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Abstract

Positioning of nodes in a Wireless Sensor Network (WSN)
is a process that allows location-unaware nodes to discover
their spatial coordinates. This process requires the cooper-
ation of all the nodes in the system. Ensuring the correct-
ness of the process, especially in the presence of misbehav-
ing nodes, is crucial for ensuring the integrity of the sys-
tem. We analyze the problem of unaware nodes determining
their location in the presence of misbehaving neighboring
nodes that provide false data during the execution of the
positioning process. We divide and present potential mis-
behaving nodes in four different adversary models, based
on their capacities. We provide algorithms that enable the
location-unaware nodes to determine their coordinates in
presence of these adversaries. The algorithms always work
for a given number of neighbors provided that the number
of misbehaving nodes is below a certain threshold value,
which is determined for each adversary model.

Key words: Network Security; Wireless Security; Wireless
Sensor Networks; Secure Localization.

1 Introduction

Wireless Sensor Networks (WSNs) are a specific kind of
ad hoc networks, highly decentralized, and without infras-

∗This is an expanded and revised version of a paper that appeared in
the proceedings of the 7th Annual Communication Networks and Services
Research (CNSR) Conference, May 2009, pages 86–93.

tructure. They are build up by deploying multiple micro-
transceivers, also called sensor nodes, that allow end users
to gather and transmit environmental data from areas which
might be inaccessible or hostile to human beings. The trans-
mission of data is done independently by each node, using a
wireless medium. The energy of each node is limited to the
capacity of its battery. The consumption of energy for both
communication and information processing must be mini-
mized. Deployment of nodes in a WSN can be planned or it
can be done at random. In planned deployments, sensors are
placed into pre-determined locations where the data is col-
lected. In random setups, sensors are deployed into the geo-
graphical area and they work together in order to determine
their mutual coordinates. We assume random deployment
of sensor nodes.

Positioning of nodes is a mechanism that allows location-
unaware sensors to discover their spatial coordinates in the
network. Several approaches in the literature address the
design of localization mechanisms. Different assumptions,
regarding the energy and computational capabilities of sen-
sors, arise. Energy accuracy and efficiency of positioning
mechanisms have been addressed, for example, in [2, 4, 14].
The correctness of the positioning process in random de-
ployments is very critical and it must be secured in order to
ensure the integrity of the WSN and its associated services.
Firstly, the process must guarantee that all nodes success-
fully set up the necessary parameters to establish paths that
lead their data towards end users. Secondly, when the rel-
ative positions of all the nodes in the system are known,
they can be used to enforce the protection of the routing
services. The knowledge of their position is also an essen-
tial prerequisite for the final application that processes the
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data collected by sensors, i.e., the user needs to know the
origin of collected data. Finally, the end users might want
to query some nodes by sending the position where infor-
mation needs to be collected. The positioning process is
therefore crucial.

Concerns about the security of the process have been
arisen only recently [11, 12, 5, 6, 7, 10]. Most of these
approaches are based on the use of trust models, where a
few dedicated nodes that are aware of their position (e.g.,
especial nodes equipped with GPS receivers or nodes that
have been manually configured with their location), provide
information to regular sensors (unaware of their initial coor-
dinates). Then, the localization process uses the information
reported by these special nodes to discover the position of
unaware nodes (e.g., by applying trilateration of the radio
signals of GPS equipped nodes [3]). These special nodes
may in fact be defective. Trusted but defective nodes must
be detected and isolated. Otherwise, they can lead to the cal-
culation of false positions and distances. A malicious node
can provide wrong routing paths to sensors in order to ex-
haust their battery life [13]. It may lead to reporting false
information on the geography of the phenomenon studied
by the sensors nodes.

Security mechanisms to validate the authentication of
trusted nodes is often too expensive and not always real-
istic. Firstly, the deployment of these nodes must be es-
tablished a priori, to ensure full coverage of the whole net-
work. Since the cost of these special nodes is considerably
higher than the cost of regular sensor nodes, their represen-
tation in the network is likely to be inferior. It is thus fair
to assume that an attacker can easily locate and compromise
their security to mislead, for instance, the positioning pro-
cess. On the other hand, current approaches to deploy trust
on WSNs may require cryptographic operations supported
by sensors. This has impact on their battery life, which can
degrade their performance. Finally, too much trust may re-
duce the autonomy of the network, since trusted nodes must
be monitored to ensure their integrity. This can be a real
problem for applications in hostile environments where the
localization phase must be managed by sensors without any
external intervention.

We analyze in this paper the problem of unaware nodes
determining their location in the presence of misbehaving
neighboring nodes that provide wrong information during
the execution of the positioning process. We divide and
present potential misbehaving nodes in four different ad-
versary models, based on their capacities. These misbe-
having nodes are either controlled by a malicious adversary
or simply nodes that fail providing the appropriate infor-
mation due. In the first case, we assume that malicious
nodes controlled by an adversary aim at leading unaware
nodes to the calculation of false positions and distances.
In the second case, we assume honest nodes that uninten-
tionally provide wrong distances or positions due, for in-
stance, to physical obstacles or any other unexpected cir-

cumstances. We then provide a set of algorithms that enable
the location-unaware nodes to determine their coordinates in
the presence of the adversary models defined in our work.
The whole set of algorithms that we present guarantee that
location-unaware regular nodes in the WSN always obtain
their position provided that the number of liars in the neigh-
borhood of each regular node is below a certain threshold
value, which we determine for each algorithm. The purpose
of our algorithms is to provide a formal process that allows
the location-unaware nodes to identify and isolate nodes that
are providing false information about their position. Our al-
gorithms are resistant to attacks provided that the thresholds
that we define are satisfied. They also guarantee a small
exchange of data between nodes, minimizing in this man-
ner the impact that the positioning process has in terms of
energy and battery life of the sensor nodes.

Organization of the paper — Section 2 establishes the
prerequisites for our approach and the adversary models.
Sections 3 presents our set of algorithms and their bounds.
Section 4 presents results obtained from the simulations of
our algorithms. Section 5 points out to some related works.

2 Positioning in the Presence of Liars

We assume that the positioning process is based on trilat-
eration [3]. Let us consider a point A = (ax,ay), such that
(ax,ay) = F (B1,B2,B3) for any three points B1,B2,B3, and
where function F returns the point obtained as the inter-
section of the three circles that are centered at B1,B2,B3
and with radii d(A,B1),d(A,B2), and d(A,B3), respec-
tively (cf. Figure 1). F (B1,B2,B3) is a unique and
well-defined point when the points A,B1,B2,B3 are in
general positions. If points are sensors, function F is

A 
d(A,B3) 

B2 

B1 

B3 

1 

d(A,B2) 

d(A,B1) 

Figure 1. Sensor A wants to determine its lo-
cation. It receives radiolocation signals from
three nodes B1, B2, and B3 that are located in
its distance one neighborhood. A determines
its position by processing the three signals.
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calculated by sensor A when it receives the coordinates
B1 = (b1x,bxy),B2 = (b2x,b2y),B3 = (b3x,b3y). It mea-
sures the distances d(A,B1),d(A,B2),d(A,B3) using radi-
olocation techniques [2]. The unknown coordinates of A =
(ax,ay) is obtained as the unique solution of the following
system of equations:

(b1x−ax)2 +(b1y−ay)2 = d(A,B1)2 (1)

(b2x−ax)2 +(b2y−ay)2 = d(A,B2)2 (2)

(b3x−ax)2 +(b3y−ay)2 = d(A,B3)2. (3)

Consider now that sensor A may receive radiolocation sig-
nals from misbehaving nodes that lie by announcing incor-
rect locations or distances to A (cf. Figure 2). Let N1(A) be
the set of sensor nodes at distance one hop away from A and
let ` (where `≤ #N1(A)) be the number of malicious nodes
that lie to A. Can A detect the lie, exclude the incorrect lo-
cations, report the liars, and still determine its location?

