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Positioning of aquatic animals 
based on time-of-arrival and 
random walk models using YAPS 
(Yet Another Positioning Solver)
Henrik Baktoft  1, Karl Øystein Gjelland  2, Finn Økland3 & Uffe Høgsbro Thygesen4

Aquatic positional telemetry offers vast opportunities to study in vivo behaviour of wild animals, 

but there is room for improvement in the data quality provided by current procedures for estimating 

positions. Here we present a novel positioning method called YAPS (Yet Another Positioning Solver), 

involving Maximum Likelihood analysis of a state-space model applied directly to time of arrival 

(TOA) data in combination with a movement model. YAPS avoids the sequential positioning-filtering-
approach applied in alternative tools by using all available data in a single model, and offers better 
accuracy and error control. Feasibility and performance of YAPS was rigorously tested in a simulation 

study and by applying YAPS to data from an acoustic transmitter towed in a receiver array. Performance 

was compared to an alternative positioning model and proprietary software. The simulation study 

and field test revealed that YAPS performance was better and more consistent than alternatives. We 
conclude that YAPS outperformed the compared alternative methods, and that YAPS constitute a vast 

improvement to currently available positioning software in acoustic telemetry. Additionally, in contrast 

to vendor-supplied solutions, YAPS is transparent, flexible and can easily be adapted and extended for 
further improvements or to meet study specific requirements such as three-dimensional positioning.

Positional telemetry, i.e. the recording of animal positions over time, enables researchers to study the behaviour of 
aquatic animals in the wild. One approach to achieve this involves tagging animals with acoustic transmitters and 
monitor them using �xed position hydrophones. Subsequently, positions at the time of signal transmissions are 
calculated using tri- or multilateration based on di�erences in time of arrival at each hydrophone1–3. �e obtained 
data can potentially be of high temporal and spatial resolution and can thus provide detailed information on the 
tagged animals’ locations4–7. �is type of data o�er vast opportunities to study the natural behaviour of individual 
animals in details not obtainable with other methodologies8–12.

Current manufacturers of positional telemetry systems provide either proprietary so�ware or paid services for 
calculating positions based on data from deployed hydrophones. However, these solutions lack transparency and 
the underlying mathematical algorithms, models and assumptions are not publicly available. Generally, tracks of 
animal movement obtained through currently available systems need additional processing such as �ltering5,13 to 
remove positional outliers or use of state-space models14 to accommodate observational errors.

Traditionally, estimation of positions of tagged aquatic animals from �xed position hydrophones have uti-
lized time di�erences of arrival (TDOA) at detecting hydrophones1–3,7,15,16. With the TDOA approach, at least 
three hydrophones need to detect a given signal transmission in order to estimate a position in two dimensions; 
instances where only one or two hydrophones detect a transmission are discarded. Erroneous registration on just 
one hydrophone can potentially o�set the estimated position from a few to several hundred meters even if the 
signal was detected correctly on a surplus of hydrophones (personal observation from simulation studies and 
�eld experiments). Since the occurrence of erroneous registrations have a probabilistic component, this can lead 
to a counterintuitive situation in which the accuracy and precision of a given calculated position deteriorates as 
the number of hydrophones detecting the signal increase17. Procedures eliminating information from assumedly 
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invalid hydrophone registrations can be applied to reduce this e�ect in an over-determined system16. Our expe-
rience with several vendor-supplied positioning systems indicates that these apply some undescribed �ltering 
algorithms. However, in data obtained using these systems positioning error may still be considerable even in 
over-determined hydrophone array con�gurations, including a relatively large proportion of positions with posi-
tional errors of several hundred meters (personal observation).

In this situation, we hypothesized that positioning could be improved by using the extra information in the 
time of arrival (TOA) of each ping at each hydrophone, rather than merely the time di�erences (TDOA), even if 
this information is imperfect. Moreover, that this information increases in value when combined with a model 
which describes the movement of the animal, so that information is shared optimally between subsequent signal 
transmissions. Finally, in broader terms, that the state of the art within acoustic positioning will advance more 
rapidly if algorithms are published and thus made available to the scienti�c community for scrutiny and further 
development.

