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e strapdown inertial navigation systems (SINS) have been widely used for many vehicles, such as commercial airplanes,
Unmanned Aerial Vehicles (UAVs), and other types of aircra�s. In order to evaluate the navigation errors precisely and e�ciently, a
predictionmethod based on support vectormachine (SVM) is proposed for positioning error assessment. Firstly, SINS errormodels
that are used for error calculation are established considering several error resources with respect to inertial units. Secondly, 
ight
paths for simulation are designed. 
irdly, the �-SVR based prediction method is proposed to predict the positioning errors of
navigation systems, and particle swarm optimization (PSO) is used for the SVM parameters optimization. Finally, 600 sets of error
parameters of SINS are utilized to train the SVMmodel, which is used for the performance prediction of new navigation systems. By
comparing the predicting results with the real errors, the latitudinal predicting accuracy is 92.73%, while the longitudinal predicting
accuracy is 91.64%, and PSO is e�ective to increase the prediction accuracy compared with traditional SVMwith �xed parameters.

is method is also demonstrated to be e�ective for error prediction for an entire 
ight process. Moreover, the prediction method
can save 75% of calculation time compared with analyses based on error models.

1. Introduction

Strapdown inertial navigation systems have been widely
utilized in a wide range of �elds, such as the navigation of
airplanes, ships, and vehicles and the guidance of missiles [1].
Although the positioning accuracy of strapdown systems is
lower than that of the platform inertial navigation systems,
the strapdown systems have several advantages that cannot
be found in platform systems. 
ey have low cost, low
weight, small volume, good reliability, and simplemechanical
structures [2]. So far, almost all the civil aviation airplanes
manufactured by Boeing and Airbus are equipped with LTN-
92 or LTN-101 laser SINS [3, 4]. Other types of SINS that
consist of di�erent kinds of gyroscopes and accelerometers
are used for the navigation of vehicles which require medium
or low accuracy [5].

Navigation accuracy is the main factor that is used to
access the performance of SINS [6]. To help the vehicles to
complete the 
ight task or arrive at a desired destination,

the strapdown systems which can meet the navigation
requirements should be selected [7]. If an e�ective method
that could be established to predict the velocity errors and
positioning errors by assessing error parameters, a good
deal of time for error analyses would be saved and the
aircra�s would be more likely to accomplish the initial tasks
[8, 9]. Currently, some researchers have placed importance
on the error analyses and error compensation of SINS [10].
A methodology based on the theory of arti�cial neural
networks has been put up to predict the positioning errors
caused by the dri� error of each singe axis of gyroscope [11].
But research that stresses predicting the performance of SINS
by error sources can hardly be found.

Nowadays, several methodologies have been reported for
the classi�cation or regression in various �elds. Arti�cial
neural networks (ANNs) have been pervasively adopted and
are able to achieve acceptable results in many applications.
Chen developed an ANN-based model, which is called Evo-
lutionary Fuzzy Neural Inference Model, to predict Estimate
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at Completion (EAC) [12]. However, it has disadvantages to
address the proposed problem since it is shown by simulation
that the predicting accuracy might be low due to a local
minimization problem.As a consequence, it is not guaranteed
for all the models to converge to optimal solutions [13].
Besides, ANN is also vulnerable to the selection of network
structure, and it has a high computational expense in terms
of training process. Extended Kalman �lter (EKF) approach,
which is also popular in industrial applications, is able to
maintain relatively high accuracy in terms of estimation,
but EKF estimator o�en requires high cost due to high
computational complexity [14]. Fuzzy logic method is also
reported to be available for estimation. For more details on
state estimation and, on �ltering approaches for complex
systems the reader can be referred to [15–19].

Support vector machine (SVM) is an e�ective mathe-
matical method in prediction, and this technique has greatly
developed in the past decades. SVM, which is based on
structural risk minimization principle [20], is adopted by
researchers to address classi�cation and regression problems
[21]. So far, it has been successfully used in a variety of �elds.
For instance, it is used for noise estimation and the prediction
of air passengers [22, 23], it is also utilized for image analyses,
biomedicine, and bioinformatics as estimator tools.