A 

1 

Figure 2. Sensor A is receiving its radioloca-
tion signals from two types of sensors in its
distance one neighborhood: liars (gray cir-
cles) and truth tellers (blank circles).

2.1 Definitions and Assumptions

We define a liar as any node announcing erroneous informa-
tion (either distances or coordinates) to a target node. The
intent can be malicious (i.e., to mislead the target node into
the wrong calculation of its location) or unintentional in the
sense that obstacles or other physical circumstances (e.g.,
multi-path interference) prevent a sensor from announcing
its correct location. We assume the use of a two dimen-
sion space and euclidean distances without estimation er-
rors. Therefore, given two locations (x,y),(x′,y′) a node
can determine whether or not they are equal, thus rejecting
one of the two. The following assumptions also apply: (1)
communications channels are bidirectional, i.e., if node A
can hear node B, then node B can hear node A; (2) legit-
imate nodes (i.e., truth tellers) agree on a fixed communi-
cation range (e.g., all truth tellers emit using the same sig-
nal power); (3) There are sufficient density conditions (e.g.,
> 10 one-hop neighbors per node) in the system; (4) Nodes

can only hold a single identity (i.e., we do not address Sybil
attacks) and are in general positions (i.e., no three sensors
are collinear).

2.2 Adversary Models

We define the capabilities of the adversaries as follow:

• (EV2): Eavesdropping communications between a target A
and, at least, two truth tellers B1 and B2, to forge the coor-
dinates of a position A′ (that is consistent with A, B1, and
B2).

• (EV1): Eavesdropping communications between a target A
and, at least, one truth teller B, to forge the coordinates of a
position X (that is consistent with A and B).

• (PT): Position Tampering whereby an adversary lies about
its position.

• (DT): Distance Tampering whereby an adversary lies about
its distance.

• (CL): Construction of a covert-channel and collusion,
whereby two or more adversaries collude to exchange system
data and supply the victim node with wrong information.

Based on these definitions, we classify in the sequel four main
categories of liars.

Model 1 (Unconstrained Liars)

A liar node in this model is assumed to be capable of per-
forming (EV2) + (PT) + (DT) + (CL), i.e., it is capable of
eavesdropping the communications of a target victim and
two truth-tellers (to forge a position that is consistent with
the three of them), capable of tampering consistent positions
and distances (only one is enough), and capable of building
up a covert-channel to collude with other liars.

A' 

A 

d2 

d1 

B2 

B1 

B'3 

d'3 

B3 

1 

d3 

Truth Teller Liar Target False 

Figure 3. Example of Adversary Model 1.
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A d3 
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A' 

d2 

d1 

Truth Teller Liar Target False 
(a) Node B3 tampers its position to B′3 (where B′3 6= B3).

B1 

B2 

A d3 

1 

B3 

A' 

d2 

d1 

d'3 

Truth Teller Liar Target False 
(b) Node B3 tampers its distance to node A as d′3 (where d′3 6= d3).

B3 

B1 

A 

A' 

1 

B2 

B4 
B5 

Truth Teller Liar Target False 

(c) Three liars eavesdrop the communications between target node
A and truth tellers B1 and B2. With this information, the liars col-
lude and tamper their positions and distances to force the target to
conclude that its position is A′ instead of A.

B1 

A 

X 

1 

B2 
B3 

B4 

Truth Teller Liar Target False 

(d) Three liars eavesdrop the communications between target
node A and truth teller B1. With this information, the liars
collude and tamper their positions and distances to A, to force
the target to conclude that it is positioned at location X .

Figure 4. Examples for Adversary Models 1 and 2.
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B1 
B2 

B3 

Liar False Target 
(a) Three liars tamper their positions and distances. They
collude and force A to conclude that it is located at X .

B2 

B1 

A 

X 

1 

Y Z 

W 

B3 

B4 

B5 

Truth Teller Liar Target False 
(b) Three liars tamper their positions and distances. They do not collude.

Figure 5. Examples for Adversary Models 3 and 4.

Example depicted by Figure 3 shows that if a liar node in
this model can eavesdrop the communications between, at
least, two truth tellers and the target node, it can then tam-
per its position and distance, to successfully steal the coor-
dinates of a legitimate position A′. In this sense, we can see
first that liar node B3 eavesdrops the communications be-
tween truth teller B1 and target A, and computes distance d1.
Second, liar node B3 eavesdrops the communications be-
tween truth teller node B2 and target node A, and computes
distance d2. Using this information, liar node B3, that is lo-
cated at a distance d3 from target A, computes distance d′2
(where d′3 6= d3) and position B′

3 (where B′
3 6= B3). Figure 4

shows that by only tampering its position (cf. Figures 4(a))
or its distance 4(b)), node B3 can also steal the coordinates
of a node to later lead the target noed to conclude that its lo-
cation is A′ instead of A. Finally, we can see in the example
depicted by Figure 4(c) that when multiple liar nodes ap-
plying this first adversary model in the system successfully
collude, e.g., by means of a covert-channel, they can lie con-
sistently to target the node A and lead it to the calculation of
its position as A′ instead of A.

Model 2 (Partially Constrained Liars)

A liar node in this model is assumed to be capable of per-
forming (EV1) + (PT) + (DT) + (CL), i.e., it can eaves-
drop the communications of a target victim and one truth-
teller (to forge a position that is consistent with the two of
them), tamper consistent positions and distances (only one
is enough), and build up a covert-channel to collude with
other liars. The example depicted by Figure 4(d) shows that
when multiple liar nodes in the system may perform the pre-
vious actions, they can eventually collude to lie consistently
in order to target A and lead it to the calculation of its posi-
tion as X instead of A.

Model 3 (Fully Constrained Liars)

A liar in this third model is not assumed to be capable
of eavesdropping the communications between the target A
and any of the truth tellers in its neighborhood. It is only as-
sumed to be capable of performing (PT) + (DT) + (CL), i.e.,
it can tamper its position or distance (only one is enough),
and collude with other liars (by means of a covert-channel)
to lie consistently about a unique bogus position. Example
depicted by Figure 5(a) shows an example where multiple
liar nodes applying this model in the system can eventually
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collude to lie consistently to target A and lead it to the cal-
culation of its position as X instead of A.

