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Abstract

We deal with the nonlinear Schrödinger equation

−∆u + V (x)u = f(u) in RN ,

where V is a (possible) sign changing potential satisfying mild assumptions and the non-
linearity f ∈ C1(R,R) is a subcritical and superlinear function. By combining variational
techniques and the concentration-compactness principle we obtain a positive ground state
solution and also a nodal solution. The proofs rely in localizing the infimum of the associ-
ated functional constrained to Nehari type sets.
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1 Introduction

The existence of stationary solutions of the form ψ(x, t) = u(x)e−
iEt
h for the nonlinear

Schrödinger equation

ih
∂ψ

∂t
= − h2

2m
∆ψ + V (x)ψ − f(|ψ|) ψ

|ψ|
has been extensively studied in the past twenty years involving the use of variational meth-
ods (see for instance [8, 14, 23] and references therein). Substituting in the equation and
making suitable changes of variables leads to the following semilinear elliptic equation

(P ) −∆u + V (x)u = f(u) in RN .

Works on the existence of positive solutions for (P ) when the potential V is bounded from
below by a positive constant and f has subcritical growth, using mountain pass arguments
are well known ([23, 14, 2]). Existence of standing waves of problem (P ) by minimization
of constrained variational problems was shown in [20, 8, 18] among many others. Several
new results concerning sign changing potentials V have appeared lately (e.g. [24, 11, 13,
15, 16, 17]). Furthermore, nodal solutions of (P ) in a bounded domain are proved to exist
in [22] and in unbounded domain in [29, 3], for instance.

In this paper we are concerned with the existence of a positive ground state and addi-
tionally a nodal solution for the problem (P ) with V : RN → R being a (possible) sign
changing potential satisfying very mild assumptions and the nonlinearity f : R→ R being
a superlinear function of class C1 with subcritical growth.

In order to impose precise conditions on V , let us denote V = V + − V − with V ± :=
max{±V, 0}. We list below the basic assumptions on V .

(V0) V ∈ Lt
loc(RN ) for some t > N/2;

(V1) V +
∞ := lim|x|→∞ V (x) > 0;

(V2) if we denote by S the best constant to the Sobolev embedding, namely

S := inf
{
‖∇u‖2L2(RN ) : u ∈ D1,2(RN ) and ‖u‖L2∗ (RN ) = 1

}
,

then
‖V −‖LN/2(RN ) < S.

After the work of P.L. Lions [20], conditions like (V1) have appeared in many works
with positive or sign changing potentials [29, 23, 9, 11, 7]. Some conditions related to (V2)
have already appeared in [5, 24, 11, 12, 6] where the authors considered problem (P ) or
some of its variants.

Concerning the nonlinearity f , we start by assuming that

(f0) f ∈ C1(R,R);
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(f1) there exist 2 ≤ q + 1 < η + 1 < 2∗ := 2N/(N − 2) such that

lim
|s|→0

|f ′(s)|
|s|q−1

= 0 and lim sup
|s|→∞

|f ′(s)|
|s|η−1

< +∞.

Conditions (f0)− (f1) and (V1)− (V2) show that problem (P ) has a variational struc-
ture. More specifically, the weak solutions of problem (P ) are precisely the critical points
of the C1-functional I : W 1,2(RN ) → R given by

I(u) :=
1
2

∫

RN

(|∇u|2 + V (x)u2
)
dx−

∫

RN

F (u) dx,

where F (s) :=
∫ s

0
f(τ)dτ . In order to obtain such critical points, we use minimax theo-

rems and the concentration-compactness principle. The main idea is to use (V1) to correctly
localize the infimum of I constrained to Nehari type sets. To achieve this objective, we also
assume that f satisfies the well-known Ambrosetti-Rabinowitz superlinear condition and a
monotonicity condition. More specifically, we shall impose the following

(f2) there exists θ > 2 such that

0 < θF (s) ≤ sf(s) for all s 6= 0;

(f3) the function s 7→ f(s)/s is increasing in (0, +∞).

We recall that a solution u1 of (P ) is called ground state solution if it possesses mini-
mum energy among all solutions, that is,

I(u1) = min {I(u) : u 6= 0 is a solution of (P )} .

