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Introduction
Signal transduction through the Ras-Raf-MEK-ERK pathway (or

ERK pathway for short) is essential for many cellular processes,

including growth, cell-cycle progression, differentiation, and

apoptosis (Kolch, 2000; Kolch, 2002; Kolch, 2005; Wellbrock et

al., 2004). The activation of this pathway is well characterized (for

recent reviews, see Kolch, 2005; Wellbrock et al., 2004). Typically,

it is initiated by the growth-factor-induced recruitment of the SOS-

Grb2 complex to the plasma membrane. The SOS-Grb2 complex

catalyzes the transformation of an inactive GDP-bound form of Ras

(Ras-GDP) into its active GTP-bound form (Ras-GTP). Ras-GTP

binds the Raf-1 kinase with high affinity, which induces the

recruitment of Raf-1 from the cytosol to the cell membrane.

Activated Raf-1 phosphorylates and activates mitogen-activated

protein kinase kinase (MEK), a kinase that in turn phosphorylates

and activates mitogen-activated protein kinase (MAPK). Activated

extracellular signal-regulated kinases (ERKs) regulate more than

70 substrates including nuclear transcription factors. Thus ERKs

have a profound influence on many biochemical processes in

different subcellular compartments, and in combination with other

pathways regulate cellular physiology (Kolch et al., 2005). The ERK

pathway and its regulation by RKIP are schematically shown in

Fig. 1.

Activated ERK feeds back to the pathway activation at several

levels (Kolch et al., 2005). ERK exerts a negative feedback by

interfering with Ras activation through SOS phosphorylation (Dong

et al., 1996). Waters and colleagues showed that despite the

continuous stimulation of receptor tyrosine kinase activity, Ras

activity is transient and it returns to inactive Ras-GDP within 5

minutes (Waters et al., 1995a). They further showed that insulin

stimulation resulted in a decreased affinity of SOS to Grb2, whereas

the dissociation of SOS from Grb2 did not affect the interactions

between Grb2 and tyrosine-phosphorylated Shc (Waters et al.,

1995b). The dissociation of the Grb2-SOS complex is due to

phosphorylation of SOS by activated ERK (Langlois et al., 1995)

or the ERK downstream kinase RSK2 (Douville and Downward,

1997).

In addition, the physical interaction of MEK with Raf-1

required for phosphorylation of MEK at the activating sites S218

and S222 is highly regulated. In response to cell adhesion, the

serine/threonine-protein kinase PAK1, acting downstream of the

small G-protein Rac, phosphorylates the MEK proline-rich

sequence (PRS) at S298, and PAK3 was reported to phosphorylate

Raf-1 at S338 (Eblen et al., 2004). The phosphorylation of MEK

at S298 by PAK1 enhances its interaction with Raf-1, whereas

ERK-feedback phosphorylation of MEK1 on T292 inhibits the

The Ras-Raf-MEK-ERK pathway (or ERK pathway) is an

important signal transduction system involved in the control of

cell proliferation, survival and differentiation. However, the

dynamic regulation of the pathway by positive- and negative-

feedback mechanisms, in particular the functional role of Raf

kinase inhibitor protein (RKIP) are still incompletely

understood. RKIP is a physiological endogenous inhibitor of

MEK phosphorylation by Raf kinases, but also participates in

a positive-feedback loop in which ERK can inactivate RKIP.

The aim of this study was to elucidate the hidden dynamics of

these feedback mechanisms and to identify the functional role

of RKIP through combined efforts of biochemical experiments

and in silico simulations based on an experimentally validated

mathematical model. We show that the negative-feedback loop

from ERK to SOS plays a crucial role in generating an

oscillatory behavior of ERK activity. The positive-feedback loop

in which ERK functionally inactivates RKIP also enhances the

oscillatory activation pattern of ERK. However, RKIP itself has

an important role in inducing a switch-like behavior of MEK

activity. When overexpressed, RKIP also causes delayed and

reduced responses of ERK. Thus, positive- and negative-

feedback loops and RKIP work together to shape the response

pattern and dynamical characteristics of the ERK pathway.

Key words: Systems biology, ERK signaling pathway, RKIP,

Feedback regulation, Dynamics, Mathematical modeling

Summary

Positive- and negative-feedback regulations

coordinate the dynamic behavior of the 

Ras-Raf-MEK-ERK signal transduction pathway

Sung-Young Shin1,*, Oliver Rath2,*, Sang-Mok Choo3, Frances Fee2, Brian McFerran2,‡, Walter Kolch2,4,§ and
Kwang-Hyun Cho1,§

1Department of Bio and Brain Engineering and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon,
Korea
2Beatson Institute for Cancer Research, Cancer Research UK, Glasgow, UK
3School of Electrical Engineering, University of Ulsan, Ulsan, Korea
4Institute of Biomedical and Life Science, University of Glasgow, Glasgow, UK
*These authors contributed equally to this work
‡Present address: Organon Labs, Newhouse, Motherwell, UK
§Authors for correspondence (e-mails: ckh@kaist.ac.kr; w.kolch@beatson.gla.ac.uk)

Accepted 12 October 2008
Journal of Cell Science 122, 425-435 Published by The Company of Biologists 2009
doi:10.1242/jcs.036319

J
o
u
rn

a
l 
o
f 
C

e
ll
 S

c
ie

n
c
e



426

ability of PAK1 to phosphorylate S298 of MEK and thereby

interferes with MEK-ERK complex formation stimulated by Rac

(Eblen et al., 2004). The interaction between Raf and MEK is also

regulated by Raf kinase inhibitor protein (RKIP), a protein that

binds to both Raf and MEK preventing their physical interaction

(Yeung et al., 2000; Yeung et al., 1999). As a consequence, the

overexpression of RKIP suppresses the activation of MEK and

ERK and the induction of AP-1-dependent transcription (Yeung

et al., 1999). By contrast, the downregulation of endogenous RKIP

induces the activation of MEK and ERK, and enhances AP-1-

dependent transcription. RKIP does not affect Raf-1 catalytic

activity in general, but specifically interferes with the

phosphorylation of its substrate MEK (Yeung et al., 2000).

According to enzyme kinetic analysis, RKIP acts like a competitive

inhibitor of MEK phosphorylation (Yeung et al., 2000). Yeung

and co-workers demonstrated that stimulation of COS-1 cells with

12-O-tetradecanoylphorbol-13-acetate (TPA) plus epidermal

growth factor receptor (EGF) caused an increase of ERK pathway

activity, which was correlated with the decrease of RKIP

association with Raf-1 (Yeung et al., 2000). At later time points,

as ERK pathway activity declined, RKIP binding to Raf-1

increased again. The association of Raf-1 with RKIP is regulated

by several mechanisms that involve RKIP phosphorylation. RKIP

dissociation from Raf-1 is triggered by phosphorylation of RKIP

on S153 through protein kinase C (PKC) (Corbit et al., 2003) or

putatively through ERK (Cho et al., 2003a). In the latter case, a

positive-feedback loop is formed and thereby ERK-mediated RKIP

phosphorylation counteracts the inhibitory function of RKIP.

