the Hue,

Saturation and Intensity images, keeping three lists of

corners, one for every image component.

Once the corners of image I
(k)

 have been obtained, the

algorithm searches for the candidate matches in the next

image I
(k+1)

. The matching process is accomplished in the

following  way  (see figure 3):  For  every  point        in

image I
(k)

 a correlation is performed by convolving a small
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Figure 2: Scheme of the algorithm.
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window centered at   over a search window of image

I
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. It should be noted that the correlation is performed

on the same image component where the corner was de-

tected. For  instance,  given  a  corner point  in the

Saturation   image ,  a  search   for   the  best   matches

  is performed only in        . Only

those matches that are quite similar to the original

correlation window of      are taken into account. This

similarity measurement is computed by means of the cor-

relation score described in [14]. The threshold of the cor-

relation score to be considered as a candidate match has

been fixed to 0.85. Once the set of possible matches

 has been obtained, the texture

parameters of the patches centered at every matching

point are computed (correlation windows on the right in

figure 3).

Continuing with our example, for every possible match

in the saturation image        , a vector of texture parame-

ters is computed in the neighborhood of          . The tex-

ture parameters that have been used are: Co-occurrence

matrix [15], Energy filter [16], and Local Binary Patterns

[17]. We should take into account that the first two

operators can generate several measurements, depending

on the number of orientation angles, the distance of

correlation and the size of the neighborhood. In our

application we chose 8 different angles for the co-

occurrence matrix, taking only distances of 1 pixel, and 9

masks of the energy filter taking only a 3x3 neighbor-

hood. From our experience, the use of larger neighbor-

hoods provides little improvement at the expense of a

higher computational cost. All the texture measurements

are normalized between 0 and 1. A different vector is

stored for the Hue, Saturation and Intensity images.

Summarizing, the texture vector contains 18-positions,

namely: 8 measurements of the co-occurrence matrix, 9

measures of energy, and 1 of the local binary patterns.

These textures are only computed in the image component

where the corner has been detected. If the corner em.

belongs to the image      , then the textures of every can-

didate matching          are measured in the saturation im-

age       . This  texture  vector is mapped onto a 18-

dimentional space, where it is compared with the texture

vector of the original point        . The Euclidean distance is

then computed, obtaining a texture similarity measure.

After this process, a set of correspondences in image I
(k+1)

is obtained from every corner in image I
(k)

, and every

correspondence has two measures of similarity: correla-

tion and texture. By averaging these two values, the reli-

ability (r) of every match is obtained.  Taking into account

the reliability value, we have devised a method (the dis-

ambiguate algorithm) to correctly choose the right

correspondence among the whole set of matches. In order

to find the best correspondence for the j
th

 corner         , the

disambiguate algorithm can be formulated as follows:

• Compute the centroid of the set of matches, weighing

every coordinate depending on the reliability measure
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• From the centroid ( ))1()1(
,

++ k
j

k
j yx , fix a radius of size R,

and eliminate those matches which fall outside of the

circle defined by R, as shown in Figure 4.

• Select the match with the highest reliability as the

correct correspondence.

• If no match appears inside the circle, then eliminate the

corner.

Once this procedure has been accomplished, a set of

pairs  point-matching is  ob-

tained.
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3.2 Selection of points describing the dominant

motion

After the correspondences have been found, a set of

displacement vectors relating the features of two images

of the sequence is obtained. Every vector relates the

coordinates of the same feature in both images. Although

an accurate texture analysis is devoted to the matching

procedure, some false matches (known as outliers) could

still appear among the right correspondences. These false

matches are mainly due to the presence of moving objects

(algae or fishes) which violate the assumption of static

scene, or even to the inherent system noise For this

reason, a robust estimation method has to be applied. The

Least Median of Squares (LMedS) algorithm aims at

finding the affine transformation matrix H which

minimizes the median of the squared errors. The matrix H

describes the motion between two consecutive images.

The minimization is performed by searching in the

parameter space, and the error is defined by the distance

of a point to the projection of its correspondence.

Equation (2) expresses the non-singular linear

transformation of the image plane into itself [18]:
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where                                    and

denote a correspondence point in the present I
(k)

 and next

image I
(k+1)

, respectively, expressed in homogeneous

coordinates,                        are 5 parameters that determine

an affine transform; and    indicates equality up to scale.

Each point correspondence generates two equations, then

at least 3 points are needed for the 5 unknowns.

