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Positioning tolerances for phase plates
compensating aberrations of the human eye

Salvador Bará, Teresa Mancebo, and Esther Moreno-Barriuso

The positioning tolerances for phase plates used to compensate human eye aberrations are analyzed.
Lateral displacements, in-plane rotations, and axial translations are considered, describing analytic and
numerical procedures to compute the maximum degree of compensation achievable in each case. The
compensation loss is found to be dependent both on the kind and the amount of misalignment and on the
particular composition of the aberration pattern of each subject in terms of Zernike polynomials. We
applied these procedures to a set of human eye aberrations measured with the laser ray-tracing method.
The general trend of results suggests that lateral positioning, followed by angular positioning, are the key
factors affecting compensation performance in practical setups, whereas axial positioning has far less
stringent requirements. © 2000 Optical Society of America
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1. Introduction

In recent years we have witnessed a growing interest
in techniques for measuring and compensating the
wave aberrations of the human eye beyond classical
ametropia. The efficient correction of those aberra-
tions opened exciting fields of applications, among
them the improvement of visual acuity and the in
vivo high-resolution imaging of the mosaic of photo-
eceptors in the retina; it can be anticipated that they
ill likely allow for other relevant breakthroughs in
cular correction and vision science.
All compensating procedures make use of some

kind of optical element encoding a phase conjugated
to the wave aberration of the eye. Different technol-
ogies have been proposed and implemented to man-
ufacture those correcting elements. A partial
compensation of specific eye aberrations, e.g., third-
order spherical and coma, has been performed with
radially symmetrical lenses.1,2 Compensation of the
wave aberration, not restricted to specific Seidel
terms, has been reported with use of deformable mir-
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rors and also liquid-crystal spatial light modula-
tors.5,6 Recently, a novel technique for designing
and fabricating general compensating phase plates
by single-mask photosculpture of photoresist has
been demonstrated.7,8 In this technique the desired
phase is encoded as a continuous refractive profile of
photoresist on a glass substrate, with high spatial
resolution, low cost, and good reproducibility. The
reported results showed ;80% aberration compensa-
tion both in an artificial and a living eye.

A key factor for achieving the optimum degree of
compensation is the proper positioning of the correct-
ing element in the reference frame for which it was
designed, usually coincident with a conjugate of the
eye’s pupil. However, in any experimental setup
some misalignments can occur, reducing in this way
the performance of the compensating system.

In this paper we study the loss of compensation
suffered when a well-matched ocular correcting plate
is displaced ~either axially or transversally! or ro-
tated with respect to its reference position. Al-
though we will specifically refer to refractive plates
like those described in Refs. 7 and 8, the calculation
procedures and overall results reported here are
applicable—directly or with few modifications—to
most of the compensating elements proposed to date.
They represent an upper limit for the expected per-
formance of a misaligned system and provide proce-
dures to evaluate positioning tolerances for practical
cases.

As expected, the compensation loss is dependent on
the specific aberration pattern of each subject as well
1 July 2000 y Vol. 39, No. 19 y APPLIED OPTICS 3413
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as on the amount and the type of misalignment. To
get insight about the magnitude and the behavior of
this dependence for human eyes, the general expres-
sions derived here were applied to the ocular aberra-
tions of several subjects measured in vivo with the
laser ray-tracing technique.9,10 The results show
that transversal positioning is a critical parameter to
be controlled carefully in any compensation setup,
whereas slightly less stringent requirements affect
both in-plane rotations and axial displacements.

In Section 2 we present the main assumptions of
the model used to evaluate the compensation loss.
In Section 3 the effects of lateral displacements are
evaluated. Section 4 deals with angular misalign-
ments that are due to in-plane rotations of the com-
pensating plate, whereas the somewhat more
complex analysis of axial displacements is described
in Section 5. The application of these results to ab-
erration data of the human eye is carried out in Sec-
tion 6.