Model 4 (Unintentional Liars)

A liar in this model is not assumed to be capable of eaves-
dropping the communications between a target victim and
any of the truth tellers in its neighborhood. It is not assumed
either to collude with other liars. A liar here is only capable
of, probably unintentionally, performing (PT) + (DT), i.e.,
capable of tampering its position, its distance to the target,
or both. Example depicted by Figure 5(b) shows three liar
nodes that are unintentionally announcing false distances
and coordinates to target node A. They do not collude. The
positions derived by A using these three unintentional liars
intersects in at most one point (if any).

3 Algorithms and Upper Bounds

We present algorithms that solve the problem of determin-
ing the proper location of nodes in the presence of liars ac-
cording to the adversary models defined in Section 2.2. The
algorithms aim not only at determining the proper location
but also at excluding the incorrect locations and at isolating
the liars. We assume the case where A knows a priori the up-
per bound ` of sensor nodes lying in the geographical area
where it has been deployed. Our algorithms always work
for a given number of neighbors provided that the number
of liars is below a certain threshold value, while minimizing
the necessary number of neighbors that location-unaware
sensor nodes must trust.

Section 3.1 presents three algorithms that consist of the
following approach. Sensor A, after receiving the radiolo-
cation signals from its one hop neighbors, calculates its
position using the localization technique discussed in Sec-
tion 2.1 (cf. Figure 1), and uses either a majority decision
rule (cf. Algorithms 1 and 2) or a most frequent decision
rule (cf. Algorithm 3) to derive the position. We provide the
conditions for the validity of these three algorithms in the
presence of liars applying the adversary models presented
in Section 2.2. We present the upper bounds for each case,
all of them depending on the number of one hop neighbors
and liars among them. Section 3.2 relaxes the initial hy-
potheses and assumes that a victim may always trust one
of the nodes in its distance one neighborhood. We present
algorithms, and their bounds, for this second scenario.

3.1 Positioning without Trusted Nodes

Algorithm 1 enables a location-unaware node to determine
its position in presence of neighbors applying any adversary
model. Following is the analysis.

Theorem 1 Let n be the number of distance one neighbors
nodes of a location-unaware sensor A, the execution of the

majority rule in Algorithm 1 by A always gives its correct
position in the presence of ` liars if inequality n3 − 3(2`+
1)n2 +2(3`2 +6`+1)n− (2`3 +6`2 +4`) > 0 is satisfied.

Algorithm 1 Majority-ThreeNeighborSignals
1: Sensor A requests the location of its neighbors.
2: Every sensor in N1(A) sends its location to A.
3: For each triple t of neighbors Bi,B j,Bk ∈N1(A), A com-

putes (xt ,yt).
// (xt ,yt) is the point of intersection of the three circles
// centered at Bi,B j,Bk and with radii d(A,Bi),
// d(A,B j), and d(A,Bk).

4: A accepts the majority as its location, and reports the
nodes lying about the resulting position.
// if there is no consensus, then A aborts the process,
// and declares that it fails compute its location.

Proof Given n one hop neighbors and the presence of `
liars applying any of the models defined in Section 2.2, con-
sider all possible triples of sensors such that at least one of
the sensors in the triple is a liar. Such a triple can have in
each case either1

1. all three sensors liars, which gives a total of
(`

3

)
triples

of liars, or

2. exactly two sensors liars (and the other one truth teller)
which gives a total of

(n−`
1

)
·
(`

2

)
triples of liars, or

3. exactly one sensor liar (and the other ones truth tellers)
which gives a total of

(n−`
2

)
·
(`

1

)
triples of liars.

A location that is determined by A is correct if it is pro-
vided by three truth tellers; otherwise it is (possibly) incor-
rect. The majority rule in Algorithm 2 will succeed if the
number of correct locations is bigger that the number of in-
correct locations. This amounts to having the inequality.(

n
3

)
−

(
`

3

)
−

(
n− `

1

)
·
(

`

2

)
−

(
n− `

2

)
·
(

`

1

)
>

(
`

3

)
+

(
n− `

1

)
·
(

`

2

)
+

(
n− `

2

)
·
(

`

1

)
,

from which we derive(
n
3

)
> 2

[(
`

3

)
+

(
n− `

1

)
·
(

`

2

)
+

(
n− `

2

)
·
(

`

1

)]
(4)

as a necessary and sufficient condition for the majority rule
decision to succeed at A.

Table 1 depicts the minimum number of neighbors for a
given number of liars. The table can be derived as follows.
If ` = 1 then

(`
3

)
=

(`
2

)
= 0 and Inequality 4 is simplified

1We use the standard convention for binomial coefficients that
(s

t

)
= 0

when s < t.
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Number of Liars Min Number of Neighbors
` = 1 n = 7
` = 2 n = 11
` = 3 n = 16
` = 4 n = 21
` = 5 n = 26
` = 10 n = 31
` = 15 n = 74
` = 20 n = 98

Table 1. Minimum number of location-aware
neighbor nodes required for a location-
unaware node to determine a correct pair of
locations (using Algorithm 1) in the presence
of ` liars applying any of the adversary mod-
els defined in Section 2.2.

to n > 6, then A can determine a correct location in the
presence of a liar if it has at least 7 neighbors. If ` = 2
then

(`
3

)
= 0,

(`
2

)
= 1 and Inequality 4 can be simplified to

n(n− 1)/6 > 2(1 +(n− 3)), which in turn is equivalent to
n > 13+

√
73

2 . This means that A can determine a correct lo-
cation in the presence of two liars if it has at least eleven
neighbors. When `≥ 3, cumbersome but elementary calcu-
lations show that Inequality 4 can be simplified to the fol-
lowing inequality:

n3−3(2`+1)n2 +2(3`2 +6`+1)n− (2`3 +6`2 +4`) > 0. (5)

Plotting Inequality 5 we can obtain the rest of values de-
picted in Table 1. Figure 6 shows the minimum number of
neighbors for ` = 3 and ` = 4.

3 Secure Localization without Trusted Nodes

3.1 Use of Three Neighbor Signals

Algorithm 1 depicts the approach. Following is the analysis.

Algorithm 1 ThreeNeighborsAlgorithm
1: SensorA requests the location of its neighbors.
2: Every sensor inN1(A) sends its location toA.

// This algorithm is executed by all the neighbors of A.
3: For each triplet of neighbors,A computes(xt ,yt).

// (xt ,yt) is the point of intersection of the three circles
// centered at A and radius the distance from A to triple t.

4: A accepts the majority as its location, and reports the
nodes lying about the resulting position.
// if there is no consensus, then A aborts the process,
// and declares that it cannot compute its location.

Consider all possible triples of sensors such that at least
one of the sensors in the triple is a liar. Such a triple can
have in each case either1

1. all three sensors liars, which gives a total of
(

ℓ
3

)

, or

2. exactly two sensors liars (and the other one truthful)
which gives a total of

(n−ℓ
1

)

·
(

ℓ
2

)

, or

3. exactly one sensor liar (and the other ones truthful)
which gives a total of

(n−ℓ
2

)

·
(

ℓ
1

)

A location that is determined byA is correct if it is deter-
mined by three truthful neighbors, otherwise it is (possibly)
“incorrect”. The majority rule in Algorithm 1 will succeed
if the number of “correct” locations is bigger that the num-
ber of “incorrect” locations. This amounts to having the
inequality.