Our implementation of the LMedS algorithm works as

follows: given the problem of computing the homography

matrix H from a set of data points, where 3 is the

minimum number of data points which determine a

solution, compute a candidate solution based on a

randomly chosen 3-tuple from the data. Then, estimate the

fit of this solution to all the data, defined as the median of

the squared residuals. The median of the squared residuals

is defined by:

( )( ) ( )( ))(1)1(2)1()(2 ~,~~,~ k
j

k
j

k
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k
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j
err ddmedM mHmmHm
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where  are the homogeneous coordinates

of a 2D point m  defined in the image plane, being

)xx,xx(),( 3231== ii yxm its corresponding Cartesian

coordinates;  and                          is the square distance

from a point         , defined on image I
(k)

, to the projection

on the same image plane of its correspondence            .

Once the best solution has been found, a minimal

median is obtained. As from the median, the mean and the

standard deviation can be computed (see [19] for details).

Therefore, in our implementation, those points at a

distance larger than the median are eliminated, and matrix

H is recomputed with the remaining points, through a

least squares criteria.

3.3 Mosaic construction

As soon as the best transformation H between two

frames has been found, the two images are warped

together composing the mosaic. The 2D motion of the

camera is known in pixels from one image to the next, as

an affine measure: rotation, translation and scaling. With

the aid of an ultrasonic sensor, and the knowledge of the

intrinsic parameters of the camera, 3D metric information

about vehicle motion can be recovered. Although this

metric information is relative to the sea bed, it can be very

useful for navigation and mission planning. At the same

time it introduces new knowledge on how the mosaic is

evolving.

The experimental results on real images have been

tested on the GARBI underwater vehicle [11], showing

the effectiveness of the proposed method.
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Figure 4: Given a corner point  , every candidate correspon-

dence       found in its neighborhood has an associated

reliability      . A  weighed  centroid        can be computed,

defining a circle of radius R, where the right correspondence will

be chosen.

4 Results

The sea bed mosaics presented in this paper were crea-

ted from a set of images taken by the GARBI underwater

vehicle. GARBI’s camera pointed downwards to the

ocean floor and the image capture rate was set to 4 images

per second. The images were stored to disk and the cons-

truction  of  the  mosaic  was  carried  out offline. Figure 5
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(a) (b)

Figure 5: Two consecutive images of the sequence: (a) image

I(k); (b) image I(k+1).

shows the different phases accomplished by the

mosaicking   system.   (a)   and   (b)  are  two  consecutive

images of the sequence. Notice the low-contrast of both

images, and the difficulty of establishing matches directly

from the intensity component. The hue, saturation and

intensity components of the first image are computed to

run the corner-detector algorithm. The resulting corners

are shown in Fig. 6(a); while the neighborhood of these

points is correlated against the next image of the sequence

using again the components of intensity, hue, and

saturation. Figure 6 (b) shows a num- ber of pairs

point/matching after using the textural parameters. The

larger crosses represent the position of every corner in the

first image, while the possible matchings in the next

image are represented with a small cross.

Figure 6(c) shows how the disambiguate algorithm,

described in section 3.1, eliminates most of the incorrect

matches, leaving only one match for every corner. This

figure illustrates how the algorithm is not able to choose

the correct matches in a small number of cases. However,

it reduces the computational burden of the subsequent

steps by providing a single match for every corner. The

result of the LMedS algorithm applied to the remaining

points is demonstrated in Figure 6 (d).

This algorithm is able to eliminate all the incorrect

matches, although some of the correct ones are also

deleted. Two example image mosaics are illustrated in

Figure 7.

(a) (b)

(c) (d)

Figure 6: (a) corners detected in image I(k); number of corners: 138; (b) result of correlation (merging intensity, hue, saturation and

textural parameters); number of pairs point/matching: 111; the corners are represented with the big cross, and the matchings are

drawn with a small cross; (c) result of the disambiguate algorithm; (d) result of LMedS after disambiguate.



     
Figure 7: Sea bed mosaic examples.

5 Conclusions and Further Work

In this paper we have presented a mosaicking algorithm

which is able to provide positional coordinates to an

underwater vehicle. The viability of the system has been

demonstrated with real world experiments. Textures, in

addition to color, can highly improve the matching

process, and robust estimation techniques further

ameliorate the dominant motion estimation. The

integration of a sonar measurement along with the visual

information provides 3D position estimations of the

submersible’s motion.

Beyond this preliminary work, further research is

needed to determine which are the texture parameters that

better fit the matching process. Moreover, an effort is

being made to ameliorate the throughput of the system by

means of the development of special-purpose hardware

for real-time motion estimation.
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