�us, we present YAPS (Yet Another Positioning Solver); a newly developed model for estimating aquatic 
animal positions combining signal time of arrival (TOA) at �xed position hydrophones with a random walk 
movement model. Our approach aims at being transparent and to be adaptable and extendable to �t study speci�c 
requirements. For instance, the present version of YAPS is intended for use in areas where the vertical dimension 
(i.e. depth) is negligible compared to the horizontal dimension (x and y). For use in areas where this is not true, 
YAPS can be extended to a 3D version in which the third dimension of positions is either estimated by the model 
or represented by data collected using transmitters with on-board pressure sensors thereby correcting estimation 
errors that would otherwise be introduced. �e YAPS model was developed towards use with systems from a 
speci�c vendor (Lotek Wireless Inc., Newmarket, Ontario, Canada), o�ering transmitters with relatively stable 
burst intervals, which enables estimation of time of each transmission and subsequently using TOA as opposed to 
TDOA. However, YAPS is not vendor speci�c and is applicable to data obtained using other systems with similar 
characteristics, i.e. stable burst interval. By including a movement model �tted to raw TOA data, YAPS constraints 
the estimated positions to biologically plausible (under the movement model) outcomes. Moreover, YAPS utilises 
all available detections, even if number of hydrophones detecting a given signal is less than three. Additionally, 
by allowing residuals to be non-normally distributed, YAPS accommodates erroneous detections (e.g. multipath) 
that could otherwise result in severely biased position estimation. �e model is interfaced using R18 and the posi-
tion estimation is done using TMB (Template Model Builder19) to allow quick computation times.

To evaluate performance of YAPS, we applied the YAPS model and a standard TDOA model to two di�erent 
datasets and compared results in terms of e.g. e�ciency (i.e. number of estimated positions) and accuracy (devia-
tion from true to estimated position): 1) data simulated from a random walk model and 2) data from a track with 
known trajectory obtained by combined movement of a di�erential global positioning system (DGPS) unit and 
transmitters in a hydrophone array setup in a river. �e YAPS results from the latter dataset were also compared 
to results from a commercially available acoustic positioning so�ware.

Methods
YAPS model formulation. �e modelling follows the state space paradigm20 where we distinguish between 
�rst the process model, which describes the dynamics of the system and most importantly the x,y-location of the 
transmitter at time t, and next an observation model, which relates unobserved processes to data. �e process 
model consists of the following stochastic processes: First, a model for the times t(i) of transmissions (measured 
in seconds since �rst detection) states that the interval between transmissions is a random walk:

t i t i t i t i N t i t i( ) ( 1) ( 1), ( 2) ( ( 1) ( 2), ) (1)bi
2
σ− − | − − ∼ − − −

here, our notation implies that the time t(i) of transmission number i is a random variable, speci�ed in terms of 
its conditional distribution given t(i-1) and t(i-2), which is a Gaussian with the speci�ed mean and standard devi-
ation. �e transmission times are unobserved and estimated. �is model component assumes that transmitter 
burst intervals can be modelled using a Gaussian distribution and allows some temporal variation that can be 
caused by temporally varying temperature a�ecting the frequency of the internal clock crystal.

Next, the model assumes an independent random walk for each co-ordinate (denoted x and y), where the 
variance of the displacement scales linearly with the time increment as in standard di�usion theory21:

| − ∼ − ∗ − − .t i t i N t i D t i t ix( ( )) x( ( 1)) (x( ( 1)), (2 ( ( ) ( 1))) ) (2)xy
0 5

| − ∼ − ∗ − − .y t i y t i N y t i D t i t i( ( )) ( ( 1)) ( ( ( 1)), (2 ( ( ) ( 1))) ) (3)xy
0 5

here, Dxy is the di�usivity, assumed to be identical in the x and y direction. �e positions x,y (measured in meters) 
are unobserved and thus constitute an unobserved Markov processes, as is standard in the state space paradigm 
for time series analysis20.

To relate the time of transmissions with the time when the transmission reaches the receivers, we need the 
speed of sound v. Some variation in water temperature and density can occur even on small temporal and spatial 
scale and directly a�ects the speed of sound. We assume the speed to be a random walk:

| − ∼ − ∗ − − .v t i v t i N v t i D t i t i( ( )) ( ( 1)) ( ( ( 1)), (2 ( ( ) ( 1))) ) (4)v
0 5

where Dv is the di�usivity of the velocity process. Note that we assume one value for the speed of sound at 
each transmission; we thus ignore di�erences in water temperature and density within each transmission as the 
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sound wave propagates from the transmitter to the di�erent receivers, and consider only di�erences between 
transmissions.