2. Degree of Compensation

Let We~r! be the wave aberration of an eye, expressed
as a linear combination of Zernike polynomials,

We~r! 5 (
i51

M

aiZi~ryR!, (1)

where Zi~ryR! is the ith Zernike mode defined follow-
ing Ref. ~11!, R is the pupil radius, and M is the
number of modes included in the expansion of We~r!.

enceforth we will consider We~r! to be an optical
path length ~OPL! so that both We~r! and the modal
coefficients ai~i 5 1 , . . . , M! will be expressed in

nits of length. Note that in Ref. ~11! the Zernike
erms are defined such that the maximum value of
ny Zi at the pupil border equals 1; ai then represents

the maximum OPL deviation at the pupil rim asso-
ciated to each specific aberration with respect to the
reference wave front.

Let Wp~r! be the OPL introduced by a correcting
plate designed to compensate this aberration. We
assume that this plate can be treated as a thin optical
element whose role is to add a local phase retardation
to the incoming wave fronts. Since we are inter-
ested in studying the absolute upper limits of the
compensation performance after misalignment of
this plate, we will assume that it is free from manu-
facturing errors so that, when properly placed in the
compensating setup, we have Wp~r! 5 2We~r! for

oints inside the eye pupil. Throughout this study
e will assume that the compensating plates are fab-

icated by photosculpture of photoresist deposited
nto a wider transparent glass substrate so that

p~r! 5 0 ~or, in general, any constant value! for
oints lying outside the circular plate pupil ~r . R!.
In the case of misalignments the resulting wave

ront produced by the plate at the eye pupil will be
enoted by W9p~r!. The residual eye aberration after

compensation with this misaligned plate will then be

Wr~r! 5 We~r! 1 W9p~r!. (2)
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The degree of compensation is defined as

D 5 1 2 sryse, (3)

where

sr 5 F 1
pR2 * Wr

2~r!d2rG1y2

(4)

is the rms variance of the residual wave front and

se 5 F 1
pR2 * We

2 ~r!d2rG1y2

(5)

is the original rms eye aberration. The integral ex-
tends in both cases to the eye pupil area.

For a perfect compensation we have D 5 1,
hereas D 5 0 represents the original aberrated eye.

ntermediate values of D account for partial compen-
ation situations. Note that D can also take nega-
ive values, indicating a residual aberration higher
han the original aberration of the eye, a situation
hat can appear in cases of strong misalignment of
he compensating plates.

The Zernike polynomials can be normalized as12

Ẑi~ryR! 5 ciZi~ryR!, (6)

with ci [ cn,l 5 @~2 2 dl0!~n 1 1!#1y2 where n and l are
the radial and the azimuthal degrees, respectively, of
the ith polynomial and d is the Kronecker delta.
They then become orthonormal in the circle of radius
R obeying

1
pR2 * Ẑi~ryR!Ẑj~ryR!d2r 5 dij. (7)

Expanding We, W9p, and Wr in terms of the normalized
Zernike polynomials with coefficients âi, â9i, and âir,
respectively, we can write the degree of compensation
as

D 5 1 2 3(i51

M

~âi 1 â9i!
2

(
i51

M

âi
2 4

1y2

5 1 2 3(i51

M

âir
2

(
i51

M

âi
24

1y2

, (8)

where the normalized modal coefficients are related
to the nonnormalized ones @Eq. ~1!# by âi 5 ci

21 ai,
â9i 5 ci

21 a9i, âir 5 ci
21 air.

3. Lateral Displacements

The case of a lateral displacement d of the compen-
sating plate with respect to the center of the eye pupil
is schematically depicted in Fig. 1. The overlapping
region of the plate and eye pupils, P1, is partially
compensated @Wr~r! 5 We~r! 1 W9p~r!#, whereas the
region P2 remains totally uncompensated @Wr~r! 5
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We~r!#. The variance of the residual aberration is
hen given by

sr
2 5

1
pR2 *

P1

@We~r! 2 We~r 2 d!#2d2r

1
1

pR2 *
P2

We
2~r!d2r. (9)

For small displacements the integrand in P1 can be
expanded in powers of d, to obtain the residual wave
front as Wr~r! ' ¹We~r! z d. But even with this
approximation, when we evaluate analytically sr

2

with this expression, we face some difficulties that
are due to the shape of the borders of regions P1 and
P2. It turns out to be more advisable to evaluate Eq.
~9! directly by some numerical routine. Since, in
practice, the eye aberration is expanded up to a rel-
atively low radial and azimuthal degree ~say n, l 5 7,
with 35 Zernike terms!, a quite good evaluation of sr

2

can be done by means of computing the average
squared residual aberration in a sufficiently dense
grid of points ra~a 5 1 to N! as

sr
2 5 N21 (

a51

N

@We~ra! 1 Wp~ra!#
2, (10)

taking Wp~ra! 5 2We~ra 2 d! for points ra located
inside the eye pupil and zero otherwise.