However, direct evidence of ERK-mediated RKIP phosphorylation

has not previously been reported. 

RKIP is a member of the phosphatidylethanolamine-binding

protein (PEBP) family and has wide tissue expression in a variety

of different mammalian species such as monkey, rat, chicken and

human (Keller et al., 2004). Its effect on the ERK pathway was the

first to be discovered (Yeung et al., 1999); however, RKIP proved

to be a multifunctional protein. RKIP also antagonizes the activation

of the transcription factor nuclear factor kappa B (NF-κB) in

response to tumor necrosis factor alpha (TNFα) and interleukin-1

beta (IL-1β) stimulation (Hagan et al., 2005b; Keller et al., 2004).

In addition, RKIP is a physiological inhibitor of G-protein-coupled

receptor kinase (GRK2). After stimulation of the G-protein-coupled

receptor (GPCR), RKIP dissociates from Raf-1 and associates with

GRK2 and subsequently blocks its activity. This switch is triggered

by PKC-dependent phosphorylation of RKIP on S153, and serves

to directly connect the ERK pathway with GPCR signaling.

RKIP has been reported to play various pathophysiological roles

in non-neoplastic and neoplastic diseases (Keller et al., 2004). For

instance, RKIP and its cleavage product, hippocampal cholinergic

neurostimulating peptide (HCNP) were reported to be associated

with Alzheimer’s disease and dementia (Keller et al., 2004).

However, the best documented role of RKIP is in cancer. Here,

RKIP has been identified to have the properties of a metastasis

suppressor gene. Fu and colleagues demonstrated that the decrease

of RKIP expression in primary malignant prostate tumors is

associated with the increased capability of prostate cancer cells to

invade and form distant metastases (Fu et al., 2003). Similar results

were reported in melanoma (Schuierer et al., 2004), breast cancers

(Hagan et al., 2005a) and colorectal cancers (Al-Mulla et al., 2006).

In addition, RKIP might also mediate the sensitivity of cancer cells

to chemotherapeutic drugs, because RKIP sensitizes prostate and

breast cancer cells to drug-induced apoptosis (Chatterjee et al.,

2004). However, despite these very important roles of RKIP, the

regulation mechanisms of RKIP are not yet fully understood.

In all the cancer studies cited above, the role of RKIP could be

closely linked to its protein expression levels. However, despite their

obvious importance, it is currently unclear how different levels of

RKIP protein expression impact its function. The existence of

multiple feedback mechanisms in the ERK pathway is likely to

profoundly affect this relationship in a non-linear fashion. Therefore,

we investigated the role of RKIP with particular emphasis on its

function in the feedback regulation. In this study, we consider two

major feedback loops that are both triggered by activated ERK: (1)

the positive-feedback loop that results from the inactivation of the

inhibitor RKIP; and (2) the negative-feedback loop that is generated

by the inactivation of the Ras-activating exchange factor complex

Grb2-SOS. Although there are several theoretical studies on the

feedback dynamics of the ERK pathway (Kholodenko, 2000;

Markevich et al., 2004), the dynamics of multiple feedback

Journal of Cell Science 122 (3)

Fig. 1. The Ras-Raf-MEK-ERK signaling
pathway and its feedback regulation
mechanism. Activated ERK (ppERK)
triggers two major feedback loops: the
positive-feedback loop resulting from
inactivation of the inhibitory protein
RKIP and the negative-feedback loop
formed by inactivation of the Ras
activating exchange factor complex
Grb2-SOS.
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427Dynamic behavior of ERK signaling

mechanisms, including RKIP, have not yet been investigated. The

aim of this study was to elucidate the hidden dynamics of the

positive and negative feedback mechanisms and to identify the

functional role of RKIP in the ERK pathway through combined

efforts of biochemical in vitro experiments and in silico simulations.

A mathematical model was constructed based on experimental

biochemical data obtained in vitro and from mammalian COS-1

cells.

Our results show that the negative-feedback loop of the ERK

pathway has a crucial role in generating an oscillatory behavior

of ERK activity. This behavior has been predicted by profound

theoretical considerations, but has only recently been shown

experimentally (Nakayama et al., 2008), albeit without an analysis

of its origin. The positive-feedback loop in which ERK

functionally inactivates RKIP enhances the oscillatory pattern of

ERK dynamics. The positive-feedback loop also has an important

role in inducing a switch-like behavior of the phosphorylated MEK

in response to gradually increasing RKIP. RKIP, through its

function as inhibitor, also causes delayed and decreased responses

of ERK. Thus, RKIP, in conjunction with the positive- and

negative-feedback loops, critically determines the dynamic

characteristics of ERK activity.

Results
ERK-mediated RKIP phosphorylation generates a positive-

feedback loop

In a previous study, we showed that the activity of the ERK pathway

increases as the RKIP association with Raf-1 decreases in response

to TPA plus EGF stimulation in COS-1 cells (Yeung et al., 1999).

However, the underlying mechanism is still not fully understood.

We have previously, mainly on theoretical grounds, postulated that

the ERK-mediated RKIP phosphorylation counteracts the inhibitory

function of RKIP (Cho et al., 2003a). Therefore, we conducted

experiments to test this hypothesis directly. First, we tested whether

RKIP is a substrate for ERK. For this purpose purified recombinant

RKIP was incubated with purified Raf-1, MEK and ERK proteins

under kinase assay conditions, either individually or in combination.

Raf-1 was expressed in Sf-9 insect cells on its own or coexpressed

with activated H-RasV12 and Lck to activate it, as previously

described (Hafner et al., 1994). MEK and ERK were produced in

E. coli as described (Gardner et al., 1994), and activated by

preincubation with activated Raf-1 as indicated. Although neither

Raf-1 nor MEK could phosphorylate RKIP, ERK phosphorylated

RKIP and phosphorylation increased when ERK had been activated

by preincubation with Raf-1 and MEK (Fig. 2A). Two-dimensional

phosphopeptide mapping revealed the phosphorylation of one

major and several minor sites (data not shown). Based on the

predicted migration of phosphopeptides (http://xylian.igh.cnrs.fr/

mobility7.php), selected candidate residues were mutated and the

resulting mutants were tested as ERK substrates. The mutation of

S99 severely reduced phosphorylation by ERK (Fig. 2B). Thus, the

ERK phosphorylation site is distinct from S153, which is

phosphorylated by PKC (Corbit et al., 2003), and although the PKC

site represents a site for crosstalk, the ERK site generates the

possibility of a feedback loop.