Our first existence result is

Theorem 1.1 Suppose that f satisfies (f0)− (f3) and V satisfies (V0)− (V2). Then
problem (P ) has a positive ground state solution provided V satisfies

(V3) V (x) ≤ V +
∞ for all x ∈ RN , V 6≡ V +

∞ .

In our second result we are interested in the question of multiple solutions for (P ). In
order to obtain a solution of (P ) which changes sign in RN , we need a condition stronger
than (f3), namely

(f̂3) there exist η ≤ σ ≤ 2∗ − 1 and C > 0 such that

f ′(s)s− f(s) ≥ C|s|σ−1s, for all s ∈ R.

We can state now our multiplicity results as follows.
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Theorem 1.2 Suppose that f is odd and satisfies (f0)− (f2) and (f̂3). Suppose also
that V satisfies (V0)− (V2) and, for some γ < V +

∞q/(q + 1), there holds

(V̂3) V (x) ≤ V +
∞ − Ce−γ|x| for all x ∈ RN .

Then problem (P ) has in addition to a positive ground state solution a solution
which changes sign.

As far as a positive solution is concerned, our result is complementary to previous
results since the potential we consider may change sign and satisfy mild integral conditions.
Moreover, we may have V 6∈ LN/2(RN ) and therefore Theorem 1.1 also complements the
results of [23, 7].

On the other hand, very little is known about existence of a sign changing solution for
this problem and hence our interest. We notice that, unlike in [24], we do not assume that
V is bounded from below. Moreover, we do not assume any kind of regularity for V − at
the origin and the set {x ∈ RN : V −(x) > 0} has finite measure. Thus, our results are not
contained in [11]. More generally, the potential Vε : RN → R given by

Vε(x) :=





|x|2
1+|x|2 , for |x| > 1,

− ε
|x|α for |x| ≤ 1,

where ε > 0 is small and 0 < α < 2, satisfies our hypotheses but the arguments of
[23, 7, 24, 11] do not apply for this potential. Finally, we would like to cite the recent
papers [15, 16], where the authors have considered a singularly perturbed version of (P )
and have obtained some results related, but not comparable, with ours.

As previously said, the proof of the results rely in applying variational methods together
with a concentration-compactness argument, as in [26], in order to overcome the problem
of lack of compactness of Sobolev embeddings in unbounded domains. Some of the ideas
and calculations are inspired by the papers [10, 9, 1].

The paper is organized as follows. In Section 2 we present the variational framework
and a version of the well known ”splitting lemma” which is going to be the main tool in
posterior compactness arguments. The existence of a ground state solution is proved in
Section 3. Finally, Section 4 is devoted to the proof of existence of a solution for (P )
which changes sign.

2 The variational framework

In this section we present the variational framework to deal with problem (P ) and also give
some preliminaries which are useful later. Since (f̂3) implies (f3), throughout the paper
we assume that f satisfies (f0)− (f3) and V satisfies (V0)− (V2). We denote by ‖u‖p the
Lp(RN )-norm of u ∈ Lp(RN ). If u ∈ L1(RN ), we write only

∫
u instead of

∫
RN u(x)dx.

We start with a straightforward consequence of our hypotheses on V .

Lemma 2.1 The quadratic form

u 7→
∫ (|∇u|2 + V +(x)u2

)
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defines a norm in W 1,2(RN ) which is equivalent to the usual one.

Proof. In view of condition (V1) there exists R > 0 such that

ν :=
V +
∞
2
≤ V +(x) ≤ 3V +

∞
2

= 3ν, for all x ∈ RN \BR(0),

where BR(0) := {x ∈ RN : |x| < R}. This, Hölder’s inequality and the definition of S
provide

∫ (|∇u|2 + V +(x)u2
)

=
∫
|∇u|2 +

∫

BR(0)