Note that for most practical applications the piston
term of the original and the residual aberrations is not
relevant, and the tilt terms simply account for a lateral
translation of the images without affecting their over-
all quality. A lateral displacement of the correcting
plate will give rise, among other effects, to additional
tilt terms coming from the order-of-2 powers in We. If
ne is interested mainly in evaluating the degree of
ompensation of the aberrations relevant to influenc-
ng the image quality, both the global piston and tilts

Fig. 1. Laterally displaced correcting phase plate. We~r!, eye
berration; Wp~r!, plate OPL; P1, region of overlapping pupils; P2,
ncompensated eye pupil area.
can be excluded from the original and the residual
aberrations before one proceeds to evaluate D.

Finally, let us point out that the assumption of Wp~r!
5 0 for points with r . R represents a worst-case
situation, assuming that the correction plate compen-
sates only variable phases in a circular region with the
same size as the eye pupil. It seems possible in prin-
ciple to extend the plate transmittance function out-
side this region such that the aberration in the integral
P2 @Eq. ~9!# is at least partially compensated for a
certain range of lateral displacement. This possibil-
ity, however, is not studied here in detail.

4. In-Plane Rotations

The situation arising from in-plane rotations of the
compensating plate with respect to the eye pupil is
represented in Fig. 2, with the notation of Ref. ~11!.

he residual wave front in polar coordinates r 5 ~r, u!
is then given by

Wr~r, u! 5 We~r, u! 2 We~r, u 2 f! (11)

where f is the rotation angle. The degree of com-
pensation can be computed accurately in this case by
a finite sum from sr

2 as in Eq. ~10!. However, the
otational symmetry properties of the Zernike poly-
omials allow us to obtain an analytical formula for D

n terms of the normalized modal coefficients of the
riginal eye aberration âi.
To derive this formula, let us recall that the nor-

malized Zernike polynomials can be written as

Ẑi~ryR! ; Ẑn,l~ryR! 5 cn,lRn
l~ryR!Al~u!, (12)

where Rn
l is the radial part of Ẑn,l ~verifying Rn

l 5
Rn

2l! and Al~u! is the angular one, given by11

Al~u! 5 cos~lu!, l , 0

5 sin~lu!, l . 0

5 1, l 5 0. (13)

Fig. 2. In-plane rotated correcting phase plate.
1 July 2000 y Vol. 39, No. 19 y APPLIED OPTICS 3415
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The eye aberration can then be expressed as

We~r! 5 (
n51

Nm

(
l52n

n

ân,lcn,lRn
l ~ryR!Al~u! (14)

with n and l obeying the usual restriction of having
he same parity.13 Rearranging Eq. ~14!, we get

We~r, u! 5 (
n51

Nm

(
l$0

n

cn,lRn
l ~ryR!@ân,2l cos~lu!

1 ân,l sin~lu!# (15)

Now, by direct substitution it is easy to show that
the rotated aberration We~r, u 2 f! can be written as

We~r, u 2 f! 5 (
n51

Nm

(
l$0

n

cn,lRn
l ~ryR!@â9n,2l cos~lu!

1 â9n,l sin~lu!#, (16)

here the new modal coefficients are related to the
riginal ones by

S â9n,l

â9n,2l
D 5 F cos~lf! sin~lf!

2sin~lf! cos~lf!GS ân,l

ân,2l
D . (17)

The transformation depends exclusively on the rota-
tion angle f as well as on the azimuthal degree l of
he Zernike term, but it is independent from the ra-
ial degree n. The above expression can be written
n vector form as

â9nl 5 M~lf!ânl, (18)

here ânl stands for any two-dimensional column
vector of Zernike coefficients with the same n and
opposite sign l and M~lf! is the rotation matrix.

rom Eq. ~11! the n,l modal coefficients vector of the
esidual wave front, ânl

r, is then given by

ânl
r 5 @I 2 M~lf!#ânl, (19)

where I is the identity matrix. Now, taking into
ccount that Eq. ~8! can be rewritten as