Inertial navigation systems are sophisticated nonlinear
systems [24]. 
erefore, it is unrealistic to estimate the
performance of the navigation systems by the analyses of the
models. In order to predict the navigation errors by error
coe�cients, a method based on support vector machine
is proposed in this paper. Support vector machine, unlike
other traditional methods, is relatively e�ective in terms
of combating nonlinear situations. It is more robust as an
estimator than least-square based method because it is
insensitive to small changes [25]. Firstly, the error model
of SINS is established. Secondly, a series of 
ight paths that
meet the characteristics of real trajectories are designed.

en, 300 sets of random error parameters which obey
Gaussian distribution are generated, and results of system
errors are obtained by simulation.
ese parameters are used
to train the model of SVM. Finally, the trained model is
used to predict the system errors of SINS with di�erent error
coe�cients. 
is method is tested to be e�ective and e�cient
by comparing simulation results with the actual navigation
errors.


e remainder of this paper is organized as follows. Error
model of SINS is given, and �ght path for simulation is
designed in Section 2. In Section 3, SVM-based navigation
error estimation method is proposed. Simulation veri�cation
of proposed prediction method is given, and error prediction
of an entire 
ight path is completed in Section 4. Finally,
Section 5 gives the conclusions.

2. Error Model of SINS

Error equations, in terms of velocity errors, attitude errors
and position errors, should be established in order to analyze
the navigation errors caused by strapdown inertial navigation
systems [2].

2.1. Attitude Error Equations. 
e attitude errors of the air-
cra� are represented by ��, ��, and ��, respectively, as
follows:

��̇ = − ���	 + (��	 tan� + ��� sin�) ��
− (��	 + ��� cos�) + ��,

� ̇� = ���	 − (��	 + ��� sin�) ��
− ��� sin��� − ��	 �� + ��,

� ̇� = ���	 tan� + (��	 sec2� + ��� cos�) ��
+ (��	 + ��� cos�) �� + ��	 �� + ��,

(1)

where ��, ��, and �� represent the gyroscope dri� errors of
three axes.

2.2. Velocity Error Equations. With respect to the navigation
system which is analyzed in this passage, some error sources,
such as the ones related to acceleration, can be ignored when
the coe�cients are relatively small. 
erefore, velocity error
equations are established in the following:

��̇� = (��	 tan� − ��	 )��� + (��	 tan� + 2��� sin�) ���
− (��	 + 2��� cos�) ���
+ (����	 sec2� + 2��� cos��� + 2��� sin���) ��
+ ��� − ��� + Δ��,

��̇� = − 2 (��	 tan� + ��� sin�) ��� − ��	 ��� − ��	 ���
− (��	 sec2� + 2��� cos�)����
+ ��� − ��� + Δ��,

��̇� = 2 (��	 + ��� cos�) ��� + 2��	 ��� − 2����� sin���
+ ��� − ��� + Δ��,

(2)

where Δ��, Δ��, and Δ�� represent the accelerometer dri�
errors of three axes.

2.3. Positioning Error Equations. 
e positioning errors are
themain factors that are considered when evaluating the per-
formance of di�erent kinds of aircra�s, such as airplanes and
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Figure 1: Flight path for analyses.

UAVs. 
erefore, the latitudinal and longitudinal errors are
important factors for the assessment of navigation systems:

��̇ = ���	 − �ℎ��	2 ,
��̇ = (���	 + ����	2 tan�) sec � − �ℎ��sec �	2 ,

�ℎ̇ = ���.
(3)

2.4. Flight Path Design. According to several papers that
focus on error analysis of inertial navigation systems, the
research is mainly based on some simple 
ight paths, such as
uniform linear motion or uniform turning motion. However,
these 
ight paths cannot involve all the 
ight modes. As a
consequence, the results of these simulations or analyses may
not represent the real performance of the aircra�s that are
equipped with SINS.


erefore, it is necessary to design some 
ight paths that
not only include the characteristics of real paths of aircra�s
but are also able to ensure for each error source to be stimu-
lated. As shown in Figure 1, a typical 
ight path for simulation
is designed.