�is concludes the process components in the model. Next, we relate the observed time τi,H when transmis-
sion i arrives at hydrophone H, to the transmission time t(i). We compute Euclidian distances in two dimensions 
between the transmitter location x,y(t(i)) at time t(i) and all hydrophone (H) positions (xH, yH):

= − + − .D H t i x x t i y y t i( , ( )) (( ( ( ))) ( ( ( ))) ) (5)H H
2 2 0 5

�en, the predicted time of arrival (µ) at hydrophone (H) is:

µ = +H i t i D H t i v t i( , ) ( ) ( , ( ))/ ( ( )) (6)

We next define the residuals E(H,i) = τi,H − µ(H,i) between the predicted and observed time of arrival. 
We assume that this residual follows a mixture of two distributions: a Gaussian with mean 0, and a scaled 
t-distribution with three degrees of freedom. �is distribution has well de�ned mean, variance and skewness, 
but displays heavy tails due to the t-distribution. Mixture ratio and scale parameters in the two distributions are 
estimated by the model.

TDOA model formulation. Position estimation using a standard TDOA model is based on solving a set of 
hyperbolic equations each described by pairwise di�erences in time of arrival at three or more hydrophones17. 
�e model assumes that di�erence in time of arrival of signal i emitted at time t(i) on hydrophones Hn and Hm 
follows a Gaussian distribution with mean µTDOA and variance σ )TDOA

2 .

µ σ∼TDOA Hn Hm t i N Hn Hm t i( , , ( )) ( ( , , ( )), ) (7)TDOA TDOA
2

In this, µTDOA(Hn, Hm, t(i)) is de�ned by the linear predictor function:

µ = − + − − − + −. .
(8)Hn Hm t i x x t i y y t i x x t i y y t i v( , , ( )) ((( ( ( ))) ( ( ( ))) ) (( ( ( ))) ) ( ( ( ))) ) /

TDOA Hn Hn Hm Hm

2 2 0 5 2 2 0 5

in which x(t(i)) and y(t(i)) is location of the transmitter at time i, xHn, yHn, xHm and yHm are locations of the two 
focal hydrophones and v is speed of sound assumed to be constant.

Computational analysis of the models. Both the YAPS and the TDOA models, as described in the previ-
ous, de�nes the joint distribution of all random variables in the model, both observed and unobserved, for given 
parameters. Following the approach in the Template Model Builder (TMB) framework19, the model is coded as a 
c++-�le which evaluates the joint density. Unobserved random variables (i.e. x, y, v and t at each transmission) 
are automatically integrated out by TMB using the Laplace approximation, and parameters (�xed e�ects; i.e. σbi, 
Dxy, Dv, residual standard deviation, the t-Gaussian mixture ratio and scale parameter for the t-distribution) are 
estimated using the Maximum Likelihood principle using a built-in optimizer (nlminb() from the package stats) 
in R18. Unobserved variables are estimated with the mean in their posterior distribution (again using the Laplace 
approximation). Uncertainties on parameter estimates are obtained from the Fisher information matrix, i.e. the 
curvature of the likelihood function, while uncertainties on random variables are obtained from the variance in 
the posterior distributions, still using the Laplace approximation. In summary, the model analysis is a standard 
Maximum Likelihood analysis of non-linear mixed-e�ects model, using TMB as the computational tool that 
automates the entire analysis.

Simulation study. We simulated movement data x,y(t) as well as data for time of transmission t(i) and 
speed of sound v(t(i)). A simulated array consisting of �ve hydrophones positioned in the corners and centre 
of a 100*100 meter quadrant was used. Time of arrival matrices were established from this including Gaussian 
distributed noise to use as input to the model. �is represents an optimal dataset in which all transmissions are 
registered as straight line detections with Gaussian distributed observation noise corresponding to hardware 
measurement error speci�c to the hydrophones. In total, 200 simulated tracks starting at random positions within 
the array and with 250 positions each were generated. We used �xed di�usivities for the simulated movement 
process (Dxy = 1.0 m2 * s−1) and speed of sound process (Dv = 0.01 m2 * s−3). To test the robustness of YAPS and 
to add realism to the simulation study, we introduced varying degrees of incomplete registrations by making 
detection on each hydrophone probabilistic; nine probabilities of missing detection (p(NA)) between 0.0 and 0.8 
in increments of 0.1 were used. Additionally, to simulate detection of multipath propagated signals and random 
noise, henceforth collectively termed multipath, we introduced varying degrees of erroneous detections by o�set-
ting correct time of arrival by random values corresponding to −100 to 100 meters assuming v = 1435 m*s−1. Six 
di�erent probabilities of multipath (p(MP)) from 0.00 to 0.05 in increments of 0.01 were used. All 200 tracks were 
iteratively subjected to each combination of p(NA) and p(MP) �ve times and subsequently used as input to YAPS 
for estimating the simulated track. For comparison, all tracks and iterations were also positioned using a standard 
TDOA model with Gaussian distributed noise. �us, each simulated track was iteratively estimated 9*6*5 = 270 
times using each model.