D 5 1 2 3(n51

Nm

(
l$0

n

uânl
ru2

(
n51

Nm

(
l$0

n

uânlu24
1y2

, (20)

where uânlu
2 5 ân,l

2 1 ân,2l
2 ~and the corresponding

similar expression holds for uânl
ru2!, we finally get

D 5 1 2 32
(
n51

Nm

(
l$0

n

@1 2 cos~lf!#uânlu2

(
n51

Nm

(
l$0

n

uânlu2 4
1y2

. (21)

Equation ~21! provides the maximum degree of com-
pensation attainable with a rotated correcting plate.
Note that the numerator is simply a modified version
of the denominator, with each uânlu

2 term weighted by
the factor @1 2 cos~lf!#, which accounts for the in-
creased sensitivity to rotations of modes with higher
l-fold symmetry. Note also that the rotationally
416 APPLIED OPTICS y Vol. 39, No. 19 y 1 July 2000
symmetric aberrations ~l 5 0! make no contribution
to decreasing D.

For small rotation angles, as is the usual case in
misaligned setups, we can set cos~lf! ' 1 2 l2f2y2,
and Eq. ~21! simplifies to

D 5 1 2 ufu3(n51

Nm

(
l$0

n

l2uânlu2

(
n51

Nm

(
l$0

n

uânlu2 4
1y2

, (22)

indicating that for small f the degree of compensa-
tion decreases linearly with the absolute value of the
rotation angle, with a slope given by the bracket fac-
tor. Again, the modal terms with higher l are more
strongly weighted, indicating that a worse relative
compensation shall be expected for rotated plates cor-
responding to aberrated eyes in which high-l aberra-
tions contribute substantially to the whole aberration
function.

5. Axial Displacements

Axial displacements of the correcting plate ~Fig. 3!
also give rise to a decrease in the degree of correction.

There are several possibilities for computing W9p~r!,
.e., the OPL correction provided at the eye pupil by
n axially displaced plate Wp~r! illuminated by an

on-axis point source at infinity and located at a dis-
tance z from its nominal position. The direct ap-
proach, although computationally expensive, is to
evaluate the Fresnel diffraction integral numerically
for the propagation between the two planes.14 Nev-
ertheless, since in practical situations of eye aberra-
tion correction the waves exiting the correcting plate
are not expected to focus or give rise to caustic areas
in the range of z of interest, a first-order nonuniform
asymptotic expansion of the diffraction integral will
provide quite accurate results.15 In this approach,
essentially a geometrical optics one, neglecting dif-
fraction at the plate pupil border and restricting our-
selves to the paraxial approximation, the OPL at
points r9 in the eye pupil produced by the axially
displaced plate is given by

W9p~r9! 5 Wp~r! 1 z 1 S 1
2zDur9 2 ru2, (23)

Fig. 3. Axially displaced correcting phase plate.
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where the constant additive term z can be dropped,
since it contributes only to the global piston. In Eq.
~23! r stands for the point~s! inside the plate pupil for
which the phase at r9 is stationary. This condition
provides the mapping connecting r and r9, which de-
termines the ray trajectories between the two planes

r9 5 r 1 z¹Wp~r!. (24)

Equations ~23! and ~24! allow us to calculate W9p at
any arbitrary set of points r9 in the eye pupil. How-
ever, to do so it becomes necessary to solve Eq. ~24!
backwards for finding the stationary point r associ-
ated to each r9. Solving this equation is not always
practical, since for each component of r9 it involves
sums of products with powers of x and y up to the ~n 2
1!th degree, arising from the gradient of Wp. Al-
though the desired solutions can be found by numer-
ical calculus, in practice this is not necessary. A
slightly different and more convenient practical ap-
proach is to use Eq. ~24! in a forward way, with the
following steps:

1. Define a sufficiently dense grid of sampling
points ra~a 5 1, . . . , N! inside the pupil of the cor-
recting plate.

2. Propagate them to the eye’s pupil plane with Eq.
~24! to find the corresponding impact points r9a; ex-
clude those points falling outside the eye pupil.