(

n
3

)

−
(

ℓ

3

)

−
(

n− ℓ

1

)

·
(

ℓ

2

)

−
(

n− ℓ

2

)

·
(

ℓ

1

)

>

(

ℓ

3

)

+

(

n− ℓ

1

)

·
(

ℓ

2

)

+

(

n− ℓ

2

)

·
(

ℓ

1

)

,

from which we derive
(

n
3

)

> 2

((

ℓ

3

)

+

(

n− ℓ

1

)

·
(

ℓ

2

)

+

(

n− ℓ

2

)

·
(

ℓ

1

))

(4)

as a necessary and sufficient condition for the majority rule
decision to succeed atA.

Table 1 depicts the minimum number of neighbors for
a given number of liars. The table can be derived as fol-
lows. If ℓ = 1 then

(

ℓ
3

)

=
(

ℓ
2

)

= 0 and Inequality 4 can be
simplified ton > 6, which meansA can determine a correct

1We use the standard convention for binomial coefficients that
(s

t

)

= 0
whens < t.

Number of Liars Min Number of Neighbors
ℓ = 1 n = 7
ℓ = 2 n = 11
ℓ = 3 n = 16
ℓ = 4 n = 21

Table 1. Minimum number of neighbors re-
quired for a node to determine its correct lo-
cation (using Algorithm 1) in the presence of
ℓ liars in its neighborhood.

location in the presence of a liar if it has at least 7 neigh-
bors. If ℓ = 2 then

(

ℓ
3

)

= 0,
(

ℓ
2

)

= 1 and Inequality 4 can
be simplified ton(n−1)/6 > 2(1+(n−3)), which in turn

is equivalent ton > 13+
√

75
2 . This means thatA can deter-

mine a correct location in the presence of two liars if it has
at least 11 neighbors. More generally, ifℓ ≥ 3 then cum-
bersome but elementary calculations show that Inequality 4
can be simplified to the following inequality:

n3−3(2ℓ+1)n2 +2(3ℓ2 +6ℓ+1)n− (2ℓ3 +6ℓ2 +4ℓ) > 0. (5)

Plotting inequality 5 (cf. Figure 3) we can obtain that
for ℓ = 3 liars the minimum number of neighbors must be
at least 16, and forℓ = 4 at least 21.

Figure 3. Plotting inequality 5 when ℓ = 3 (left
diagram) and ℓ = 4 (right diagram) in the left-
hand side of Inequality 5 is set to 0.

3.2 Use of Two Neighbor Signals

Suppose now that sensorA uses only the radio-location sig-
nals of two neighbors and therefore the correct location is
one of the two points of intersection of two circles cen-
tered atA. The whole process is described in Algorithm 2.
By using this algorithm, sensorA computes for every two
neighborsBi,B j ∈N1(A) the pair of points{X ,X ′} obtained
from the intersection of the two circles centered atBi,B j and

4

Figure 6. Plotting the minimum neighborhood
size n as a function of the number of liars ` so
as to guarantee that inequality (5) is true for
` = 3 (left diagram) and ` = 4 (right diagram).

We can, therefore, affirm that inequality (5) gives the neces-
sary and sufficient upper bound on the number n of neigh-
bors of a location-unaware node so that it can compute a
correct and unique position despite the presence of ` liars of
any model call in its neighborhood. �

Algorithm 2 Majority-TwoNeighborSignals
1: Sensor A requests the location of its neighbors.
2: Every sensor neighbor of A sends its location to A.
3: For each pair p of neighbors Bi,B j ∈N1(A), A computes

(xp,yp),(x′p,y
′
p).

// The locations computed are the two points of
// intersection of the two circles centered at Bi,B j

// with radii d(A,Bi) and d(A,B j), respectively.
4: A calculates the frequencies of occurrence of each po-

sition and accepts the position that has majority. It
reports the nodes lying about the resulting position.
// If there is no consensus, then A aborts the process, and
// declares that it fails to compute its location.

Improving the Previous Approach

Algorithm 2 describes a process in which a sensor A uses
only the radiolocation signals of two neighbors to derive its
position. The correct location is one of the two points of
intersection of two circles centered at these two neighbors.
To handle the existence of neighboring liars, sensor A
computes for every two neighbors Bi,B j ∈ N1(A) a pair of
locations {X ,X ′}. The pair {X ,X ′} of locations is obtained
from the intersection of the two circles centered at Bi,B j,
with radii d(A,Bi),d(A,B j), respectively. As depicted in
Figure 7, the correct location of sensor A is either X or X ′.
A uses the majority rule to determine the most plausible
position and to report nodes that lied about their location or
distances.

X 

Bi 

Bj 

1 

X’ 

Figure 7. Sensor A applying Algorithm 2.

Theorem 2 The execution of the majority rule in Algo-
rithm 2 by a location-unaware sensor node always gives the
correct position in the presence of any ` liars if the number

of its distance one neighbors exceeds 4`+1+
√

8`2+17
2 .

Proof In the presence of ` liars applying any of the ad-
versary models defined in Section 2.2, and given n one hop
neighbors, the majority rule in Algorithm 2 succeeds if the
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number of correct pairs of locations is bigger than the num-
ber of incorrect pairs of locations. We assume the strongest
adversary model (i.e., Unconstrained Liars), in which liars
can eavesdrop the communications from, at least, two truth
tellers — say nodes B1 and B2. Therefore, a pair of loca-
tions is correct if it is determined by any two truth tellers
other than B1 and B2; otherwise, it is (possibly) incorrect.
Consider all pairs of (possibly) incorrect locations. Such
pairs can have either

1. exactly the two sensor nodes whose communications
were eavesdropped, or

2. both sensors are liars, for a total of
(`

2

)
pairs, or

3. exactly one sensor is a liar, for a total of
(n−`

1

)
·
(`

1

)
pairs.

The majority rule in Algorithm 2 therefore succeeds if the
following inequality is satisfied(

n
2

)
> 2

[
1+

(
`

2

)
+

(
n− `

1

)
·
(

`

1

)]
(6)

Number of Liars Min Number of Neighbors
` = 1 n = 6
` = 2 n = 9
` = 3 n = 12
` = 4 n = 15
` = 5 n = 18
` = 10 n = 35
` = 15 n = 52
` = 20 n = 69

Table 2. Minimum number of location-aware
neighbor nodes required for a location-
unaware node to determine a correct pair of
locations (using Algorithm 2) in the presence
of ` liars applying any of the adversary mod-
els defined in Section 2.2.

Table 2 depicts the required minimum number of neighbors
for a given number of any ` liars. The table is derived as fol-
lows. If ` = 1 then

(`
2

)
= 0 and Inequality 6 becomes n > 5,

which means A can determine a correct pair of locations if it
has at least 6 neighbors. If ` = 2 then

(`
2

)
= 1 and Inequal-

ity 6 becomes n > 9+
√

49
2 . More generally, when `≥ 3 then

Inequality 6 can be simplified as the following inequality

n2− (4`+1)n+2`2 +2`−4 > 0.