In each model iteration a number of performance metrics were calculated for comparison of YAPS and the 
TDOA model: 1) relative number of estimated positions in each model run was determined. By de�nition, YAPS 
estimates a position for each transmission, whereas the TDOA model only estimates a 2D position if number of 
detecting hydrophones is three or more; 2) mean Euclidian distance between true and estimated positions; 3) rel-
ative deviation of estimated track length from true track length calculated as (length(estimated) – length(true))/
length(true) * 100%. Additionally, the spatial component in position estimation error for both models was 
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evaluated using Euclidian distance from estimated to true positions for full versions of all 200 simulated tracks 
(i.e. before introducing reduced detection probability (p(NA) = 0) and multipath (p(MP) = 0). Comparison with 
commercially available so�ware was not possible.

Applying YAPS to a known track. To further illustrate the utility of YAPS and to evaluate model perfor-
mance under real study conditions, we applied YAPS to data from a setup in a Norwegian river covering a river 
stretch approximately 80 m wide and 400 m long. Twenty-seven hydrophones (Lotek 200 kHz WHS 3050, Lotek 
Wireless Inc., Newmarket, Ontario, Canada) were mounted to wall �xes (distance to surface 1.0 m) where appli-
cable and otherwise mounted to iron poles erected from cross-like structures placed on the bottom (distance to 
surface range 0.7 m–3.1 m) and kept in place by heavy weights. Transmitters attached to a line (approximately 
one meter from surface) held vertical by weights were moved through the study site using a small in�atable row 
boat and true trajectory was established using a high precision di�erential gps-unit (logging frequency 1 Hz; 
Trimble Geo 7x cm edition running with the Norwegian Mapping Authority CPOS service) mounted above the 
transmitters (complete track is provided in results section). Median speed of the boat was 0.31 m * s−1. �e study 
site was partly bounded by concrete walls, steel sluice gates, bedrock and large boulders, thus echoing, noise and 
multipath propagation was present. A miniature transmitter (Lotek, 200 kHz, model M-626, 7.5 × 17 mm, mass 
in air 1.0 g) with burst interval of approximately 2.01 seconds was used. Track duration within range of the hydro-
phone array was 108 minutes yielding 3244 transmissions. Obtained data were processed by the YAPS model, the 
TDOA model and the vendor provided so�ware U-MAP (version 1.3.3, Lotek Wireless Inc., Newmarket, Ontario, 
Canada). U-MAP runs algorithms using the TDOA-principle, and may report twin positions in cases where the 
equations have two solutions. Depending on array con�guration and quality of input data (e.g. amount of mul-
tipath propagated signals), TDOA models are prone to produce extreme outliers clearly outside the study area. 
�ese were �ltered from the TDOA and U-MAP estimated tracks using distance to nearest hydrophone >500 m 
as criteria for removal. Optimization of post-processing routines was not the goal of this study, and no further 
�ltering of TDOA or U-MAP estimated positions was applied. As the multipath induced temporal o�set in the 
simulation study was limited to correspond to 100 m or less, the simulation study was not prone to such extreme 
outliers. Quality of estimated tracks was quanti�ed by number of estimated positions and by calculating Euclidian 
distances from estimated positions to temporally closest true positions from the DGPS trajectory. To further test 
and demonstrate the utility of YAPS, we sub-sampled the data obtained from the described tow track to simulate 
a hydrophone array consisting of only eight hydrophones and applied YAPS on this data set.