3. Compute W9p~r9a! with Eq. ~23!.
4. Calculate the degree of correction D either ~a! by

se of Eq. ~3! with

sr
2 . N21 (

a51

N

@We~r9a! 1 W9p~r9a!#
2,

se
2 . N21 (

a51

N

@We~ra!#
2 (25)

or ~b! in a modal way, by calculating the normalized
ernike coefficients of W9p by a least-squares fit16,17 of

W9p~r! 5 (
i51

M

â9iẐi~ryR! (26)

to the set of W9p~r9a! data and finding D with Eq. ~8!.
Some remarks have to be taken into account when
e apply these procedures. First, the grid ra has to

provide both for a dense sampling of the plate pupil
and for a dense sampling ~by means of r9a! of the eye

upil to get accurate values for sr
2 and sp

2 with re-
lation ~25! or â9i with Eq. ~26!. In fact, this is not a

ractical limitation, since many available software
ackages can handle reasonably sized sampling
rids at low computational cost. As an order-of-
agnitude example, a square grid of size 250 3 250

ncluding a circular pupil of 250 pixels in diameter
llows for an effective sampling of the wave aberra-
ions in more than 48,600 points with a spatial period
f Ry125 ~e.g. 24 mm for a 6-mm-diameter pupil!,
hich more than enough to capture all relevant fea-

ures of the wave fronts under study ~n # 7!. Sec-
ond, when we start from an evenly spaced grid ra, an
uneven, slightly deformed r9a grid is obtained.
Again, this is not a significant problem, since the grid
deformation is directly proportional to the transla-
tion distance z, which can be expected to be small for
any practical application. Finally, and related to
this last fact, it must be taken into account that the
plate pupil border Cp is mapped by means of Eq. ~24!
to a modified border C9p in the eye pupil plane. If the
radial component of ¹Wp~r! is positive everywhere at
Cp, then C9p will encircle Ce. Otherwise this map-
ping will give rise to a smaller effective area of the eye
pupil over which compensation will be performed.
The difference between C9p and Ce is of little concern
for small z displacements, but it can produce notice-
ble effects as z increases.
Regarding the potential differences to be obtained

with step 4~a! or 4~b! to compute D, they are in gen-
eral of little practical concern. Working with actual
data of eye aberrations ~see Section 6! both methods
give nearly coincident results ~within 0.2%! for dis-
placements z up to several pupil radii R.

6. Application to Human Eye Aberrations

The expressions and procedures presented in the pre-
vious sections provide a general framework for esti-
mating the effects of misalignments and positioning
errors of the correcting plates. As stated, the de-
crease of D depends not only on the kind and amount
of misplacement but also on the particular composi-
tion of the eye aberration in terms of Zernike polyno-
mials. In practice, any definite assessment of the
positioning tolerances for a given correcting plate has
to be made in a case-based approach, taking into
account the particular aberration to be compensated
for. To exemplify the utility of these methods and to
get some insight about the general behavior of D, we
find it useful to apply them to some set of actual eye
aberration data.

In this section we present the numerical results
corresponding to the eye aberrations of three sub-
jects, measured by the laser ray-tracing method at
the Instituto de Optica, Consejo Superior de Investi-
gaciones Cientı́ficas, Madrid.9,10 Measurements
were performed under mydriasis and cycloplegia by
instillation of two drops of cyclopentolate 1%, with
zero-diopter accommodation. The effective sampled
pupil diameter was 6.5 mm. The corresponding fit-
ted Zernike coefficients are listed in Table 1. They
correspond to the unnormalized coefficients ai ap-
pearing in Eq. ~1! and are given in micrometers.
Since neither piston nor tilt is of concern here, coef-
ficients 0, 1, and 2 are not listed in this table. The
overall rms wave-front aberration is 1.18, 2.11, and
5.13 mm for subjects A, B, and C, respectively. The
modal composition of the aberration function is also
largely different from one to another.

In Fig. 4 we plot the degree of compensation D
versus the lateral displacement of the correcting
plate d, measured in units R ~pupil radius!, for dis-
placements along the x and the y directions with
residual tilt removed. The curves follow a similar
pattern, although the particular preeminence of some
aberrations gives rise to distinct compensation effi-
1 July 2000 y Vol. 39, No. 19 y APPLIED OPTICS 3417
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Table 1. Zernike Aberration Coefficients of Subjects A–C for Modes

3

ciencies: e.g., subjects A and C, with a noticeable
astigmatic component along the y direction ~i 5 5!
suffer a strong compensation loss for displacements
of the correcting plate along this axis and a clearly
smaller relative loss for displacements along the or-
thogonal one. Subject B, with a predominantly sym-
metrical aberration pattern of defocusing ~i 5 4! and
spherical aberration ~i 5 12!, shows an essentially
similar performance for displacements along both
axes.