Therefore, we examined the functional effects of this feedback

in in vitro kinase assays. To this end we assayed how MEK

phosphorylation by Raf-1 was affected by increasing amounts of

RKIP in the presence or absence of ERK (Fig. 2C). Activated Raf-

1 was produced in Sf-9 cells (Hafner et al., 1994) and incubated

with MEK under kinase assay conditions. The addition of increasing

amounts of RKIP resulted in a stoichiometric inhibition of MEK

phosphorylation, as expected from the known mode of action of

RKIP as stoichiometric inhibitor of Raf-1-mediated MEK

phosphorylation. By contrast, when recombinant ERK was also

added to the reaction, inhibition of MEK phosphorylation became

more sustained before steeply dropping at high RKIP concentrations.

This behavior is consistent with a positive-feedback loop, where

ERK inhibits the RKIP inhibitor. To inhibit MEK phosphorylation,

RKIP must bind to Raf-1 (Yeung et al., 2000). Therefore, we tested

whether ERK phosphorylation influences RKIP binding to Raf-1.

For this purpose GST-tagged Raf-1, or GST as a control, were

expressed in Sf-9 insect cells and purified by adsorption to

glutathione-Sepharose beads. The GST or GST-Raf-1 beads were

subsequently incubated with recombinant RKIP that had been

phosphorylated by ERK in the presence of [γ-32P]ATP. Bound RKIP

was detected by western blotting and phosphorylation by

autoradiography (Fig. 2D). Under in vitro conditions,

phosphorylation of RKIP by ERK is not complete and the

preparation also contains unphosphorylated ERK. No

phosphorylated RKIP was detected binding to GST-Raf-1 beads –

only the unphosphorylated fraction could bind. This confirms that

ERK phosphorylation of RKIP interferes with Raf-1 binding and

provides a mechanism for the effects of RKIP phosphorylation by

ERK. Taken together with the previous experimental results (Yeung

et al., 1999), these data prove that ERK-mediated RKIP

phosphorylation forms a positive-feedback loop in the ERK

pathway.

Oscillatory behavior of ERK activity

Oscillations in ERK activity have been predicted based on

theoretical considerations and recently shown experimentally

(Nakayama et al., 2008), albeit without any suggestion of a

mechanism. Such oscillations are usually not observed in short-

term stimulation experiments. Therefore, we stimulated COS-1 cells

with TPA, sampling 12 data points over an extended period of time

(300 minutes). Under these conditions, slow oscillations of phospho-

ERK (ppERK) levels were observed (Fig. 3A). However, owing to

practical limitations of wet experimentation, it is difficult and tedious

to sample at the high density of time points required to accurately

determine the oscillation pattern. Therefore, we developed a new

parameter-estimation method, a pseudo-random search algorithm

(PRSA), which is described in the Materials and Methods. Briefly,

the PSRA iteratively explores a constrained parameter space around

an estimated value, but avoids getting trapped in local minima.

Applying the PRSA to the sparse experimental ppERK values

observed in Fig. 3A, we showed that the experimental data can be

correlated with a dampened oscillation curve (Fig. 3B). To verify

the robustness of our mathematical model to parameter variation,

we carried out repeated simulations (n=50) over 30% random

variation of parameters and confirmed that the oscillatory behavior

of ERK activation is well preserved to such parameter variations.

Dynamic analysis of the positive- and negative-feedback

mechanisms

Thus, the ERK pathway features both positive- and negative-

feedback loops, which have essential roles in the regulation of

system dynamics. To investigate the hidden dynamics of two

feedback loops, we removed each feedback loop individually and

simulated the model for persistent stimulations (300 minutes) and

transient stimulations (30 minutes). In both cases, we maintained

the same peak level of stimulation. When the pathway was
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persistently stimulated through PKC activation by TPA (Rubio et

al., 2006), the deletion of the negative-feedback loop resulted in a

non-oscillatory behavior of ppERK by inhibiting ERK-mediated

SOS phosphorylation. ppERK levels increased monotonically with

a significant change in the steady-state levels (Fig. 4A). For a

transient stimulation of the pathway, the amplitude of ERK

activation was decreased by the deletion of the positive-feedback

loop, whereas the deletion of the negative-feedback loop slightly

increased the amplitude and duration of ERK activation. Removal

of RKIP had similar effects (Fig. 4B).

To further investigate the inhibitory effect of the positive-

feedback loop, we completely removed RKIP. This not only

eliminates the positive feedback but also the inhibitory actions of

RKIP. With persistent stimulation, ppERK levels were higher and

the rise time was also shorter compared with when the physical

interaction of ERK and RKIP was inhibited and the oscillations

were dampened (Fig. 4A). For a transient stimulation of Ras, the

amplitude of the ERK-activation curve was increased and the rise

time was shorter, similar to the effects observed with persistent

stimulation (Fig. 4B).

In summary, these results suggest that the negative-feedback loop

plays a crucial role in generating the oscillatory behavior and

decreasing the amplitude of oscillations of ppERK levels. However,

the positive-feedback loop seems to be involved in enhancing the

oscillatory behavior and increasing the amplitude of ppERK

oscillations. It has also a similar role for transient stimulation. In

addition, the complete removal of RKIP accelerates the rise time,

amplitude and duration of ERK activity, resulting in a more

sustained activation under conditions of transient stimulation.

RKIP induces a switch-like behavior of MEK through the

positive-feedback loop

The simulation results (Fig. 4) showed that RKIP has a profound

impact on ERK activation. Experimental results also support the

fact that the ERK pathway activity and its subsequent cellular

functions are remarkably altered by the expression level of RKIP

Journal of Cell Science 122 (3)

Fig. 2. ERK phosphorylates RKIP generating a positive-feedback loop. (A) RKIP is a substrate for ERK. Recombinantly produced purified RKIP protein was
phosphorylated in vitro with purified Raf-1, MEK and ERK proteins exactly as described previously (Yeung et al., 2000). R, R*, M and E represent Raf-1,
activated Raf-1, MEK and ERK, respectively. RKIP is phosphorylated only when ERK is present in the reaction. When ERK is activated by preincubation with
activated Raf-1 and MEK (R*+M+E) RKIP phosphorylation is enhanced. (B) S99 of RKIP is an ERK phosphorylation site. Wild-type RKIP and the indicated
mutants were expressed in E. coli, purified and phosphorylated by activated ERK in vitro. Mutation of S99 substantially reduces the phosphorylation of RKIP by
ERK. (C) RKIP inhibitory function is inhibited by ERK phosphorylation generating a positive-feedback loop. Recombinant purified proteins were used to
reconstitute the Raf-1–MEK–ERK phosphorylation cascade in vitro as described in the Materials and Methods section. MEK phosphorylation in the presence of
increasing amounts of recombinant RKIP was assayed by ppMEK antibodies. ‘-feedback’ indicates that MEK phosphorylation by Raf-1 was assayed in a reaction
containing Raf-1, MEK and increasing amounts of RKIP. The ‘+feedback’ condition in addition contained ERK which permits RKIP inactivation by ERK. The
experiment is representative of three repeats and a quantification is shown on the right. The blue line represents MEK phosphorylation in the absence of ERK, i.e.
the absence of feedback inhibition of RKIP. The red line indicates MEK phosphorylation in the presence of ERK where feedback is enabled. (D) Phosphorylated
RKIP does not bind to Raf-1. Recombinant RKIP was phosphorylated by ERK in the presence of [γ-32P]ATP as in B. Increasing amounts of RKIP (1.1 µg, 3.3 µg,
10 µg) were incubated with equal amounts of GST or GST–Raf-1 immobilized on glutathione-Sepharose beads. After washing the binding assay was separated by
SDS-PAGE and bound RKIP was detected by immunoblotting, and phosphorylated RKIP was detected by autoradiography of the immunoblots. ‘Input’ contains
10% of the RKIP used in the binding assay.
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429Dynamic behavior of ERK signaling