V +(x)u2dx +
∫

|x|≥R

V +(x)u2dx

≤
∫
|∇u|2 + ‖V +‖LN/2(BR(0))‖u‖22∗ + 3ν

∫

|x|≥R

u2dx

≤ (1 + C1)
∫
|∇u|2 + 3ν

∫
u2

≤ max {1 + C1, 3ν}
∫ (|∇u|2 + u2

)
,

with C1 := S−1‖V +‖LN/2(BR(0)).
On the other hand, we have that

∫

BR(0)

u2dx ≤ |BR(0)|2/N

(∫

BR(0)

|u|2∗dx

)2/2∗

≤ C2

∫
|∇u|2,

where C2 := S−1|BR(0)|2/N and |BR(0)| denotes the Lebesgue measure of BR(0).
Hence,

∫ (|∇u|2 + u2
)

=
∫
|∇u|2 +

∫

BR(0)

|u|2dx +
∫

|x|≥R

|u|2dx

≤ (1 + C2)
∫
|∇u|2 +

1
ν

∫

|x|≥R

V +(x)u2dx

≤ max
{
1 + C2, ν

−1
} ∫

(|∇u|2 + V +(x)u2),

and the lemma is proved.
In view of the above result we can set X as being the Hilbert space W 1,2(RN ) endowed

with the inner product

〈u, v〉X :=
∫ (∇u · ∇v + V +(x)uv

)
, for all u, v ∈ X

and associated norm given by

‖u‖X :=
(∫

|∇u|2 + V +(x)u2

)1/2

, for all u ∈ X.
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Since ‖ · ‖X is equivalent to the usual norm of W 1,2(RN ), the embedding X ↪→ Lp(RN )
is continuous for any 2 ≤ p ≤ 2∗.

By (f1), for any given δ > 0 there exists Cδ > 0 such that

|f(s)| ≤ δ|s|q + Cδ|s|η, for all s ∈ R. (2.1)

Recalling that 2 ≤ q + 1 < η + 1 < 2∗, we can integrate the above inequality to conclude
that the functional u 7→ ∫

F (u) is well defined in X . Moreover, since V − ∈ LN/2(RN ),
we have that

∫
V −(x)u2 ≤ ‖V −‖N/2‖u‖22∗ ≤ S−1‖V −‖N/2‖u‖2X < ∞, (2.2)

for any u ∈ X . Thus, the functional I : X → R given by

I(u) :=
1
2
‖u‖2X − 1

2

∫
V −(x)u2 −

∫
F (u) (2.3)

is well defined. By using standard arguments (see [8, Theorem A.VI]) we can show that
I ∈ C1(X,R) with

I ′(u)ϕ =
∫

(∇u∇ϕ + V (x)uϕ)−
∫

f(u)ϕ, for all u, ϕ ∈ X.

Consequently, critical points of the functional I are precisely the weak solutions of problem
(P ).

We now recall a well known compactness condition: we say that I satisfies the Palais-
Smale condition at level c ∈ R ((PS)c for short) if any sequence (un) ⊂ X such that
I(un) → c and I ′(un) → 0 possesses a convergent subsequence.

Lemma 2.2 If (un) ⊂ X is a (PS)c sequence for I, then (un) is bounded in X.

Proof. Since I(un) → c and I ′(un) → 0, we can use (f2) and (2.2) to get

c + on(1)‖un‖X = I(un)− 1
θ
I ′(un)un

≥
(

1
2
− 1

θ

)(
1− ‖V −‖N/2

S

)
‖un‖2X ,

where on(1) denotes a quantity approaching zero as n →∞. The above inequality implies
that (un) is bounded in X .

In order to get compactness, it is important to consider the limit problem associated to
(P ), namely the autonomous problem

(P∞) −∆u + V +
∞u = f(u) in RN ,

whose solutions are the critical points of the functional I∞ : X → R given by

I∞(u) :=
1
2

∫
(|∇u|2 + V +

∞u2)−
∫

F (u).
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Let N∞ be the Nehari manifold of I∞, that is

N∞ := {u ∈ X \ {0} : I ′∞(u)u = 0}

and consider the related minimization problem

c∞ := inf
u∈N∞

I∞(u).

The proof of the next result can be found in Berestycki-Lions [8].

Proposition 2.1 Problem (P∞) has a positive and radially symmetrical solution u ∈
X such that I∞(u) = c∞. Moreover, if the function f is odd, for any 0 < δ <

√
V +∞,

there exists a constant C = C(δ) > 0 such that

u(x) ≤ Ce−δ|x|, for all x ∈ RN . (2.4)

In order to prove that the functional I satisfies some compactness condition we shall
need the following version of a result due to Struwe [26] (see also [4]).