3. Navigation Error Prediction

It is unrealistic to use error equations to analyze the perfor-
mance of SINS, especially when there is a large variety of
systems that should be tested in short term, as it will cost a
good deal of time to solve the di�erential error equations.

In order to avoid complicated calculations, support vector
machine with strong generalization ability is utilized to
predict system errors by assessing each single error source.
However, a noticeable problem is that the navigation errors
are time varying and closely associated with the 
ight paths.

erefore, characteristic vectors related to certain 
ight paths
and ultimate positioning errors should be established to
accomplish the prediction, because positioning errors are the
most important data for navigation systems.

3.1. Support Vector Regression. Support vector machine
(SVM), a method closely associated with optimization algo-
rithms, is an e�ectivemethodology to address data processing

problems [12]. It is demonstrated to be eligible to overcome
the traditional obstacles with respect to multidimensional
problems and over learning. So far, SVM is widely used in
many �elds, such as biological information, voice recogni-
tion, failure identi�cation, and prognostics.

SVM consists of support vector classi�cation and sup-
port vector regression. To solve problems with respect to
prediction, support vector regression method can be used
[21]. Since the problem is nonlinear, a transform � = �(�)
should be introduced. By using a nonlinear mapping that
maps the sample data into a high dimensional space: � :	� → �, linear regression method can be conducted in
the high-dimensional space � to accomplish the nonlinear
prediction.

A training set is given as

� = {(�1, �1) , (�2, �2) , . . . , (�	, �	)} ∈ (	� × �)	. (4)

Due to the varying characteristics of the error parameters
of inertial navigation systems, a leading problem that should
be overcome is that all the signi�cant parameters with respect
to positioning errors should be preprocessed as characteristic
quantities for estimation, which is considered to be e�ective
to improve the estimation accuracy [26]. 
erefore, 15 error
parameters that have considerable impacts on position errors
of SINS are considered for the model training. In (4), ��
represent the error sources of SINS, which are the zero bias
errors, random walk errors of gyros, zero random walk of
accelerometers, random walk errors of accelerometers, and
scale factor errors of gyros. �� represent navigation errors,
which are latitudinal and longitudinal positioning errors of
the training models. Compared with ANNs, SVM has a
drawback that it can only generate one output, while the
ANNs are able to generate multiple outputs [27]. Conse-
quently, two separate training processes should be separately
conducted for latitudinal and longitudinal errors. Speci�cally,
the error coe�cients and positioning errors of the 600 sets
of navigation systems are used to train the SVM model.

en, a suitable kernel function is selected as radial Basis
Function (RBF). As there are many kernel functions available
for analyses [28, 29], RBF is demonstrated to be e�ective for
this problem by contrasting with other kernel functions:

 (��, �
) = exp(−$$$$$�� − �
$$$$$22%2 ) . (5)

In the next step, following convex quadratic program-

ming, problem (5) is resolved to obtain that �(∗) =(�1, �∗1 , . . . , �	�∗	 )� as follows:
min

12
	∑
�,
=1

(�∗� − ��) (�∗� − ��) (��, ��)
+ � 	∑
�=1
(�∗� + ��) − 	∑

�=1
�� (�∗� − ��) .