protein (Chatterjee et al., 2004; Keller et al., 2004). To further

examine the functional role of RKIP, we conducted simulations by

increasing RKIP concentrations from 0 to 1.2 µM for a constant

stimulation input. The oscillatory behaviors and amplitudes of

oscillation of phosphorylated MEK (ppMEK) and ppERK levels

were suppressed, along with the gradual increase of RKIP

concentration (Fig. 5A,B). However, the amplitude of Raf activation

curves was enhanced, whereas its oscillatory pattern disappeared

as RKIP concentration increased (Fig. 5C). This is presumably due

to the decreased negative-feedback effect, which allows Raf-1

activation to accumulate.

To further investigate the functional role of RKIP when the

negative-feedback loop is deleted, we modified the mathematical

model so that Raf-1 activity could be controlled independently of

Ras, which eliminates the negative-feedback loop. This is achieved

by simulating the expression of a constitutively active Raf-1

mutant, RafΔN, which lacks the N-terminal regulatory domain

(including the Ras-binding domain), rendering the kinase domain

catalytically active independent of Ras (Heidecker et al., 1990).

However, RafΔN is still susceptible to inhibition by RKIP (Yeung

et al., 1999). For a constant level of Raf-1 activity, the ppMEK

levels were sigmoidally decreased as RKIP increased (Fig. 6A),

whereas the oscillations of ppMEK levels disappeared, because the

negative-feedback loop was deleted. Importantly, the steady-state

response curves of MEK activation showed switch-like behavior

(Fig. 6B).

To experimentally verify the switch-like behavior of ppMEK in

response to an increase in RKIP levels, we transfected COS-1 cells

with the constitutively active Raf-1 mutant, RafΔN, also termed

BXB (Heidecker et al., 1990). Expression of RafΔN resulted in a

steady state of sustained MEK activation. In addition, we transfected

cells with an RKIP expression plasmid in increasing amounts that

were carefully chosen to give a linear increase of RKIP protein

levels in the transfected cells. RafΔN efficiently induced MEK

activity as measured by MEK phosphorylation. MEK activation was

not inhibited by increasing RKIP levels up to a certain threshold,

Fig. 3. Oscillations of ERK activity. (A) ERK activation profile in COS-1 cells
in response to TPA treatment. Serum starved COS-1 cells were treated with
100 ng/ml TPA for the indicated time points. Cell lysates were immunoblotted
with ppERK followed by ERK antibodies. Lower panel, western blots of two
independent representative experiments. Upper panel, the blots were
quantified by laser densitometry, ppERK was corrected for ERK loading, and
plotted. (B) Comparison of biochemically measured with predicted ERK
activation. The biochemically measured ERK activities from panel A are
shown as red rectangles with the error bars corresponding to the s.d. from two
independent experiments. The measured ERK activity was scaled down for
comparison with the simulation data. The ERK activation profile predicted by
the PSRA parameter estimation method is shown as dashed blue line obtained
from a nominal parameter values (see Table 2). Blue circles with error bars
denote in silico simulation data obtained from repeated simulations (n=50)
over a 30% random variation of parameters.

Fig. 4. Dynamic analysis of the positive- and negative-feedback mechanisms
by computational simulation. ‘No positive feedback’ indicates that the
positive-feedback loop has been removed by inhibiting ERK mediated RKIP
phosphorylation. ‘No negative feedback’ indicates that the negative feedback
loop has been removed by inhibiting ERK mediating SOS phosphorylation.
‘RKIP removal’ indicates that RKIP has been removed completely, eliminating
both the positive feedback and the inhibitory action of RKIP. The control had
none of the feedback loops or RKIP removed. (A) Simulations for persistent
stimulations (300 minutes). (B) Simulations for transient stimulations (30
minutes).
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where a precipitous inhibition occurred (Fig. 7A). This switch-like

behavior is unexpected for a stoichiometric inhibitor such as RKIP,

but fully consistent with the in silico simulation results (Fig. 6B).

It can be explained by the positive feedback that functionally

compensates for increases in RKIP levels up to the point where

high levels of RKIP sequester Raf effectively enough to cause MEK

activation and the positive feedback to collapse.

To prove this point, we established stable cell lines with

doxycycline-inducible expression of RKIP or RKIP S99A mutant

protein (Fig. 7B). Inducing RKIP expression inhibited TPA

activation of MEK with switch-like kinetics, whereas RKIP S99A

(breaking the positive feedback resulting from mutation of the ERK

phosphorylation site) caused the inhibition to become linear. In

simulations, we found that the switch-like behavior of ppMEK is

diminished by deletion of the positive-feedback loop (Fig. 6B).

Taken together, these results suggest that the RKIP positive-

feedback loop plays a crucial role in programming the switch-like

behavior of MEK.

RKIP determines the dynamic characteristics of ERK

To characterize the functional role of RKIP in the regulation of the

ERK pathway for varying stimulation strengths, we gradually

increased the strength of stimulation at different constant

concentrations of RKIP. At a low concentration of RKIP (0.24 µM),

ppERK showed a dampened oscillatory behavior across the whole

stimulation range (Fig. 8A). At a high RKIP concentration (0.96

µM) total initial ppERK levels were significantly suppressed

compared with those observed under conditions of low RKIP

expression. However, ppERK levels still increased in response to

the increase of stimulation whereas the oscillations become strongly

dampened (Fig. 8B). These results suggest that RKIP determines

the dynamic characteristics of ERK depending on the stimulation

strengths. In summary, when RKIP is low, ppERK increases enough

to activate the negative-feedback loop, which leads to the oscillatory

behavior; when RKIP becomes higher, ppERK is decreased and

thus the negative-feedback loop is no longer effective, which leads

to the weaker oscillatory behavior.