Lemma 2.3 (Splitting Lemma) Let (un) ⊂ X be such that

I(un) → c, I ′(un) → 0

and un ⇀ u0 weakly in X. Then I ′(u0) = 0 and we have either

(a) un → u0 strongly in X, or

(b) there exists k ∈ N, (yj
n) ∈ RN with |yj

n| → ∞, j = 1, . . . , k, and nontrivial
solutions u1, . . . , uk of the problem (P∞), such that

I(un) → I(u0) +
k∑

j=1

I∞(uj) (2.5)

and ∥∥∥∥∥∥
un − u0 −

k∑

j=1

uj(· − yj
n)

∥∥∥∥∥∥
X

→ 0.

The proof of this kind of compactness global lemma is by now standard, and therefore
we only provide a sketch of the proof. Since we are not dealing with homogeneous non-
linearities, we shall need the following technical result, proof of which can be found in [1,
Lemma 3.1].

Lemma 2.4 Let Ω ⊆ RN be an open set, s ≥ 2 and (gn) ⊂ Ls(Ω) ∩ L2∗(Ω) be a
sequence bounded in L2∗(Ω) such that gn(x) → 0 a.e in Ω.
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(i) If f satisfies (f1), then
∫

Ω

|F (gn + w)− F (gn)− F (w)| = on(1),

for each w ∈ Lη+1(Ω) ∩ Lq+1(Ω).

(ii) If f satisfies (f1)− (f3), then
∫

Ω

|f(gn + w)− f(gn)− f(w)|r = on(1), for all 1 < r ≤ 2,

and w ∈ L2(Ω) ∩ L2∗(Ω).

We present below the main ideas of the proof of Lemma 2.3.

Proof of Lemma 2.3. We follow the proof presented in [28, Section 8.1]. Firstly, the
compactness of the embedding X ↪→ Lp

loc(RN ), (2.1) and straightforward calculations
show that I ′(u0) = 0.

Step 1: By setting u1
n := un − u0, we have that

(a.1) ‖u1
n‖2X = ‖un‖2X − ‖u0‖2X + on(1),

(b.1) I∞(u1
n) → c− I(u0),

(c.1) I ′∞(u1
n) → 0.

Indeed, (a.1) follows from the weak convergence of (un). In order to prove (b.1) we first
notice that, since u0 ∈ L2(RN ) and un → u0 in L2

loc(RN ), we have that
∫

V +
∞unu0 =

∫
V +
∞u2

0 + on(1).

This equality, the weak convergence of (un) and Lemma 2.4(i) imply that

I∞(u1
n)− I(un) + I(u0) =

1
2

∫
(V +
∞ − V )((un)2 − (u0)2) + on(1). (2.6)

Now, for each ε > 0 there exists R > 0 such that |V +
∞ − V (x)| < ε on RN \ BR(0).

Setting BR := BR(0), we can use the boundedness of (un) and Hölder’s inequality to get
∣∣∣∣
∫

(V +
∞ − V )((un)2 − (u0)2)

∣∣∣∣ ≤
∫

BR

|V +
∞ − V ||(un)2 − (u0)2|

+ε

∫

RN\BR

|(un)2 − (u0)2|

≤ C1‖un − u0‖L2(BR) + C2ε = on(1).

The above expression and (2.6) imply that (b.1) holds. For the proof of (c.1) it suffices to
argue as above and use Lemma 2.4(ii). We omit the details.
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Let us define
δ := lim sup

n→∞
sup

y∈RN

∫

B1(y)

|u1
n|2 dx.

If δ = 0, it follows from a result due to P.L. Lions [20, Lemma I.1] that u1
n → 0 in Lt(RN )

for any 2 < t < 2∗. Since I ′∞(u1
n) → 0, it follows that u1

n → 0 in X and the proof is
complete. If δ > 0, we obtain a sequence (y1

n) ⊂ RN such that
∫

B1(y1
n)

|u1
n|2 dx >

δ

2
.