Solving the corresponding quadratic equation, we see that

n >
4`+1+

√
8`2 +17

2
(7)

is a necessary and sufficient condition on the number n of
neighbors of A so that it can compute a correct pair of loca-
tions despite the presence of ` liars in its neighborhood. �

Theorem 3 A location-unaware sensor node always de-
rives a unique position from the execution of Algorithm 2
in the presence of ` liars if the number of its distance one
neighbors exceeds 2`+2.

B4 

B3 
X 

B1 

B2 

1 

X’ 

B5 

Figure 8. Resolving the ambiguity in the pair
of locations computed by Algorithm 2

Proof Assume that A knows there is exactly one liar
among its n neighbors. Assuming that n = 5, we can use
Algorithm 2 to determine a correct pair of locations, say
{X ,X ′}. Then, the next step is to identify the correct loca-
tion which must be either X or X ′. Since A has exactly 5
neighbors, in which only one is a liar, the remaining four
must be truth tellers. However, already two sensors con-
tributed to the correct pair {X ,X ′}. Let us assume that they
are the first and second nodes, i.e., nodes B1 and B2. This
leaves us the three sensors B3,B4,B5, out of which a liar
must be excluded (cf. Figure 8). Among these three sensors
only one is a liar, while the other two point to the correct an-
swer. Therefore using a majority rule among the remaining
sensors we can exclude the liar’s location and identify the
correct location of sensor A among X and X ′.

A similar argument would work for any number ` of liars
provided that the number of A’s neighbors is sufficiently
high. The previous argument indicates that sensor A can
resolve the ambiguity and exclude the liars by adding the
following steps at the end of Algorithm 2:

5: A selects any two sensors that give a correct pair of
locations in Step 4.

6: A identifies its correct location using the majority rule
among the sensors remaining after removing the two
correct neighbors identified in Step 5.

7: A reports the nodes that did not correlate the proper
location.
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It is easy to show the correctness of the procedure. In-
deed, sensor A identifies a pair of sensors among the ones
that give the correct pair of locations after the execution of
Algorithm 2. After removing these two neighbors, A is left
with the remaining n−2. Clearly, the ` liars must be among
these n− 2 sensors. Therefore, if there is majority of truth
tellers among these n−2 nodes, then the majority rule iden-
tifies the correct location for A between X and X ′, i.e., if

n−2 > 2`. (8)

However, if n satisfies Inequality 7 then it must also satisfy
Inequality 8. The reason is that

4`+1+
√

8`2 +17
2

> 2`+2,

as the reader can easily check. �

Using Most Frequent Rule

Based on our previous result (cf. Inequality 8), and assum-
ing the use of a most frequent rule instead of the majority
rule, we present in Algorithm 3 an alternative process that
allows a location-unaware node A to find its correct position
with a weaker constraint between the number of neighbors
and the number of liars nodes.

Algorithm 3 MostFrequent-TwoNeighborSignals
1: Sensor A requests the location of its neighbors.
2: Every sensor neighbor of A sends its location to A.
3: For each pair p of neighbors Bi,B j ∈N1(A), A computes

(xp,yp),(x′p,y
′
p).

// The locations computed are the two points of
// intersection of the two circles centered at Bi,B j

// with radii d(A,Bi) and d(A,B j), respectively.
4: A calculates the frequencies of occurrence of each po-

sition, accepts as correct the most frequently occur-
ring value, and reports the nodes lying about it.
// If there is no any position whose frequency of
// occurrence is, at least, twice the frequency of
// occurrence of the second most frequent position,
// then A aborts the process, and declares failure to
// compute its location.

Table 3 compares the minimum number of neighbors
and number of liars to satisfy the most frequent rule in
Algorithm 3 for each adversary model.

In the sequel, we provide sufficient conditions to derive the
values contained in the table.

Theorem 4 The execution of the most frequent rule in
Algorithm 3 by a location-unaware sensor node always
gives the correct position in the presence of ` liars applying
the first model (Unconstrained Liars) if the number of its
distance one neighbors exceeds 2`+2.

# of Liars Min # of Neighbors
Model 1 Model 2 Model 3 Model 4

` = 1 n = 5 n = 4 n = 4 n = 4
` = 2 n = 7 n = 6 n = 6 n = 5
` = 3 n = 9 n = 8 n = 7 n = 6
` = 4 n = 11 n = 10 n = 9 n = 7
` = 5 n = 13 n = 12 n = 11 n = 8
` = 10 n = 23 n = 22 n = 21 n = 13
` = 15 n = 33 n = 32 n = 31 n = 18
` = 20 n = 43 n = 42 n = 41 n = 23

Table 3. Comparison of minimum number of
neighbors required for a node to determine a
correct location (using the most frequent rule
defined in Algorithm 3) in the presence of `
liars applying the set of adversary models de-
fined in Section 2.2.

Proof In the presence of ` liars applying the first model
(Unconstrained Liars), the most frequent rule in Algo-
rithm 3 succeeds if the number of pairs pointing to the cor-
rect location (i.e., the

(n−`
2

)
pairs where both nodes are truth

tellers) is bigger than the number of incorrect pairs pointing
to the most frequent false position. The most frequent false
position can be derived from those pairs that have either

1. exactly the two truth tellers whose communications are
eavesdropped by the ` liars, for a total of one pair, or

2. exactly one liar and one of the two truth tellers whose
communications are eavesdropped, for a total of 2`
pairs, or

3. exactly two liars, for a total of
(`

2

)
pairs.

This amounts to having(
n− `

2

)
> 1+2`+

(
`

2

)
as a necessary and sufficient condition for the most frequent
rule to succeed at A. Solving the corresponding quadratic
equation, the previous inequality can be simplified as

n >
2`+1+

√
(2`+3)2

2
= 2`+2

as a necessary and sufficient condition for the most frequent
rule to succeed at the correct position. �

Theorem 5 The execution of the most frequent rule in
Algorithm 3 by a location-unaware sensor node always
gives the correct position in the presence of ` liars applying
the second adversary model (Partially Constrained Liars)
if the number of its distance one neighbors exceeds 2`+1.
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Proof In the presence of ` liars applying the second model
(Partially Constrained Liars), the most frequent rule in Al-
gorithm 3 succeeds if the number of correct pairs of loca-
tions (i.e., the

(n−`
2

)
pairs where both nodes are truth tellers)

is bigger than the pairs that have either

1. exactly one liar and the truth teller whose communica-
tions are eavesdropped, which gives a total of ` pairs,
or

2. both sensors liars, which gives a total of
(`

2

)
pairs.

Algorithm 3, therefore, succeeds if(
n− `

2

)
> `+

(
`

2

)
is satisfied. It can be simplified as

n >
2`+1+

√
(2`+1)2

2
= 2`+1

as a necessary and sufficient condition for the most frequent
rule to succeed at the correct position. �

Theorem 6 Given n one hop neighbors and ` liars apply-
ing the third adversary model (Fully Constrained Liars).
The execution of the most frequent rule in Algorithm 3
by a location-unaware sensor requires n > ` + 2 distance
one hop neighbors when ` = 1; and n > 2` distance one
neighbors when ` > 1.