Discussion
Feedback loops in signaling pathways are known to have important

roles in determining system dynamics. In particular, it is known

that positive-feedback loops can induce switch-like or bistable

behavior (Ferrell, 2002), whereas negative-feedback loops can

contribute to system stability (Kholodenko, 2000). However, in

principle, feedback loops can generate a wide diversity of behaviors,

especially when they are interconnected (Cho et al., 2003a; Soyer

et al., 2006). Thus, it was of importance to analyze the role and

impact of the positive- and negative-feedback loops emanating from

ERK for the dynamic behavior of the ERK pathway.

Direct experimental evidence for a positive-feedback loop

initiated by ERK via inactivation of the inhibitor RKIP has not

previously been reported. Here, we present evidence that ERK

Journal of Cell Science 122 (3)

Fig. 5. RKIP regulates the oscillatory behavior of cellular responses. The
oscillatory behaviors of ppMEK (A) and ppERK (B) are suppressed along
with the increase of RKIP concentration. The oscillation amplitude of
activated Raf-1 levels (C) is increased whereas the oscillatory pattern vanishes
as RKIP concentration increases.

Fig. 6. RKIP induces a switch-like behavior of MEK activity. The
mathematical model was modified such that Raf-1 activation could be
controlled independent of upstream inputs. (A) Under conditions of constant
Raf-1 activity achieved by simulating the expression of the constitutively
active RafΔN the levels of ppMEK decreased sigmoidally as RKIP increased.
(B) The steady-state response curves of ppMEK. The switch-like behavior in
response to a gradual increase of RKIP levels disappeared when the positive-
feedback loop was eliminated.
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431Dynamic behavior of ERK signaling

phosphorylates RKIP on S99 and give also an in-depth analysis of

the functional consequences. The phosphorylation of RKIP by ERK

generates a positive-feedback loop. Based on these observations,

we have developed an experimentally validated mathematical

model of the ERK pathway, including the positive- and negative-

feedback loops, which allowed us to investigate the hidden dynamics

of these feedback loops, and the functional role of RKIP. By contrast,

the existence of a negative-feedback loop from ERK to SOS and

Ras activation is well documented (Dong et al., 1996; Waters et

al., 1995a), but the computational analysis of this feedback is not

well developed (Orton et al., 2005). The existing analysis indicated

an important role for this negative feedback in determining the

duration of ERK activation (Brightman and Fell, 2000), but this

prediction was purely theoretical and not validated by biochemical

experimentation.

Our results indicate that under conditions of transient stimulation,

the negative feedback mainly affects the duration of the signal,

consistent with published results (Brightman and Fell, 2000).

However, under conditions of chronic stimulation, the negative

feedback assumes a major role in stabilizing the system response

and in encoding oscillatory behavior. Our results show that ERK

activity oscillations are slow and dampened. Thus, they occur

outside the time-frame measured in most studies, and would thus

have been overlooked. Oscillations in the ERK pathway caused by

a negative-feedback loop from ERK to an upstream component of

the pathway have been predicted on the grounds of theoretical

analysis (Kholodenko, 2000). We now show that although the

negative feedback from ERK to SOS is critical for oscillatory

behavior, the positive feedback has an important role in modulating

the amplitude and frequency of the oscillations. Thus, the ERK

activity profile seems to be shaped by the composite effects of the

negative feedback, the coupling with a positive feedback, the

inhibitory function of RKIP and the strength of stimulation (see

Fig. 8). The positive-feedback loop operating by ERK inactivating

RKIP confers a switch-like behavior of MEK activity in response

to the gradual increase of RKIP. Thus, RKIP seems to function as

a rheostat that controls the amplitude of ERK signaling within a

certain range. However, RKIP can also impinge on the oscillatory

behavior caused by the negative feedback. An increase in RKIP

concentration enhances the dampening of ppERK levels. These

properties seem to make an ideal noise filter, because they would

Fig. 7. Experimental verification of the switch-like behavior of phosphorylated
MEK. (A) COS-1 cells were transfected with a constant amount of RafΔN in
order to activate MEK and different amounts of RKIP plasmid as indicated in
order to generate a linear increase in RKIP protein levels. Cells were lysed 2
days after transfection, and steady-state MEK activation was assayed by
western blotting with phosphospecific MEK antibodies. Total levels of MEK
and RKIP proteins were also assayed by western blotting. Quantification of
blots by laser densitrometry is shown below as normalized scan units.
(B) LS174T colon cancer cell lines with a doxycycline (Dox)-regulatable Flag-
RKIP or Flag-RKIP S99A expression system were induced with the indicated
amounts of Dox to achieve a graded overexpression of RKIP. As a result of the
Flag-tag, the induced RKIP migrates just above the endogenous RKIP band.
Cells were stimulated with 10 ng/ml TPA for 15 minutes, ppMEK, MEK and
RKIP levels were assayed by immunoblotting (upper panels) and quantified by
laser densitometry (lower panels; expression is given as normalized scan units
on a logarithmic scale). The experiment was repeated twice with consistent
results.

Fig. 8. RKIP determines the dynamics of phosphorylated ERK depending on
stimulation strength. (A) At low RKIP concentrations ERK activity exhibits
damped oscillations. (B) At a high RKIP concentration, total initial ppERK
levels are significantly suppressed and the oscillations become dampened
compared with those observed under conditions of low RKIP expression.J
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permit the cell to interpret a signal both in terms of the oscillation

frequency, as well as in terms of the switch to a sustained activation.

In an organism, cells are constantly exposed to a deluge of growth

factors and hormones, and the ability to distinguish true signals

from noise is probably much more important than we currently

appreciate. Thus, it is an appealing possibility that as a result of the

combination of positive and negative feedbacks cells might sense

transient stimulation in a fundamentally different manner to that

observed under chronic stimulation. When the signal rises and wanes

rapidly in response to a transient stimulation, it will probably depend

on the rise time and amplitude of the signal, as to whether it can

cross the noise threshold and evoke a biological decision. This seems

appropriate for acute responses, which are designed to react to strong

cues. Sustained stimulation that gives rise to oscillations might

designate a decision-making phase, where the cell can integrate

various other stimuli before committing to a biological decision. In

this regard, the dampening of oscillations in response to singular

stimuli could effectively filter out everything other than synergistic

signals. If the stimulus is, however, chronic and strong, the

oscillations eventually can transpose into a bistable switch, which

can determine the fate of the cell. This hypothesis has wide

ramifications for biochemistry and cell biology. Although our data

are consistent with this hypothesis, further explorations in different

systems will be needed.

It will be of particular interest to compare our data with

observations from the PC12 cell system. PC12 is a rat cell line that

proliferates in response to EGF and differentiates into neuron-like

cells in response to nerve growth factor (NGF). Cell proliferation

and differentiation are regulated by integrative operation of multiple

pathways, and it is known that the ERK pathway has an important

role in such regulation, with transient activity specifying proliferation

and sustained activity triggering differentiation (Marshall, 1995).

These distinct ERK dynamics are proposed to be caused by different

feedback architectures or receptor-specific internal mechanisms.