We now define a new sequence (v1
n) ⊂ X by setting v1

n := u1
n(·+ y1

n). Notice that (v1
n) is

bounded and therefore we may assume that v1
n ⇀ u1 in X and v1

n → u1 a.e on RN . Since
∫

B1(0)

|v1
n|2dx >

δ

2

it follows from the Sobolev embedding that u1 6≡ 0. Moreover, since u1
n ⇀ 0 in X , we

have that (y1
n) is unbounded. Hence, going to a subsequence if necessary, we may assume

that |y1
n| → ∞. Furthermore, we can check that I ′∞(u1) = 0.

Step 2: We now define u2
n := u1

n − u1(· − y1
n). As done for (u1

n), we can check that

(a.2) ‖u2
n‖2X = ‖un‖2X − ‖u0‖2X − ‖u1‖2X + on(1),

(b.2) I∞(u2
n) → c− I(u0)− I∞(u1),

(c.2) I ′∞(u2
n) → 0.

We now proceed by iteration. Notice that if u is a nontrivial critical point of I∞ and u
is a ground state of problem (P∞), then we have by (f2) that

I∞(u) ≥ I∞(u) =
∫ (

1
2
f(u)u− F (u)

)
= β > 0,

and therefore it follows from (b.2) above that the iteration must finish at some index k ∈ N.
This concludes the proof.

We present below the compactness result which will be used in the proofs of our main
theorems.

Corollary 2.1 The functional I satisfies (PS)c for any c < c∞.

Proof. Let (un) ⊂ X be such that

I(un) → c < c∞ and I ′(un) → 0.

Lemma 2.2 implies that (un) is bounded in X and therefore, going to a subsequence if
necessary, we can suppose that un ⇀ u0 weakly in X . By Lemma 2.3 we have I ′(u0) = 0.
Hence, we conclude from (f2) that

I(u0) =
∫ (

1
2
f(u0)u0 − F (u0)

)
≥ 0.
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If un 6→ u0 in X , we can invoke Lemma 2.3 again to obtain k ∈ N and nontrivial solutions
u1, . . . , uk of (P∞) satisfying

lim
n→∞

I(un) = c = I(u0) +
k∑

j=1

I∞(uj) ≥ kc∞ ≥ c∞,

contrary to the hypothesis. Hence un → u0 strongly in X and the corollary is proved.

3 Positive ground state solution

We devote this section to the proof of Theorem 1.1. As stated before, we are looking for
critical points of the functional I .

We start by introducing the Nehari manifold of I defined as

N := {u ∈ X \ {0} : I ′(u)u = 0} .

Let
c1 := inf

u∈N
I(u).

In what follows we present some properties of c1 and N . For the proofs we refer to [28,
Chapter 4]. First we observe that hypothesis (f3) gives that, for any u ∈ X \ {0}, there
exists a unique tu > 0 such that tuu ∈ N . The maximum of the function t 7→ I(tu) for
t ≥ 0 is achieved at t = tu.

We now note that, in view of (2.1) and the Sobolev embeddings, the origin is a local
minimum of I . Moreover, condition (f2) provides C > 0 such that

F (s) ≥ C|s|θ, for all s ∈ R.

Without loss of generality, we can assume that θ ∈ (2, 2∗). Thus, if u 6= 0 and t > 0, we
have

I(tu) ≤ t2

2
‖u‖2X − t2

2

∫
V −(x)u2 − Ctθ

∫
|u|θ

and we conclude that I(tu) → −∞ as t → ∞. These observations show that I has the
Mountain Pass geometry. By using (f3) and the same arguments presented in the proof of
[28, Theorem 4.2], we can prove that c1 is positive, it coincides with the Mountain Pass
level of I and has the following characterization

c1 = inf
g∈Γ

max
t∈[0,1]

I(g(t)) = inf
u∈X\{0}

max
t≥0

I(tu) > 0, (3.1)

where Γ := {g ∈ C([0, 1], X) : g(0) = 0, I(g(1)) < 0}.
In what follows we use the above remarks to obtain a relation between c1 and c∞.