Proof In the presence of ` liars applying the third model,
the most frequent rule in Algorithm 3 succeeds if the num-
ber of correct pairs is bigger than the number of incorrect
pairs where exactly both nodes are liars, i.e., if the follow-
ing inequality is satisfied(

n− `

2

)
>

(
`

2

)
(9)

The case of ` = 1, and so
(`

2

)
= 0 represents an exception,

since even in the case of a single liar, the number of correct
pairs must bigger than one. In this case, we assume that
Inequality 9 must be replaced by(

n− `

2

)
> 1

which can be simplified as

n >
2`+1+

√
9

2
= `+2

as a necessary and sufficient condition for the most frequent
rule to succeed at the correct position when ` = 1.

Otherwise, when ` > 1, Inequality 9 is just simplified as

n >
2`+1+

√
(2`−1)2

2
= 2`

as a necessary and sufficient condition for the most frequent
rule to succeed at the correct position. �

Theorem 7 The execution of the most frequent rule in Al-
gorithm 3 by a location-unaware sensor node always gives
the correct position in the presence of ` liars according
to the fourth adversary model (Unintentional Liars) if the
number of its distance one neighbors exceeds `+2.

Proof In the presence of ` liars applying the fourth model
(Unintentional Liars), the most frequent rule in Algorithm 3
always succeeds in computing the correct location if the
number of correct pairs is, at least, twice the frequency of
occurrence of the second most frequent position. Since liars
modeling this last case scenario do not collude, it suffices to
satisfy the following inequality:(

n− `

2

)
> 1

Solving the corresponding quadratic equation, the previous
inequality can be simplified as

n >
2`+1+

√
9

2
= `+2

as a necessary and sufficient condition for the most frequent
rule to succeed at the correct position. �

3.2 Positioning with One Trusted Node

We relax now our initial hypotheses. We suppose, in ad-
dition to the assumptions defined in Section 2.1, that any
target A in the system may always trust exactly one of the
nodes in its distance one neighborhood, say node B1. We
adapt Algorithms 1, 2, and 3 to the positioning processes
defined in Algorithms 4, 5, and 6. Following is the analysis.

Majority Rule plus One Trusted Node

Algorithms 4 and 5 define the use of a majority rule to
enable location-unaware nodes to determine their position
in presence of liars. The upper bounds of these two algo-
rithms for all the adversary models is analyzed in the sequel.

Theorem 8 The execution of the majority rule in Algo-
rithm 4 by a location-unaware sensor node always gives the
correct position in the presence of any ` liars if the number

of its distance one neighbors exceeds 4`+3+
√

8`2+1
2 .
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Proof Given n one hop neighbors and the presence of `
liars applying any adversary model, consider from all pos-
sible triples of sensors for every two neighbors Bi,B j plus
the trusted node B1 (i.e., a total of

(n−1
2

)
triples) such that at

least one of the sensors in the triple is a liar. Such a triple
can have in each case either

1. exactly two liars, which gives a total of
(`

2

)
triples, or

2. exactly one liar (and the other two, say B1 plus Bi are
truth tellers), which gives a total of

(n−1−`
1

)
·
(`

1

)
triples.

A location that is determined by A is correct if it is pro-
vided by three truth tellers; otherwise it is (possibly) incor-
rect. Therefore, the majority rule in Algorithm 4 will suc-
ceed at A if(

n−1
2

)
> 2

[(
`

2

)
+

(
n−1− `

1

)
·
(

`

1

)]
(10)

as a necessary and sufficient condition for the majority rule
decision to succeed at A.

Inequality 10 can be simplified as the following inequality

n2− (3+4`)n+2`2 +6`+2 > 0.

Solving the corresponding quadratic equation, we see that

n >
4`+3+

√
8`2 +1

2
(11)

is a necessary and sufficient condition on the number of
neighbors of A so that it can compute a correct location de-
spite the presence of any ` liars in its neighborhood. �

Algorithm 4 Majority-ThreeNeighborSignals-plus-One-
Trusted-Neighbor

1: Sensor A requests the location of its neighbors.
2: Every neighbor of A sends its location to A.

// This algorithm is executed by all the neighbors of A.
3: For each triple t of neighbors B1,Bi,B j ∈N1(A), A com-

putes (xt ,yt).
// (xt ,yt) is the point of intersection of the three circles
// centered at B1,Bi,B j and with radii d(A,B1),
// d(A,Bi), and d(A,B j).

4: A accepts the majority as its location, and reports the
nodes lying about the resulting position.
// if there is no consensus, then A aborts the process,
// and declares that it fails compute its location.

Theorem 9 The execution of the majority rule in Algo-
rithm 5 by a location-unaware sensor node always gives
the correct position in the presence of ` liars applying any
adversary model if the number of its distance one neighbors
exceeds 2`+3.

Algorithm 5 Majority-TwoNeighborSignals-plus-One-
Trusted-Neighbor

1: Sensor A requests the location of its neighbors.
2: Every neighbor of A sends its location to A.

// This algorithm is executed by all the neighbors of A.
3: For every neighbor Bi other than B1, A computes the

pair of points {X ,X ′}.
// The locations computed are the two points of
// intersection of the two circles centered at B1,Bi

// with radii d(A,B1) and d(A,Bi), respectively.
4: A calculates the frequencies of occurrence of each posi-

tion, accepts as correct the position that has major-
ity, and reports the nodes that did not correlate such
a position.
// If there is no consensus, then A aborts the process,
// and declares that it fails to compute its location.

Proof Algorithm 5 only computes one pair of positions
for every neighbor Bi other than the trusted node B1. This
amounts to having

(n−1
1

)
pairs of locations, from which

(`
1

)
,

are (possibly) incorrect. Algorithm 5 therefore succeeds at
A if (

n−1
1

)
−

(
`

1

)
>

(
`

1

)
from which we derive(

n−1
1

)
> 2

[(
`

1

)]
(12)

Inequality 12 can be simplified as

n > 2`+1

Notice, however, that this upper bound is inferior to the
bound obtained in Section 3.1, Theorem 4, in which we
proved that in the worst case scenario of liars applying the
adversary model 1, there are exactly 2` + 2 potential false
positions. We should, therefore, consider here again that
liars are capable of eavesdropping the communications from
B1 and, at least, another truth teller, say B2. In this case,
from all

(n−1
1

)
pairs of positions, we must also discard the

pair containing nodes B1 and B2. If so, the majority rule in
Algorithm 5 therefore succeeds if(

n−1
1

)
−1−

(
`

1

)
> 1+

(
`

1

)
from which we derive

n > 2`+3

as a necessary and sufficient condition for the majority rule
decision to succeed at A. �
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Most Frequent Rule plus One Trusted Node

Algorithm 6 defines the use of a most frequent rule to enable
location-unaware nodes to determine their position in pres-
ence of liars. The upper bounds for each adversary model
differ. Following is the analysis.