Sasagawa et al. suggested that the crucial difference of the ERK

dynamics in PC12 cells depends on Ras and Rap1 activation, which

are differently regulated by NGF and EGF stimulation (Sasagawa et

al., 2005). Santos and co-workers suggested that the feedback

topology of the ERK pathway dynamically adapts to different

stimulations (Santos et al., 2007). EGF stimulation favors the

configuration where negative feedback dominates and thus leads to

transient ERK activation. By contrast, NGF promotes a positive-

feedback topology leading to sustained ERK activation (Santos et

al., 2007). Interestingly, these investigators suggested that the NGF-

triggered positive feedback involves RKIP inactivation by PKC

(Santos et al., 2007). It will be interesting to test our findings in this

cell system, especially as our results extend these interpretations by

indicating that it is the integration of positive- and negative-feedback

mechanisms that shape ERK activation dynamics. Another interesting

suggestion is that switch-like versus analogue modes of ERK

activation could be encoded by the subcellular compartment where

Raf-1 is activated. Raf-1 activation at the plasma membrane has been

reported to produce a digital, switch-like acute activation of ERK,

whereas activation of Raf-1 at the Golgi membrane results in an

analogue and delayed activation of ERK (Inder et al., 2008; Tian et

al., 2007). The role of the positive- and negative-feedback loops in

these scenarios has not yet been explored. RKIP is mainly cytosolic,

but is also recruited to the plasma membrane in the presence of

activated Ras (Yeung et al., 1999), where it could contribute to the

switch-like signaling by Raf-1. Ras activation at the Golgi seems to

use different guanosine nucleotide exchange factors (Bivona et al.,

2003), which would render the ppERK-mediated feedback to SOS

irrelevant. In addition, the mechanism of Raf-1 activation at the

plasma membrane might be different from that at the Golgi (Inder

et al., 2008), and it is also unknown whether and how RKIP could

affect the Raf-1 signaling emanating from the Golgi. Thus, an

important and fertile avenue of future work will be to explore the

connections between feedback loops and subcellular

compartmentalization.

Most mathematical models of the ERK pathway have been

constructed using nonlinear ordinary differential equations (ODEs).

Once the structure of the mathematical model is determined, the

next challenge will be to identify its kinetic parameters from

experimental data. Parameter estimation for nonlinear systems

remains a difficult task, although a number of techniques are

available (Cho et al., 2003a; Cho et al., 2003b; Kutalik et al., 2004;

Muller et al., 2002; Swameye et al., 2003). In most studies,

parameter values for modeling are taken from the literature. As these

data are often from different laboratories using different assay

conditions and different cell lines, relatively large errors can occur

in simulations because of incomparable experimental conditions.

In such cases, it is impossible to discern whether the discrepancies

between simulations and experimental observations are due to

incorrect parameter values, non-homogeneous data sets or an

inappropriate model structure. To avoid this ‘modeling dilemma’,

we have developed a new method, termed the pseudo-random search

algorithm (PRSA), based on previous random search techniques,

which is described fully in the Materials and Methods section. Using

the PRSA, we have estimated the parameter values from

homogeneous time-series data of MEK and ERK in COS-1 cells.

In addition, we have repeated the simulations over 30% random

parameter variations to test parameter sensitivity. The simulation

results were in agreement with the experimental results, thereby

validating PRSA as a viable approach for parameter estimation. In

summary, we suggest that the combination of positive- and negative-

feedback loops are crucial to produce the dynamic characteristics

of ERK activation.

Materials and Methods
Biochemical measurements in cells
COS-1 cells were grown in Dulbecco’s Modified Minimal Medium plus high glucose
supplemented with 10% fetal calf serum. Cells were transfected using Lipofectamine
(Invitrogen) according to the manufacturer’s instructions. To provide time-course data
used for parameter estimation, 1�107 COS-1 cells were serum starved overnight and
then stimulated with 100 ng/ml TPA for the indicated times. Cells were lysed in 2
ml RBD pull-down buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton X-
100, 0.5% deoxycholate, 0.1% SDS) supplemented with protease inhibitors (1 mM
PMSF, 1 µg/ml Leupeptin). Crude lysates were cleared by pelleting the debris by
centrifugation at 15,000 g for 5 minutes at 4°C. 10 µl of the cleared lysates were
separated by SDS polyacrylamide gel electrophoresis (SDS-PAGE). The gel was
blotted, and the blot was stained for ppMEK and ppERK, respectively, using specific
antibodies (Cell Signaling) and enhanced chemiluminescent detection (ECL),
according to the manufacturer’s instructions (Roche). ECL signals were detected by
autoradiography and scanned. Only non-saturated exposures were scanned and used
for quantification. Then, the antibodies were removed by incubating the blot in
stripping buffer (100 mM glycine pH 3, 3% SDS, 20 mM dithiothreitol) for 15 minutes
at 25°C. Afterwards, the blots were re-stained with antibodies against MEK and ERK,
respectively, as above, to assess the total amount of MEK and ERK. The scans were
evaluated by laser densitometry using the NIH ImageJ (version 1.36b) software. These
experiments were repeated three times.

Biochemical measurements in vitro
For in vitro experiments, recombinant proteins were used. Functional, kinase-
competent Raf-1 was produced in Sf-9 insect cells and purified exactly as described
previously (Hafner et al., 1994). Briefly, Sf-9 cells were infected with a GST-Raf-1
baculovirus at a multiplicity of infection (MOI) of 10, and cells were harvested 48
hours later by resuspension in lysis buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl,
1% Triton X-100) supplemented with phosphatase and protease inhibitor cocktails
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433Dynamic behavior of ERK signaling

(Roche Diagnostics). If required, GST-Raf-1 was activated by co-infection with

baculoviruses expressing mutant H-RasV12 and the tyrosine kinase Lck (both at MOI

of 5). GST-Raf-1 was purified by adsorption to glutathione-Sepharose and three washes

in lysis buffer. Then, the beads were equilibrated with thrombin digestion buffer (20

mM Tris-HCl pH 8.4, 150 mM NaCl, 2.5 mM CaCl2) and Raf-1 was released by

cleaving off the GST portion by thrombin. In the kinase assays, Raf-1 without the

GST portion was used. Recombinant His-tagged MEK and ERK proteins were

produced in E. coli and purified by Ni2+ chromatography, as described (Gardner et

al., 1994). GST-RKIP was produced in E. coli and purified by adsorption to

glutathione-Sepharose beads and subsequent removal of the GST portion by thrombin

cleavage as described (Yeung et al., 2000). For in vitro activation and kinase assays,

recombinant proteins were incubated in the indicated combinations in kinase buffer