(6)

If �� is picked, and then * = �� −∑	�=1(�∗� − ��) + �, if �∗

is picked, then * = �
 − ∑	�=1(�∗� − ��) − �.
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Decision function is established as

� = / (�) = 	∑
�=1
(�∗� − ��) (��, �) = *. (7)

3.2. PSO-Based Optimal SVR Parameters Selection. Impor-
tant factors of SVM are the constant 0, the accuracy parame-
ter �, and the kernel function. As the kernel function has been
selected as RBF, appropriate 0 and � should be selected in
order to increase the estimation accuracy. Since itmay take an
extremely long time to seek the best parameters and desired
results may not be achieved by simply making di�erent
tests, an e�cient method called particle swarm algorithm is
adopted for the optimization.

Particle swarm algorithm (PSO) is an algorithm that
is inspired by birds’ foraging behavior and widely used to
address optimization problems [30–32]. 
e PSO algorithm
is introduced to optimize the parameters of � and 0. 
e
PSO is initialized with random particles, and then it works
to �nd optimal parameters by iterative methods. Practically,
the initial parameters of � and 0 should be given, and then
the optimal values will be generated by calculation.

4. Error Analyses for SINS

Before predicting the performance of certain inertial naviga-
tion systems, error analyses for SINS, which are indispensable
for the process of error prediction, should be conducted. As
for the strapdown navigation systems studied in this paper,
the dri� errors of the gyroscopes, the white noise of the
gyroscopes, and the dri� errors of accelerometers are consid-
ered, whereas the error coe�cients related to acceleration and
the coe�cients related to quadratic acceleration are ignored,
since such coe�cients are comparatively small.

Two criteria should be obeyed for the selection of training
data

(1) 
e training data should be not the same as the data
for test. If there were no di�erences between the
training data and testing data, the prediction accuracy
would be relatively high but biased.

(2) 
e dimension of the inputs should be increased if
possible. If the training data had a high dimension,
more useful characteristics could be used for model
training.

(3) 
e training data should represent di�erent systems
with vastly di�erent error coe�cients. With respect
to this criterion, suitable standard deviation for error
sources should be assigned.


e error sources are assigned by the given parameters
which are listed in Table 1. 
e navigation system is a�ected
by multiple error sources when it performs a navigation
task, so it is necessary to assign all the error parameters
that are considered in this navigation system in order to
make the results adaptive for real 
ight situations. To make
preparation for the performance prediction of SINS, it is
sensible to carry out error analyses for 600 sets with di�erent

Table 1:
e expected value and standard deviation of error sources.

Error sources
Expected
value

Standard
deviation

Zero bias errors of gyros 0.01∘/h 0.006∘/h

Random walk errors of gyros 0.001∘/√h 0.0068∘/√h
Accelerometer zero bias errors 34g 0.5 4g
Accelerometer random walk errors 34g/√Hz 54g/√Hz

Scale factor errors of gyros 10 ppm 0
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Figure 2: Real distributing points of positioning errors.

error parameters. 
e assignment of di�erent error sources
abides by the Gaussian distribution. Calculating with the
system error functions, the 600 sets of navigation errors of
the navigation systems with di�erent error coe�cients are
achieved.

4.1. Simulation Veri�cation of Prediction Method. 
e error
coe�cients and the positioning error parameters of the 600
sets of SINS are transformed into characteristic values, which
are used to train the SVM model. Other 300 sets of error
coe�cients are randomly generated, and the corresponding
system errors are calculated by error equations. 
en, the
accuracy parameter is initially given as � = 0.5, and the
penalty parameter is given as0 = 60. PSO is used to generate
optimal parameters of � = 0.0104 and 0 = 49.12.

Both original SVM with �xed parameters and SVM
model with optimal parameters generated by PSO are used in
order to predict the positioning errors. 
e real distribution
points of positioning errors are shown in Figure 2, while the
predicting distribution points of positioning error are shown
in Figure 3.


e prediction errors in terms of latitude and longitude
which are predicted by SVMmodel with optimal parameters
generated by PSO are shown in Figure 4.