Proposition 3.1 Suppose that V satisfies (V3). Then

0 < c1 < c∞.
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Proof. Let u ∈ N∞ be given by Proposition 2.1 and tu > 0 be the unique number such
that tuu ∈ N . We claim that tu < 1. Indeed, by using condition (V3) we deduce that

∫
f(tuu)tuu = t2u

∫
(|∇u|2 + V (x)u2)

< t2u

∫
(|∇u|2 + V +

∞u2) = t2u

∫
f(u)u,

that is ∫ (
f(tuu)

tuu
− f(u)

u

)
u2 < 0.

This inequality and (f3) imply that tu < 1.
It follows from (3.1) and its previous remarks that

c1 ≤ max
t≥0

I(tu) = I(tuu) =
∫ (

1
2
f(tuu)tuu− F (tuu)

)
.

By (f3), we have that h : (0,∞) → R defined by

h(t) :=
∫ (

1
2
f(tu)tu− F (tu)

)

is strictly increasing. Hence, we conclude that

c1 ≤ h(tu) < h(1) =
∫ (

1
2
f(u)u− F (u)

)
= c∞

and the proposition is proved.

We are now ready to prove our first result.

Proof of Theorem 1.1. Since I satisfies the geometry of the Mountain Pass Theorem
there exists a sequence (un) ⊂ X such that

I(un) → c1 and I ′(un) → 0.

Proposition 3.1 and Corollary 2.1 imply that the sequence (un) strongly converges to a
function u ∈ X such that I(u) = c1 > 0 and I ′(u) = 0. Clearly u 6= 0 and therefore u is
a ground state solution of (P ).

In order to show that u is nonnegative we first note that, since we are interested in
positive solutions, we can suppose that f(s) = 0 for any s ≤ 0. Thus, since I ′(u)u− = 0,
we get

‖u−‖2X =
∫

V −(x)(u−)2 ≤ ‖V −‖N/2

S

∫
|∇u−|2

and therefore (
1− ‖V −‖N/2

S

)
‖u−‖2X = 0,

from which follows that u− ≡ 0. Elliptic regularity and the strong maximum principle
imply that u > 0 in RN .
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Remark 3.1 Let u1 ∈ X be the solution given by Theorem 1.1. In view of Propo-
sition 2.1, we can argue as in [19, Theorem 3.1] to conclude that u1 has the same
decay of the solution u of the limit problem, that is, for any 0 < δ <

√
V +∞ , there

exists C = C(δ) > 0 such that

u1(x) ≤ Ce−δ|x|, for all x ∈ R. (3.2)

4 Nodal solution

We start by introducing the closed set

N± :=
{
u ∈ X : u+ 6≡ 0, u− 6≡ 0, I ′(u+)u+ = 0 = I ′(u−)u−

}
.

Note that any solution of (P ) which belongs to N± changes sign. It is easy to check that I
is bounded from below in N± and there exists ρ > 0 such that

‖u±‖X ≥ ρ, for all u ∈ N±. (4.1)

Let us consider the following minimization problem

c2 := inf
u∈N±

I(u).

In our next result we establish the relation between c2 and the other minimizers c1

and c∞. For its proof, we follow the approach of [9]. Since f is nonhomogeneous, the
calculations are more involved.

Proposition 4.1 Suppose that V satisfies (V1) and (V̂3). Then

0 < c2 < c1 + c∞. (4.2)

Proof. Let u be given by Proposition 2.1 and define un(x) := u(x − xn), where xn :=
(0, ...0, n). From now on we denote by u1 a positive ground state of (P ) given by Theorem
1.1. For any α, β > 0 we consider the functions

h±(α, β, n) :=
∫
|∇(αu1 − βun)±|2 + V (x)|(αu1 − βun)±|2

−
∫

f((αu1 − βun)±)(αu1 − βun)±.

Recalling that I ′(u1)u1 = 0 and using (f3) we get
∫ (

|∇ (u1/2)|2 + V (x) (u1/2)2
)
−

∫
f (u1/2) (u1/2)

=
∫ (

f(u1)
u1

− f(u1/2)
(u1/2)

) (u1

2

)2

> 0.