Theorem 10 The execution of the most frequent rule in
Algorithm 6 by a location-unaware sensor node always
gives the correct position in the presence of ` liars applying
in the system adversary models 1, 2, 3, and 4, if the number
of its distance one neighbors exceeds, respectively, 2`+ 2,
2`+1, `+2, and `+2.

Proof The most frequent rule in Algorithm 6 always suc-
ceeds in the first adversary model (Unconstrained Liars) if
the number of correct pairs of locations (i.e., n− 1− `)
is greater than the number of incorrect pairs of locations.
We assume in this adversary model that liars are capable
of eavesdropping the communications between the trusted
node B1 and, at least, another truth teller, say node B2. They
can, therefore, collude to lead A to compute ` + 1 incor-
rect, but consistent, pairs of locations: the false position is
contained, at least, in the pair {B1,B2}; and in the ` pairs
composed by B1 and each of the ` liars. We can, therefore,
derive the following upper bound

n−1− ` > `+1

which can be simplified as n > 2`+2.

In the second adversary model (Partially Constrained), liars
can only eavesdrop, at most, the communications between
the trusted node and the target. Liars colluding can only
successfully lead A to compute ` times a false position that

Algorithm 6 MostFrequent-TwoNeighborSignals-plus-
One-Trusted-Neighbor

1: Sensor A requests the location of its neighbors.
2: Every neighbor of A sends its location to A.

// This algorithm is executed by all the neighbors of A.
3: For every neighbor Bi other than B1, A computes the

pair of points {X ,X ′}.
// The locations computed are the two points of
// intersection of the two circles centered at B1,Bi

// with radii d(A,B1)andd(A,Bi), respectively.
4: A calculates the frequencies of occurrence of each po-

sition, accepts as correct the most frequently occur-
ring value, and reports the nodes that did not corre-
late such a position.
// If there is no any position whose frequency of
// occurrence is, at least, twice the frequency of
// occurrence of the second most frequent position,
// then A aborts the process, and declares failure
// to compute its location.

is, however, consistent with node B1. The most frequent
rule in Algorithm 6 always succeeds in these two cases if
inequality n−1− ` > `, i.e., n > 2`+1, is satisfied.

Liars applying the third adversary model (Fully Constrained
Liars) cannot eavesdrop communications. They cannot col-
lude either, since no two liars can now appear together in
any pair of positions. Therefore, the upper bound of Algo-
rithm 6 in the presence of liars applying the third model is
equivalent to the upper bound of Algorithm 6 in the presence
of liars applying the fourth model (Unintentional Liars), i.e.,
liars that neither collude nor eavesdrop the communications
with the trusted node. The most frequent rule in these two
cases succeeds if n−1− ` > 1, i.e., n > `+2 is satisfied. �

3.3 Comparison of Results

The scenario presented in Section 3.2 only improves
the bounds for satisfying the majority rule in Algo-
rithms 4 and 5 that, compared with the ones of Algo-
rithms 1 and 2, get lower. Table 4 compares the minimum
number of neighbors to satisfy the majority rule in Algo-
rithms 1, 2, 4, and 5 to succeed in the presence of ` liars
applying any of the adversary models defined in Section 2.2.

Majority Rule in Algorithms. 1, 2, 4, and 5
# of Liars Min # of Neighbors

Alg. 1 Alg. 4 Alg. 2 Alg. 5
` = 1 n = 7 n = 6 n = 6 n = 6
` = 2 n = 11 n = 9 n = 9 n = 8
` = 3 n = 16 n = 12 n = 12 n = 10
` = 4 n = 21 n = 16 n = 15 n = 12
` = 5 n = 26 n = 19 n = 18 n = 14
` = 10 n = 31 n = 36 n = 35 n = 24
` = 15 n = 74 n = 53 n = 52 n = 34
` = 20 n = 98 n = 70 n = 69 n = 44

Table 4. Comparison of the minimum number
of neighbors required for the majority rule in
Algorithms 1, 2, 4, and 5 to succeed in the
presence of ` liars applying any of the adver-
sary models defined in Section 2.2.

Notice, however, that the rest of bounds for satisfying the
most frequent rule in Algorithm 6 remain exactly the same
as that for Algorithm 3. Only the case of the third adversary
model (Fully Constrained Liars) changes. In fact, liars ap-
plying the third adversary model in this new scenario lose
their capability of colluding with other liars, and their up-
per bound gets reduced to the same limit that also applies
to the fourth adversary model (Unconditional Liars). We
show in Table 5 a comparison between the minimum num-
ber of neighbors to satisfy the most frequent rule in Algo-
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rithms 3 and 6 to succeed in the presence of ` liars applying
any of the adversary models defined in Section 2.2.

Most Frequent Rule in Algorithm 3
# of Liars Min # of Neighbors

Model 1 Model 2 Model 3 Model 4
` = 1 n = 5 n = 4 n = 4 n = 4
` = 2 n = 7 n = 6 n = 6 n = 5
` = 3 n = 9 n = 8 n = 7 n = 6
` = 4 n = 11 n = 10 n = 9 n = 7
` = 5 n = 13 n = 12 n = 11 n = 8
` = 10 n = 23 n = 22 n = 21 n = 13
` = 15 n = 33 n = 32 n = 31 n = 18
` = 20 n = 43 n = 42 n = 41 n = 23

Most Frequent Rule in Algorithm 6
# of Liars Min # of Neighbors

Model 1 Model 2 Model 3 Model 4
` = 1 n = 5 n = 4 n = 4 n = 4
` = 2 n = 7 n = 6 n = 5 n = 5
` = 3 n = 9 n = 8 n = 6 n = 6
` = 4 n = 11 n = 10 n = 7 n = 7
` = 5 n = 13 n = 12 n = 8 n = 8
` = 10 n = 23 n = 22 n = 13 n = 13
` = 15 n = 33 n = 32 n = 18 n = 18
` = 20 n = 43 n = 42 n = 23 n = 23

Table 5. Comparison of minimum number of
neighbors required for a node to determine a
correct location (using Algorithms 3 and 6) in
the presence of ` liars.

4 Simulations

We conducted simulations to confirm that our algorithms in-
crease the percentage of nodes that can derive their location
in an arbitrary WSN under the presence of liars. We as-
sume that m sensors are located in a random setting whereby
they were distributed randomly and uniformly within a unit
square. We also assume that the communication range of
each sensor is a circle centered at its position and of radius

r =
√

lnm+k ln lnm+ln(k!)+c
mπ

as proposed in [3]. Parameter m
determines the number of nodes in the network. Parameter
k determines the network connectivity. A network is k + 1-
connected if it remains connected when at most k nodes are
deleted (i.e., connected corresponds to k = 0). The con-
stant c determines the probability that the network is k + 1-
connected with probability depending on c (cf. [3] and ci-
tations thereof). The network is therefore (k+1)-connected
for any integer k ≥ 0 and real number constant c. Our simu-
lations assume that both k and c are set to value 1.