All simulations and analyses (excluding U-MAP which is standalone so�ware) were performed in R version 
3.3.218.
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Figure 1. Probability of missing detections p(NA) a�ects relative number of estimated positions in the TDOA 
model, but not in YAPS. (a) Number of hydrophones detecting each transmission (mean values ± s.d.) as a 
function of probability of missing detections p(NA) in the 200 simulated tracks of 250 positions each. (b) 
Relative number of positions estimated (mean ± s.d.) by TDOA (◊) and YAPS (●) models in each iteration as a 
function of p(NA). Probability of multipath does not a�ect number of estimated positions, so only simulations 
where p(MP) = 0 were used. YAPS will by de�nition produce a �xed number of estimated positions equivalent 
to number of transmissions in the input data.
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Data Availability. Code and example data to run the YAPS model are available in the open github repository 
(https://github.com/bakto�/yaps_sciRep). Code to subsample the tow track, the hydrophone array and to simu-
late increased probability of missing detections are also provided.

Results
Simulation study. YAPS generally performed better than the TDOA model on all metrics. Additionally, per-
formance of YAPS was less variable than performance of TDOA model, especially at increased p(NA) and p(MP).

Number of estimated positions. Whereas numbers of estimated positions from YAPS were �xed by number of 
transmissions in input data, number of estimated positions from TDOA model decreased as expected when 
p(NA) increased (Fig. 1).

Mean deviation from true to estimated positions. Mean deviation from true to estimated positions increased in 
both YAPS and TDOA models as simulated p(NA) and p(MP) increased (Fig. 2). Best performance was achieved 
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Figure 2. E�ect of probability of missing detections (p(NA)) on model performance. Mean distance (±5th and 
95th percentile) between true and estimated positions (TDOA (◊); YAPS (●)) for simulated tracks as a function 
of probability of missing detections (p(NA)). Each panel show results from one level of probability of multipath 
(p(MP)): (a) 0.00, (b) 0.01, (c) 0.02, (d) 0.03, (e) 0.04 and (f) 0.05.
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length di�erences between true and estimated track (±5th and 95th percentile; TDOA (◊); YAPS (●)). Negative 
values indicate that estimated tracks are shorter than true and vice versa. Each panel show results from level of 
probability of multipath (p(MP)): (a) 0.00, (b) 0.01, (c) 0.02, (d) 0.03, (e) 0.04 and (f) 0.05. Horizontal lines (- - -)  
indicating 0% and −100% are given for reference.

https://github.com/baktoft/yaps_sciRep


www.nature.com/scientificreports/

6Scientific RepoRts | 7: 14294  | DOI:10.1038/s41598-017-14278-z

at optimal conditions (i.e. p(NA) = 0 and p(MP) = 0) under which mean deviation was 0.4 m for YAPS and 0.7 m 
for TDOA. Mean deviation increased to a maximum of 2.3 m for YAPS and 4.0 m for TDOA as p(NA) increased 
to 0.8. Fixating p(NA) = 0 and increasing p(MP) to 0.05 resulted in mean deviation of 0.4 m for YAPS and 8.5 m 
for TDOA. At the worst case scenario included in the simulation study (i.e. p(NA) = 0.8 and p(MP) = 0.05) mean 
deviation from true to estimated positions were 2.8 m for YAPS and 17.5 m for TDOA.

Relative error in track length estimation. Deviation of estimated track length relative to true track length var-
ied for both YAPS and TDOA models as p(NA) and p(MP) increased (Fig. 3). Both models performed best 
under optimal conditions (YAPS: −1.8% TDOA: 4.1%; positive and negative mean values indicate over- and 
under-estimation of track length, respectively). At increasing levels of p(NA) underestimation of track length 
from YAPS increased monotonically to maximum −43.0% as p(NA) = 0.8. Contrastingly, the TDOA model 
increased overestimation to maximum 59.5% at p(NA) = 0.5 followed by shi� to underestimation of maximum 
−72.8% at p(NA) = 0.8. A slight rise in p(MP) to 0.01 resulted in 185.45% overestimation of track length in 
TDOA at p(NA) = 0, whereas track length estimated by YAPS remained relatively constant at −2.0%. At maxi-
mum simulated p(MP) = 0.05 mean overestimation by TDOA was 549.3% at p(NA) = 0; corresponding value for 
YAPS was −2.6%.