(20 mM Tris-HCl, pH 7.4, 20 mM NaCl, 10 mM MgCl2, 1 mM DTT) supplemented

with 20 µM ATP and 2 µCi [γ-32P]ATP for 20 minutes. For the pre-activation

experiments shown in Fig. 2A, Raf-1 was incubated with MEK (200 ng/ml), or MEK

(200 ng/ml) and ERK (1 µg/ml) in the presence of 20 µM ATP for 20 minutes before

2 µCi [γ-32P]ATP and recombinant RKIP (500 µg/ml) was added. For the in vitro

RKIP phosphorylation experiment shown in Fig. 2B, ERK was activated by

preincubation with activated Raf-1 and MEK in the presence of 20 µM ATP for 20

minutes before 2 µCi [γ-32P]ATP and recombinant RKIP proteins (500 µg/ml) were

added. For the in vitro MEK phosphorylation experiment shown in Fig. 2C, Raf-1

was incubated with recombinant MEK (200 ng/ml), or MEK (200 ng/ml) and ERK

(1 µg/ml) in the presence of 20 µM ATP and increasing amounts of recombinant

RKIP protein for 20 minutes. Phosphorylated MEK was detected by immunoblotting

with a ppMEK-specific antibody (Cell Signaling) For the binding assays shown in

Fig. 2D, GST-Raf-1 and GST as control, were expressed in Sf-9 cells and purified

by adsorption to glutathione-Sepharose beads. Beads were washed in lysis buffer and

equilibrated in kinase buffer before incubation with recombinant RKIP (500 µg/ml)

that had been phosphorylated by activated ERK (prepared as described above) using

20 µM ATP and 2 µCi [γ-32P]ATP. The total volume of the reaction was 20 µl.

Establishment and analysis of stable cell lines with inducible RKIP
expression
Full-length RKIP with a 5�-single Flag tag was subcloned into pcDNA5/FRT. The

S99A mutant was generated using the Quikchange Kit (Stratagene) with the primers

RKIP S99A forward, 5�-AGGGCAATGACATCAGC GCTGGCAC AGTCC -

TCTCCG-3� and RKIP S99A reverse, 5�-CGGAGAG GACTG TGCC AGCGCT -

GATGTCATTGCCCT-3�. Full-length wild-type RKIP as well as the S99A mutant

were transfected into the colon cancer cell line LS174T (van de Wetering et al., 2003)

using an Amaxa Nucleofector (Amaxa, Cologne, Germany). For this, solution T and

the program T-020 were used according to the manufacturer’s protocol. Cells were

selected with hygromycin B for 1 week. Then, clones were picked, expanded and

expression of the RKIP constructs was checked with an anti-RKIP antibody (Upstate)

after addition of doxycycline for 48 hours. Over-expression of both the wild-type

RKIP as well as the S99A mutant was approximately twice that of the endogenous

RKIP level. LS174T cells as well as the LS174-T-wtRKIP and LS174T-S99A RKIP

were maintained in RPMI-1640 (Invitrogen) with 5% tetracycline-free FBS (PAA,

Pasching, Austria) and 2 mM glutamine.

For the experiments shown in Fig. 7B, 50,000 cells were seeded in a six-well plate

(Nunc). For regulated expression of RKIP, 0.5-100 ng/ml doxycycline (Sigma) was

added to the medium as indicated. It should be noted that because of the inherently

non-linear response kinetics of this inducible system, doxycycline concentrations need

to be carefully titrated for each line in order to obtain graded expression profiles. 48

hours later, the normal growth medium was replaced and cells were starved overnight

in medium containing 0.1% serum. Then 10 ng/ml TPA (Sigma) was added for 15

minutes before the cells were lysed in ice-cold lysis buffer (10 mM HEPES, pH 7.8,

1.5 mM MgCl2, 10 mM KCl, 0.1% NP-40) supplemented with standard protease

inhibitors (Sigma), incubated on ice for 10 minutes, and sonicated three times for 5

seconds. After centrifugation for 15 minutes at 10,000 g, the supernatant was taken

and protein concentrations were determined using the BCA protein assay kit (Pierce).

Equal aliquots (20 µg) of protein per sample were separated by SDS-PAGE and

immunoblotted as described above.

Construction of a mathematical model
Over past decades, an ever-increasing number of models of the ERK pathway have

been developed, growing in both size and complexity (Orton et al., 2005; Schoeberl

et al., 2002). These mathematical models have been used to investigate various

biological behaviors such as dynamics of single feedback loops, oscillation, and signal

specificity (Kholodenko, 2000). We developed a mathematical model of the ERK

pathway based on the previous models by introducing the positive- and negative-

feedback mechanisms, as well as the regulation of RKIP. The model structure was

verified from experimental data in the literature. In this model we assumed that each

protein kinase (i.e. Ras, Raf, MEK, ERK) has only two possible states: active and

inactive, and that the total amount is conserved. The negative-feedback mechanism

by which the SOS-Grb2 complex is dissociated by the active ERK was assumed to

be allosteric inhibition, and only ERK is considered as a SOS kinase. Both ERK

(Langlois et al., 1995) and RSK2 (Douville and Downward, 1997) have been proposed

as kinases that phosphorylate SOS and mediate the negative feedback. This

simplification seems appropriate because RSK2 is directly activated by ERK (Yoon

and Seger, 2006). The dissociation of the RKIP-Raf complex by phosphorylation

was modeled as competitive inhibition because the kinetic analysis of MEK

phosphorylation by Raf-1 revealed that RKIP diminished only the Km value (i.e.

Michaelis-Menten coefficient) but not the Vmax (i.e. maximum velocity) of the reaction

(Yeung et al., 2000).

where [RasGTP] and [Raf*] denote the activated forms of Ras and Raf, respectively.

[ppMEK] and [ppERK] denote the activated forms of MEK and ERK, respectively.

[pRKIP] denotes the phosphorylated form of RKIP. The upper bar of each protein

kinase (e.g. ERK
––––

) denotes the total amount of the protein which is assumed constant.

u(t) denotes the activating stimulation.

Parameter estimation
Parameter estimation means to find the maximum likelihood parameters that minimize

the discrepancy between experimental data and simulated data obtained from a

mathematical model. The cost function (J) for parameter estimation is defined (Peifer

and Timmer, 2007) by

where M is the number of given experimental data and N is the number of time points

of each experimental data. The output of the mathematical model yj(ti,p) is the value

of the solution yj of the ordinary differential equation (ODE) system at ti with parameter

set p and yj,i is the mean of given repeated measurements of signaling molecules

corresponding to yj at ti with the error variance σj,i.