We run two sets of simulations. The first set represents 50
to 250-sensor WSNs, where an average of 30% of the sen-

sor nodes are GPS equipped and can determine their posi-
tion independently of other sensors. From these 30% sensor
nodes, a 3% lie. The remainder sensors, which are unaware
of their position, independently execute on each experiment
the set of algorithms defined in Section 3 to derive their po-
sitions. For each generated WSN, location-unaware nodes
request the locations of their neighbors and apply, depend-
ing on each specific simulation, Algorithms 1 to 6. For each
simulation, if an unaware nodes fails at deriving its location,
it holds its execution, and repeats the same algorithm later,
expecting that the number of neighbors aware of their loca-
tion increases. This process runs for 100 times for each net-
work size. Figures 9(a)—(d) picture the average results and
the 95% confidence intervals of executing Algorithms 1— 6
in this first round of experiments. Each Algorithm is iden-
tified in the figures by their corresponding boundaries for
handling the different adversary models. Table 6 recalls the
upper bounds of each algorithm to handle the set of adver-
sary models. The variable n is the number of distance one
hop neighbors, and ` the number of liars, where ` > 2.

Algorithm Adv. Model Upper Bound
1 1–4 n3 − 3(2` + 1)n2 + 2(3`2 + 6` + 1)n −

(2`3 +6`2 +4`) > 0

2 1–4 n > (4`+(8`2 +17)1/2 +1)/2

3 & 6

1 n > 2`+2

2 n > 2`+1

4 n > `+2

3 3 n > 2`

4 1–4 n > (4`+(8`2 +1)1/2 +3)/2

5 1–4 n > 2`+3

6 3 n > `+2

Table 6. Summary of boundaries for each al-
gorithm vs. adversary models.

The results plotted in Figures 9(a)—(d) are presented by
ordering the curves in decreasing order of sensors aware
of their position after running the algorithms. Notice that
the execution of all six algorithms significantly increases
the number of sensors aware of their position in this first
round of simulations. The execution of the most frequent
rule in Algorithms 3 and 6 presents the most relevant results:
approximately a 75% of location aware nodes in the 100-
sensor networks; more than 80% in the 150 to 200-sensor
networks; and almost 90% in the 250-sensor networks. The
differences between these results and those obtained by ex-
ecuting the majority rules of Algorithms 1, 2, 4, and 5 are,
however, quite low. The execution of the majority rule in
all four algorithms results in, approximately, a 70% of loca-
tion aware nodes in the 100-sensor networks; about 75% in
the 150 to 200-sensor networks; and almost 80% in the 250-
sensor networks. This low improvement, of about 5%, when
executing the majority or the most frequent rule is due to the
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(a) Most frequent rule in Algorithms 3 and 6, for adversary models 3 and 4
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(b) Most frequent rule in Algorithms 3 and 6, for adversary models 1 and 2
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(c) Majority rule in Algorithms 4 and 5, for all four adversary models
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(d) Majority rule in Algorithms 1 and 2, for all four adversary models
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(e) Most frequent rule in Algorithms 3 and 6, for adversary models 3 and 4
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(f) Most frequent rule in Algorithms 3 and 6, for adversary models 1 and 2
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(g) Majority rule in Algorithms 4 and 5, for all four adversary models
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(h) Majority rule in Algorithms 1 and 2, for all four adversary models

n > (4ℓ+(8ℓ
+17)1/2+1)/2

n3-3(2ℓ+1)n2+2(3ℓ
+6ℓ+1)n+(2ℓ

+6ℓ
+4ℓ) > 0

GPS
Liars

Figure 9. Evaluation of the upper bounds.
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low percentage of liars in the neighborhood. The low ratio
of liars explains, moreover, the low benefits of using trusted
nodes in the neighborhood while comparing the results of
Algorithms 1, 2 with those of Algorithms 4, and 5.

In the second set of simulations, the same layout of GPS
equipped nodes (i.e., approximately a 30% for each net-
work) applies. The number of liars increases to a 15%.
Figures 9(e)—9(h) pictures the average results and the 95%
confidence intervals. The resulst are presented by ordering
the curves in decreasing order of sensors aware of their po-
sition after running the algorithms. Notice that the differ-
ences between the application of the majority rule in Algo-
rithms 1, 2, 4, and 5, compared with the application of the
most frequent rule in Algorithms 3, and 6, are quite impor-
tant. While the use of the most frequent argument results in
more than 45% of location aware nodes in the 100-sensor
networks, and between 50% to 60% in the remainder net-
works; the use of the majority argument almost remains sta-
ble between 35% to 40% for the same setups. And the use
of one trusted node in the neighborhood does not seem to
provide a very representative increment. By looking at the
boundaries shown in Table 6 for Algorithms 3 and 6 we can
observe, moreover, that the use of one trusted node in the
neighborhood does never have a significant improvement
in the use of the most frequent argument. We, therefore,
conclude that the use of frequencies of occurrence by Algo-
rithm 3 will always provide the best possible results.

5 Related Works

Research in the field of the security of WSNs is very ac-
tive at this moment. We can structure the current research
lines according to the following themes: (1) security of net-
work services (2) reliability and fault tolerance; (3) security
of the infrastructure; (4) distribution and exchange of keys;
and (5) aggregation of data. The contributions presented in
this paper are related to the category security of network ser-
vices and, particularly, to issues related to the routing, loca-
tion and synchronization of WSN nodes. The problem of lo-
calization in the absence of misbehaving nodes has already
been studied in [14, 4, 9, 3]. Most of these approaches base
their discovery process on the use and evaluation of dis-
tances techniques such as Received Signal Strength (RSS)
and Time of Flight (ToF) [2].

Some more recent approaches propose solutions to the
problem of handling secure location of nodes in the pres-
ence of misbehaving sensors. Most of these approaches are
based on models where there are almost always nodes that
must be trusted by the rest of the regular sensors. In [11, 12],
we can find some initial work based on this approach. In
these proposals, each regular sensor trying to derive its po-
sition proceeds by correlating the messages received from
other nodes in the WSN that already are aware of their po-
sition (by using, for instance, GPS devices [3]). The use of
directional antennas is proposed to improve the security of

the localization process. A second solution relies on the use
of trust metrics and verifiers [5, 6]. The closest works to
ours are the approaches presented in [7, 10]. Both proposals
aim at providing a secure location process without the ne-
cessity of a priori trust between the nodes of a WSN. The
limitation of only giving stochastic guarantees in [10], and
the high quantity of messages to exchange in both [7] and
[10], of O(n2) complexity, are the main drawbacks of these
approaches.

6 Conclusions

We presented six algorithms that handle the positioning
process of location-unaware nodes in the presence of
liars. The algorithms guarantee the exclusion of incorrect
locations, as well as the detection and isolation of the
nodes that are lying, if a given threshold of neighbors and
liars is met. Otherwise, the algorithms abort the process
of deriving the location, and wait to repeat the process
again when such parameters can be guaranteed. The three
first algorithms allow the localization process without the
necessity of a trusted model between sensors. The three
last algorithms relax the initial hypothesis, requesting
location-unaware sensors to trust one of the nodes in
their one hop neighborhood. Just the boundaries of the
algorithms based on the majority rule slightly improve the
results by assuming the presence of the trustee node. The
boundaries of the algorithms based on the most frequent
rule remain stable and provide, moreover, the best results.
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