Spatial component of estimation error. Performance variation in both YAPS and TDOA models included a spa-
tial component with highest performance near the array centre (Fig. 4). Whereas YAPS performed relatively 
uniform inside the entire hydrophone array, performance of the TDOA model was more spatially variable 

Figure 4. Spatial component of estimation error. Overall, both models performed well inside the hydrophone 
array, but estimation accuracy deteriorated more in the TDOA model as distance to array centre increased. (a 
and b) True trajectories of all 200 simulated tracks. Colours represent distance from estimated to true position 
for model TDOA (a) and YAPS (b); notice that colour scale is non-linear. Root mean square distances to true 
position was 1.21 for model TDOA and 0.44 for YAPS. �e simulated hydrophone array ( ) is indicated. (c and 
d) Distance from estimated to true position as a function of distance to array centre from model TDOA (c) and 
YAPS (d). Notice y-axis is log(y + 0.1)-transformed.
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both inside and outside the array. In locations outside the hydrophone array performance of the TDOA model 
decreased considerably more than YAPS.

Applying YAPS to a known track. Tracks estimated by YAPS, the TDOA model and U-MAP are shown 
in Fig. 5. Overall, all three positioning models revealed the major components of the true track, but the amount 
and severity of estimated erroneous positions clearly varied between models. As per model de�nition, number 
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Figure 5. Performance comparison of positioning models applied on �eld data. Comparison of known track 
( ) obtained using DGPS positioned above the transmitter and tracks estimated ( ) by (b) TDOA, (c) U-MAP 
and (d) YAPS. Track duration was 109 minutes yielding 3,244 transmissions of the transmitter. Physical 
boundary of the system is indicated by — and hydrophone positions ( ) are indicated. Special attention (i.e. 
increased hydrophone density) was given to an area midway on the northern side as this constituted a hydro 
power intake.
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Figure 6. Sub-sampled tow track estimated by YAPS. �e tow track data set was sub-sampled to simulate an 
eight-hydrophone array and YAPS was applied to estimate the track. (a) Number of hydrophones detecting each 
signal transmission. Signal transmissions detected by less than three hydrophones are highlighted using colours 
blue, light blue and red representing 2, 1 and 0 detecting hydrophones, respectively. ( ) indicate running mean 
(window = 10) number of detecting hydrophones. (b) Track estimated by YAPS ( ) overlain known track 
obtained using DGPS ( ). Approximately 50% of estimated positions were with 0.5 m of true position and 80% 
were within 1 m.
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of estimated positions from YAPS was identical to number of transmissions in the input data (i.e. 3244) whereas 
TDOA model yielded 2892 (89%) positions (total number was 3017, but 125 was �ltered out as gross outliers). 
Interestingly, number of positions estimated by U-MAP (2583 (80%)) was substantially lower than by TDOA 
model. Included in these were 39 twin position solutions (1.5% of the estimated positions). For the majority of the 
estimated track, YAPS corresponded closely to true track. Excluding instances where the transmitter was more 
than 50 m outside the array (only start and end of track) more than 87% of estimated positions were within 0.5 m 
of true position and more than 97% were within 1 m. For the TDOA model corresponding percentiles were 23% 
within 0.5 m and 49% within 1 m and for U-MAP 72% within 0.5 m and 82% within 1 m. YAPS performance was 
lowered in positions well outside the hydrophone array (i.e. the south-east corner), but still re�ected the track 
well. Additionally, the area in front of the hydro power intake on the northern shore proved challenging for both 
the TDOA model and U-MAP, whereas YAPS performed well. �e western end and the intake area were both 
bounded by steel gates and/or concrete walls, which undoubtedly induced a relatively large amount of echoing 
and multipath propagation. Computation time for YAPS was 28 minutes on a laptop with 16 GB RAM and an 
Intel Core i7-5600 processor (Intel, Santa Clara, California, USA) at 2.60 GHz.

Results from sub-sampling the tow-track to simulate an eight-hydrophone array and applying YAPS on these 
data are shown in Fig. 6. Mean number of hydrophones detecting each transmission was 2.5 and percentage of 
transmissions detected by three or more hydrophones was 49%. As de�ned by the model, number of estimated 
positions was identical to number of transmission in the input data (i.e. 3244). �e track estimated by YAPS 
resembled the true track well as more than 50% of estimated positions were within 0.5 m of true position and 
more than 80% were within 1 m.

Discussion
In this study, we have demonstrated and tested the application of the newly developed YAPS model to estimate 
movement trajectories of aquatic animals equipped with acoustic transmitters monitored by �xed position hydro-
phone arrays. �e simulation study and application to a known track obtained under �eld conditions demon-
strated YAPS as a suitable tool to estimate such movement trajectories. Performance of YAPS was superior to a 
standard TDOA model and also better than the vendor supplied so�ware U-MAP. Performance by U-MAP was 
considerably better than the TDOA model although number of estimated positions was lower. �is, and the fact 
that U-MAP occasionally uses less than the available number of detections for position estimation in an over 
determined system, indicate that U-MAP employs more than a simple TDOA model to improve quality of output 
data.