From these data, compensation degrees higher
than 0.8 can reasonably be expected for these sub-
jects if the correcting plates are kept laterally cen-
tered up to approximately 0.008–0.016 R, which
corresponds to 26–52 mm. Although this accuracy is
well inside the standard positioning capabilities of
any fairly equipped laboratory, it puts a stringent
requirement on the optomechanical stability of opti-
cal setups designed to measure and compensate in
vivo eye aberrations.

The dependence of D on rotations is shown for the
same subjects in Fig. 5~a!, for f between 0 and 360
deg, and in more detail in Fig. 5~b! for f between 215
and 115 deg, both plotted with Eq. ~21!. The degree
of compensation oscillates, attaining a minimum

i 5 3–35

i A B C

3 1.11 0.27 22.75
4 21.31 23.57 26.98
5 21.69 20.62 26.17
6 20.51 20.22 0.91
7 20.24 0.22 20.30
8 20.47 0.06 2.22
9 20.60 20.71 21.63

10 0.06 20.07 1.11
11 0.07 0.11 20.12
12 0.00 20.49 22.15
13 20.11 0.22 20.26
14 20.10 0.08 0.32
15 0.37 0.13 20.09
16 20.06 20.05 0.05
17 0.04 0.18 20.03
18 0.15 0.10 0.50
19 20.12 0.20 20.41
20 20.06 0.09 1.53
21 0.03 0.01 20.39
22 20.07 20.02 0.22
23 0.09 0.04 20.34
24 0.05 20.07 20.28
25 0.01 0.01 0.21
26 0.03 0.02 20.07
27 20.04 0.07 20.20
28 20.01 0.02 20.50
29 20.03 20.08 20.36
30 20.03 0.04 20.18
31 20.08 20.10 0.31
32 0.01 20.11 0.22
33 20.08 20.06 20.31
34 0.00 0.02 0.40
35 0.06 20.07 0.08
418 APPLIED OPTICS y Vol. 39, No. 19 y 1 July 2000
value that can be not only zero but even negative if
the rotationally symmetrical aberrations ~i 5 4, 12,
24! play a small relative role ~subjects A and C!. The
position and the level of this minimum depend on the
particular aberration pattern, and in this example
they correspond to D 5 20.47 at f 5 90 deg ~subject
A!, D 5 0.64 at f 5 70 deg, ~subject B!, and D 5
20.12 at f 5 90 deg ~subject C!. The nearly sym-
metrical aberration pattern of subject B makes it
remain relatively well compensated for any angular
shifting of the correcting plate. As expected from
Eq. ~21! all plots are symmetrical with respect to f 5
180 deg.

For small rotation angles @Fig. 5~b!# a nearly linear
relationship is found, in agreement with the approx-
imate Eq. ~22!. The different slopes ~20.0285,
20.0085, and 20.0221 deg21 for A, B, and C, respec-
tively! reflect the relative weight of high azimuthal-
rder modes in each aberration. A compensation
evel of D 5 0.8 is within reach if the angular posi-

tioning system allows us to keep the plate aligned
within approximately 67 deg ~subject A!, 69 deg
~subject C!, and—as expected—a substantially wider
egion of approximately 625 deg for subject B.