Parameter estimation of a system represented by nonlinear ODEs is still a difficult

task because no analytical form of the solution is available in general. Therefore,

the parameter estimation of a model from given experimental data is usually carried

out iteratively, starting from some initial guess. Estimated parameters are updated

at each iteration loop such that the difference between the simulated data and given

experimental data is minimized. This update step is implemented based on the

gradient of an object function. In this case, steepest descent methods might become
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trapped into a local minimum and never reach a global minimum (Moles et al.,
2003). However, a random search technique effectively probes the whole parameter
space to minimize a given cost function (Khorasheh et al., 1999; Moles et al., 2003)
and this includes genetic algorithms (Lee et al., 2006; Paterakis et al., 1998). In
this study, we have developed a new parameter estimation method, a pseudo-random
search algorithm (PRSA), as one of such random search techniques. PRSA is
summarized by the following steps: (0) Guess the initial values (seeds) of
parameters to be estimated. (1) Set the range of each parameter such that the upper
and lower boundaries are set to be 1.5-fold and 0.5-fold of the seed, respectively.
These upper and lower boundaries can be adjusted, if needed. (2) Make a pool of
K+2 values for each parameter: K parameter values are chosen within the parameter
range, one is randomly selected out of the range to prevent this algorithm from
trapping into a local minimum, and the other is set to the seed value to prevent
non-converging oscillations near the minimum. (3) Simulate the model for all
possible combinations of parameter values in the pool and compute the
corresponding cost function. (4) Determine a set of the parameter values at which
the cost function is minimal. This minimum value is to be called a ‘local cost value’.
(5) Replace the seeds in Step 1 with the parameter values determined in Step 4.
(6) Iterate Steps 1-5 until the local cost values converge to a steady-state point.
The parameter values at which the local cost value is minimal are considered to
be the maximum-likelihood parameters.

The computational complexity of PRSA is order of R(K+2)N where R is the

number of iterations (through Steps 1-5), K+2 is the size of each parameter pool,

and N is the number of parameters to be estimated. This implies that the

complexity becomes exponentially increased along with the number of parameters.

So, in the case of a large number of parameters, we further employ the following

procedures.

Initial estimation 

We cluster n parameters into m (m�n) sets according to their influence on a system

output and consider cluster parameters representing their clusters. In this case, we

have generated random pairs of parameters to compare their influences on ppERK

dynamics and then clustered 16 parameters (out of 22 parameters in total) into the

following four sets: C1={Kcat_1, Kcat_2, Kcat_3, Kcat_5}, C2={Vmax_1, Vmax_2, Vmax_3,

Vmax_4}, C3={Kmp_1, Kmp_2, Kmp_3, Kmp_4, Kmp_5}, C4={Kmk_1, Kmk_4, Kmk_5}. Then, we

considered four representative cluster parameters, Kcat�C1, Vmax�C2, Kmp�C3 and

Kmk�C4 for each set, respectively. Together with non-clustered parameters (Kcat_4,

Vmax_5, Kmk_1, Vmax_3, Ki_rkip, Ki_erk), we now have ten parameters to be estimated and

applied the PRSA. The parameter estimates obtained in this step are used as nominal

values in the following procedures.

Sensitivity analysis

We identify parameters having relatively significant effects on ppERK dynamics using

sensitivity analysis. The sensitivity function Sj=�sj(t)dt is defined as follows: 

where O(t) is the model output (ppERK level) at time t and ΔPj is a small perturbation

of the j-th parameter Pj. From sensitivity analysis, we found that Ki_rkip, Ki_erk, Vmax_4,

Kmk_4, Kcat_4, Vmax_1 and Kmp_1 have relatively significant effects on the ppERK

dynamics (see Table 1 for details).

Fine tuning

Finally, we estimate the parameters chosen from sensitivity analysis using PRSA to

optimize the goodness-of-fit to the experimental data. The parameter estimates are

summarized in Table 2. The simulation results based on these parameter estimates

correlate well with the time course data of the biochemical experiments (Fig. 3B).

Thus, the mathematical model is quantitatively validated with the experimental data.

We further confirmed that these behaviors are robust over random parameter

variations (30%) with respect to the obtained parameter estimates.
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Table 1. Parameter sensitivity analysis*

Sensitivity function (Sj) with respect to 
different parameter perturbations (ΔPj)

Parameter (Pj) ΔPj =10% ΔPj =20% ΔPj =30% Average

Ki_rkip 0.501 0.510 0.518 0.510 
Ki_erk 0.486 0.488 0.485 0.486 
Vmax_4 0.489 0.484 0.478 0.484 
Kmk_4 0.465 0.473 0.485 0.474 
Kmp_4 0.486 0.474 0.461 0.474 
Kcat_4 0.466 0.472 0.480 0.473 
Vmax_1 0.495 0.463 0.420 0.459 
Kmp_1 0.490 0.449 0.391 0.443 
Vmax_2 0.349 0.341 0.328 0.339 
Kmp_2 0.346 0.332 0.314 0.331 
Vmax_3 0.329 0.323 0.314 0.322 
Kmp_3 0.329 0.323 0.314 0.322 
Kcat_3 0.282 0.285 0.290 0.285 
Kmk_3 0.281 0.285 0.290 0.285 
Kmk_2 0.215 0.216 0.221 0.217 
Kmk_5 0.214 0.216 0.220 0.217 
Kcat_2 0.215 0.216 0.217 0.216 
Kcat_5 0.213 0.214 0.215 0.214 
Vmax_5 0.208 0.210 0.213 0.210 
Kmp_5 0.208 0.208 0.208 0.208 
Kcat_1 0.151 0.151 0.154 0.152 
Kmk_1 0.112 0.114 0.114 0.113 

*Each parameter was perturbed with 10-30% variations. We found that
Ki_rkip, Ki_erk, Vmax_4, Kmk_4, Kmp_4, Kcat_4, Vmax_1 and Kmp_1 have pronounced
effects on ppERK dynamics.

Table 2. Parameters used for in silico simulations*

Kcat_1 (µM–1minute–1) Kmk_1 (µM) Vmax_1 (µM minute–1) Kmp_1 (µM) Ki_erk (µM)
144 1.0 7.56 125.64 0.004
Kcat_2 (µM–1minute–1) Kmk_2 (µM) Vmax_2 (µM minute–1) Kmp_2 (µM)
144 90 7.56 95
Kcat_3 (µM–1minute–1) Kmk_3 (µM) Vmax_3 (µM minute–1) Kmp_3 (µM) Ki_rkip (µM)
144 11 7.56 95 0.07
Kcat_4 (µM–1minute–1) Kmk_4 (µM) Vmax_4 (µM minute–1) Kmp_4 (µM)
53.52 136.88 20.11 191.079
Kcat_5 (µM–1minute–1) Kmk_5 (µM) Vmax_5 (µM minute–1) Kmp_5 (µM)
144 90 28.8 95
Ras
–––

(µM) Raf
–––

(µM) MEK
––––

(µM) ERK
––––

(µM) RKIP
––––

(µM)
0.35 0.12 0.36 0.7 0.24

*These were estimated from the in vitro experimental data of COS-1 cells using PRSA. The total amount of Raf, MEK, ERK and RKIP were measured in
COS-1 cells and the total Ras level was taken from previous experimental data (Schoeberl et al., 2002).
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