�e power of YAPS originates from the (to our knowledge) unique uni�ed approach of applying a combina-
tion of a state space model describing animal movement and a positioning model directly to TOA data. By doing 
this, the animal movement model is constraining the probability space of estimated positions to biologically plau-
sible (under the movement model) outcomes. Combined with the Gaussian and t mixture distribution for model 
residuals, this e�ectively accommodates TOA data su�ering from multipath propagation, which otherwise can be 
detrimental for data quality. Additionally, TOA-based positioning as employed in YAPS has bene�ts over position 
estimation based on TDOA. For instance, from theory it is known that TOA based estimation is less a�ected by 
hydrophone array con�guration17. Furthermore, as evidenced by the simulation study and the sub-sampled data 
set simulating an eight-hydrophone array, TOA based position estimation and the combination of an animal 
movement model and a positioning model enables position estimation for transmissions where number of hydro-
phones detecting the transmission is less than three, albeit with increased uncertainty of the estimate. YAPS is 
therefore able to utilize information otherwise lost when using the TDOA approach. It should be noted that YAPS 
needs a certain minimum amount of data to function properly, but rigorous tests of this lower threshold is outside 
the scope of the present study. However, preliminary trials performed using subsets of the tow track presented 
here, indicate that data sets consisting of ten or more consecutive signal transmissions detected on average on 1.9 
hydrophones can be enough to obtained good results.

TOA

N = Nping

Positions

Npos = N|NHydro >= 3 & ?

Filtering /
Smoothing

Track

Ntrack = Npos
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software?        ?

YAPS

Figure 7. Conceptual model showing data processing pathways using YAPS and vendor supplied so�ware. 
While YAPS utilizes all available hydrophone registrations to estimate positions for all transmissions, data 
volume is progressively condensed and reduced in the alternative pathway leading to loss of information and 
ultimately less estimated positions in the �nal track. Additionally, YAPS provides direct estimation of movement 
model parameters using all available data. Moreover, as indicated by the question marks in the �gure, available 
vendor supplied so�ware are proprietary and the underlying models and �lter algorithms are not accessible to 
the user. �erefore, exact model formulation and potential �ltering criteria are unknown.



www.nature.com/scientificreports/

9Scientific RepoRts | 7: 14294  | DOI:10.1038/s41598-017-14278-z

�e uni�ed multilevel modelling in YAPS contrasts alternative data processing pathways (Fig. 7), which, in a 
step-wise approach apply �ltering and/or smoothing models to improve data quality (e.g. biological �lters typi-
cally based on swimming speed or vendor provided position quality metrics) to positions previously estimated 
using vendor supplied so�ware comparable to U-MAP (e.g.2,13,22).

We consider the YAPS model presented here as a solid base that can be adapted and extended for further improve-
ment and to meet study speci�c needs. For instance, a third component to the random walk model describing animal 
movements can easily be added to facilitate acoustic based tracking of tagged animals in three dimensions.

A previous study found that positioning based on random walk models work well even in situations, where the 
animals being tracked behave according to other movement models such as piecewise constant velocity and Levy 
�ight22,23. Additionally, the fact that YAPS performed well in estimating the tow track (which did not perform a 
random walk), indicates that YAPS is robust in estimating tracks arisen from other movement models. Nevertheless, 
the movement model component of YAPS can be extended to more complex models such as correlated random walk 
models or the Ornstein-Uhlenbeck process which previously have been used to estimate animal movement trajec-
tories24,25. Depending on vendor, acoustic transmitters might be designed to transmit at irregular time intervals. 
At present the YAPS model is capable of positioning such tags, but the performance in comparison to alternative 
solutions has not been thoroughly assessed and is beyond the scope of the present study.

�e improvement in attainable quality of aquatic animal tracking represented by YAPS was made possible by 
the fact that the hardware manufacturer (Lotek Wireless Inc.) enabled researchers to extract high resolution raw 
data from the hydrophones (i.e. TOA data). We advocate that such possibility to access raw data should be de facto 
standard from all manufacturers providing telemetry hardware to the scienti�c community.
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