(4.3)
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Analogously,
∫ (

|∇ (2u1)|2 + V (x) (2u1)
2
)
−

∫
f(2u1)(2u1) < 0. (4.4)

Claim 1. For n sufficiently large there holds
∫ (

|∇ (un/2)|2 + V (x) (un/2)2
)
−

∫
f (un/2) (un/2) > 0, (4.5)

∫ (
|∇ (2un)|2 + V (x) (2un)2

)
−

∫
f(2un)(2un) < 0. (4.6)

We only prove (4.5), since the other inequality can be proved in the same way. First, notice
that

∫ (
|∇ (un/2)|2 + V (x) (un/2)2

)
−

∫
f (un/2) (un/2) = γ1 + Jn, (4.7)

where
γ1 :=

∫ (
|∇ (un/2)|2 + V +

∞ (un/2)2
)
−

∫
f (un/2) (un/2)

and
Jn :=

1
4

∫ (
V (x)− V +

∞
)
u2

n.

It follows from (f3) that γ1 > 0. Thus, it suffices to check that Jn → 0 as n →∞. Given
ε > 0 we can use (V1) to obtain R > 0 such that |V (x)− V +

∞ | ≤ ε for |x| > R. Hence,
∣∣∣∣∣
∫

RN\BR(0)

(V (x)− V +
∞)u2

n

∣∣∣∣∣ ≤ ε‖un‖2 = ε‖u‖2. (4.8)

We now recall that, since u is radially symmetric, by the Radial Lemma (see [25]) there
exists C > 0 such that

|u(x)| ≤ C|x|(1−N)/2‖u‖W 1,2(RN ), a.e. x ∈ RN .

Since |x− xn| ≥ |xn| − |x| ≥ n−R on BR(0), we get
∣∣∣∣∣
∫

BR(0)

(V (x)− V +
∞)u2

n

∣∣∣∣∣ ≤ ‖V − V +
∞‖LN/2(BR(0))

(∫

BR(0)

(u(x− xn))2
∗
)(N−2)/N

≤ C1

(
1

n−R

)(N−1)(N−2)/2N

‖u‖2W 1,2(RN ).

The above estimate and (4.8) imply that Jn → 0 as n → ∞. This proves (4.5) and
establishes the claim.

Since u(x) → 0 as |x| → ∞, it follows from (4.3)-(4.6) that there exists n0 > 0 such
that {

h+(1/2, β, n) > 0
h+(2, β, n) < 0,
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for n ≥ n0 and β ∈ [1/2, 2]. Now, for all α ∈ [1/2, 2], we have
{

h−(α, 1/2, n) > 0
h−(α, 2, n) < 0.

Hence, we can apply a variant of the Mean Value Theorem due to Miranda [21] (see also
[27]), to obtain α∗, β∗ ∈ [1/2, 2] such that h±(α∗, β∗, n) = 0, for any n ≥ n0. Thus,

α∗u1 − β∗un ∈ N± for n ≥ n0.

In view of the definition of c2, it suffices to show that

sup
1
2≤α,β≤2

I(αu1 − βun) < c1 + c∞,

for some n ≥ n0.
In order to do this, we compute

I(αu1 − βun) =
1
2

∫ (|∇(αu1)|2 + |∇(βun)|2) +
1
2

∫
V (x)

(
(αu1)2 + (βun)2

)

−αβ

∫
(∇u1∇un + V (x)u1un)−

∫
F (αu1 − βun)±

∫
F (αu1).

Since u1 is a positive solution of (P ) we have that
∫

(∇u1∇un + V (x)u1un) ≥ 0,

and therefore

I(αu1 − βun) ≤
{

I(αu1) +
∫

F (αu1)
}

+
1
2

∫ (|∇(βun)|2 + V (x)(βun)2
)

−
∫

F (αu1 − βun)±
∫

V +
∞(βun)2 ±

∫
F (βun),

= I(αu1) + I∞(βun) +
1
2

∫ (
V (x)− V +

∞
)
(βun)2 − Jα,β,n,

(4.9)
where

Jα,β,n :=
∫

(F (αu1 − βun)− F (αu1)− F (βun)) .