Finally, D is plotted in Fig. 6 versus the axial z
isplacement, measured in units R. The calculation
as performed following the procedure in step 4~b!,

tated in Section 5, with the modal approach of Eqs.
8! and ~26!. The alternative way in step 4~a! with
elations ~3! and ~25! gives essentially the same re-
ults, well within a 0.2% difference in the worst case.
he small amount of residual tilt originating from
ave propagation has been removed ~it contributes
ith a mere 0.01 to the value of D in the range of z

onsidered!.
Apart from obvious individual differences, it can be

een that quite reasonable compensation values
.0.95! are attainable even for moderately high dis-
lacements, provided that the eye aberration ~and
ence the compensating plate! did not have strong

Fig. 4. Degree of compensation D versus normalized lateral dis-
lacement dyR of the correcting plate. Tilt has been removed
rom the residual aberration. Plots for displacements along the X
xis: subjects A ~filled squares!, B ~filled circles!, C ~filled dia-

monds!. Displacements along the y axis: A ~open squares!, B
~open circles!, C ~open diamonds!.
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local wave-front curvatures. The relative level of
the compensation loss for each subject correlates well
with the expected overall divergence of the wave
fronts exiting the correcting plate ~see, e.g., coeffi-
cients i 5 4, 12, and 24, taking into account that they

Fig. 5. Degree of compensation D versus in-plane rotation angle
f ~degrees! of the correcting plate for aberrations corresponding to
ubjects A ~squares!, B ~circles!, C ~diamonds!. ~a! Range, 0–360

deg; ~b! Range, 215–15 deg.

Fig. 6. Degree of compensation D versus normalized axial dis-
lacement zyR of the correcting plate for aberrations correspond-
ng to subjects A ~squares!, B ~circles!, C ~diamonds!.
correspond to the eye aberration and that the correct-
ing plate OPL has the opposite sign!.

Although in no way meant to be representative of
he whole range of living eye aberrations, the previ-
us results allow us to advance the notion that for
ractical compensation setups lateral positioning
nd, to a lesser degree, angular positioning are prob-
bly the key factors affecting the compensation effi-
iency, given the relatively narrow limits within
hich we have to move. Axial positioning is notice-
bly less stringent.
The procedures developed here can be applied to

he particular case of compensation of classical
pherocylindrical ametropia, described by a combina-
ion of the low-order aberrations defocus ~n 5 2, l 5
! and astigmatism ~n 5 2, l 5 62!, obtaining already
nown results. For instance, it is straightforward to
heck that small axial shifts in conventional spectacle
enses do not cause a significant degradation of com-
ensation. Lateral displacements give rise to resid-
al tilts, and the astigmatic error ~measured as the
esidual wave-front variance associated to astigmatic
erms! arising from a rotated cylindrical lens is pro-
ortional to the squared sinus of the rotation angle,
s can be deduced from Eq. ~19!.
Out-of-plane rotations of the correcting plate ~tilts

round the X or the Y axis! will also affect the degree
f compensation, although they are relatively easy to
etect and correct in practical setups when we use the
ight reflected by the plate. This case, as well as the

ultiparametric case of simultaneous misalignments
nd rotations of different kinds, has not been dealt
ith here. Nevertheless, the extension of the pro-
osed procedures to these general situations can be
ade in a straightforward way.
Finally, let us point out that ocular aberrations are

ependent on the accommodation state of the eye,18

position across the visual field,10 and wavelength19 so
that any static compensation procedure will degrade
its performance if changes in the parameters for
which it was designed occur. The influence of these
factors on the degree of compensation achievable
with a static single optical element remains as a sub-
ject for future research.

7. Conclusions

The compensation losses suffered when an otherwise
perfect aberration-correcting plate is displaced either
transversally or axially from its reference position or
rotated in its own plane have been analyzed in this
study. These losses are dependent on the kind and
the amount of displacement and on the particular
aberration pattern to be compensated for. The an-
alytical and the numerical procedures presented here
were applied to data of human eye aberrations in-
cluding 35 Zernike terms up to the 7th radial and
azimuthal degrees, measured with the laser ray-
tracing method. For those cases, compensation effi-
ciencies higher than 0.8 can be expected if the
correcting plates are properly placed within 0.01 pu-
1 July 2000 y Vol. 39, No. 19 y APPLIED OPTICS 3419
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pil radius ~laterally!, 67 deg ~angularly!, and several
pupil radii ~axially!. These results suggest that lat-
eral positioning, followed by angular positioning, are
the key factors affecting compensation performance
in practical setups, whereas axial positioning shows
far less stringent requirements.

Aberration-correcting phase plates are manufac-
tured at the Universidade de Santiago de Compost-
ela. This study was supported by Spanish Comisión
Interministerial de Ciencia y Tecnologı́a grant
~CICYT! TIC98-0925-C02-02.
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