By comparing the results, the predicting results are rela-
tively satisfying. Speci�cally, the average north error is 34.3m,
while the expected value of north error by prediction is
455.8m. 
e standard deviation of north error by prediction
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Figure 4: Prediction errors generated by SVM.

is 45.7m.
e average east error is 96.4m, while the expected
value of east error by prediction is 1194.6m. 
e standard
deviation of east error by prediction is 103.7m.


e predicting accuracy is de�ned as ;, which is accessed
with (7). <� represents the predicting error, and <� represents
the real error calculated by system error equations. Letter >
represents the number of navigation systems for test:

; = 1 − �∑
�=1

????????
<�� − <��<��

???????? × 1> . (8)

A�er calculation, the predicting accuracy is seen in
Table 2, the latitudinal predicting accuracy is 92.73%, while
the longitudinal predicting accuracy is 91.64%. 
e accuracy
of PSO-based method is noticeably higher than that of
original SVM.
ere is also a substantial decrease in the time
which is spent assessing the SINS performance. Speci�cally,

Table 2: Prediction accuracy of di�erent methods.

Method Latitudinal accuracy Longitudinal accuracy

Original-SVM 86.39% 84.20%

PSO-SVM 92.73% 91.64%
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Figure 5: Longitudinal error of a strapdown system with known
error parameters.

if 100 systems are analyzed, the error model based method
takes 2510 s whereas the SVM-basedmethod only takes 623 s.
Compared with analysis method based on error model, the
predicting method based on SVM is able to save up to 75%
of calculating time. 
erefore, it is e�ective and e�cient to
evaluate the navigation errors of SINS.

4.2. Error Prediction of an Entire Flight Process. It is demon-
strated that the accuracy of proposed method is satisfying
in terms of positioning error prediction. However, it is only
available for the prediction with �xed 
ight time. So, it is
necessary to seek a solution to conditions with di�erent 
ight
times.

One strapdown system with known error parameters is
analyzed during 3600 s 
ight time. 100 models with respect
to this system are trained by the given parameters, one
model is generated for every 36 s 
ight. So, it is achievable
to predict the positioning error during the entire 
ight. 
e
longitudinal error and latitudinal error are seen in Figures
5 and 6, respectively, which show that at the beginning of
the 
ight when the positioning errors are relatively small,
the prediction error is considerably low and can be ignored.

e reason is that during the initial period, the training
parameters of real positioning errors are small and similar.
As a result, SVR-based prediction method tends to generate
estimation outputs around that value.

Although several estimating results with big errors with
respect to both longitudinal and latitudinal estimation are
generated, the overall trends are coherent with real error
curves and the overall prediction accuracy is satisfying.

erefore, the proposed method is demonstrated to be
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Figure 6: Latitudinal error of a strapdown systemwith known error
parameters.

e�ective for error prediction of an entire 
ight process with
medium accuracy.

5. Conclusion

An SVM-based predicting method for SINS positioning
errors is proposed, which can be used to assess the perfor-
mance of navigation systems. Error functions of strapdown
navigation systems are established to provide necessary error
parameters which are not only used to train SVM model but
also utilized to make comparisons with the predicting results
of extra systems. RBF is selected to be the kernel function of
SVM, and appropriate parameters of SVM are generated by
PSO method.

As shown in the numerical veri�cations, the proposed
prediction method is e�ective in terms of predicting nav-
igation errors of strapdown systems with di�erent error
parameters. 
e accuracy of latitudinal prediction can reach
92.73%, while the accuracy with respect to longitudinal
prediction is 91.64%, which is considered to be high enough
for application. In addition, this method, compared with
error model analysis, can save up to 75% of calculation time.
Finally, the proposed method is demonstrated to be e�ective
for error prediction for an entire 
ight process, which makes
the method more applicable.


erefore, it enables the researchers to choose appropriate
systems for di�erent trajectories or applications by assessing
navigation errors e�ciently. Since this method is able to
evaluate the positioning errors precisely by assessing error
parameters of inertial measurement units, it will be useful
in terms of error compensation of strapdown navigation
systems, which are equipped on di�erent kinds of aircra�s.
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