Claim 2. For some n ≥ n0, we have

1
2

∫ (
V (x)− V +

∞
)
(βun)2 − Jα,β,n < 0. (4.10)

If this is true we can use (4.9) and I∞(βun) = I∞(βu) to get

sup
1
2≤α,β≤2

I(αu1 − βun) < sup
α≥0

I(αu1) + sup
β≥0

I∞(βu) = c1 + c∞,
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which concludes the proof of the lemma.
It remains to prove Claim 2. We start by noting that, in view of (V̂3) and (2.4), we have

1
2

∫ (
V (x)− V +

∞
)
(βun)2 =

β2

2

∫ (
V (x + xn)− V +

∞
)
u(x)2

≤ −C2

∫
e−γ|x+xn|u(x)2

≤ −C2e
−γn

∫
e−γ|x|u(x)2 = −C3e

−γn.

(4.11)

On the other hand, it follows from [1, Lemma 2.4] and (2.1) that

|Jα,β,n| ≤
∫

f(αu1)un + f(βun)u1

≤ C4

(∫
uq

1un +
∫

uη
1un +

∫
u1u

q
n +

∫
u1u

η
n

)
.

(4.12)

Setting An := Bn/(q+1)(0) we can use Holder’s inequality and (2.4) to write

∫

An

uq
1un ≤

(∫
uq+1

1

)q/(q+1) (∫

An

uq+1
n dx

)1/(q+1)

≤ C5

(∫

An

e−δ(q+1)|x−xn|dx

)1/(q+1)

.

Since |xn − x| ≥ |xn| − |x| = n− |x|, we get

∫

An

uq
1undx ≤ C5e

−δn

(∫

An

eδ(q+1)|x|dx

)1/(q+1)

= C6e
−δn

(∫ n/(q+1)

0

eδ(q+1)rrN−1dr

)1/(q+1)

.

(4.13)

We now recall that, for any fixed t > 0 we have
∫

etrrN−1dr = etrP (r),

where

P (r) :=
rN−1

t
− (N − 1)

t2
rN−2 +

(N − 1)(N − 2)
t3

rN−3 + · · ·+ (−1)N+1 (N − 1)!
tN

.

Hence, by taking t := δ(q + 1), we get

∫ n/(q+1)

0

eδ(q+1)rrN−1dr = eδnP (n/(q + 1)) = C7e
nδ + C8,
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where C7 and C8 depend only on δ. The above estimate and (4.13) provide
∫

An

uq
1undx ≤ C9

(
e−δneδn/(q+1) + e−δn

)
≤ C10e

−δn( q
q+1 ). (4.14)

Analogously we have

∫

RN\An

uq
1un dx ≤

(∫

RN\An

uq+1
1 dx

)q/(q+1) (∫
(u(x− xn))q+1dx

)1/(q+1)

≤ C11

(∫

RN\An

e−δ(q+1)|x|dx

)q/(q+1)

= C12

(∫ ∞

n/(q+1)

e−δ(q+1)rrN−1dr

)q/(q+1)

≤ C13e
−δn( q

q+1 ).

This together with (4.14) implies that
∫

uq
1un ≤ C14e

−δn( q
q+1 ). (4.15)

Since q < η, we can proceed as above to obtain C15 > 0 such that

max
{∫

uη
1un,

∫
u1u

q
n,

∫
u1u

η
n

}
≤ C15e

−δn( q
q+1 ).

The above estimate, (4.15), (4.12) and (4.11) imply that

1
2

∫ (
V (x)− V +

∞
)
(βun)2 − Jα,β,n ≤ −C3e

−γn + C16e
−δn( q

q+1 ).

Since γ <
√

V +∞q/(q + 1), we can choose 0 < δ <
√

V +∞ sufficiently close to
√

V +∞ in
such way that γ < δq/(q + 1). It follows for this choice and the above expression that
(4.10) is satisfied for n large enough. This concludes the proof of the proposition.

In the our next result, we adapt some ideas from [10] (see also [29, 9]).

Proposition 4.2 There exists a sequence (un) in N± satisfying

I(un) → c2 and I ′(un) → 0. (4.16)

Proof. Since I is bounded from below on N±, we can apply the Ekeland variational prin-
ciple to obtain a sequence (un) ⊂ N± satisfying

c2 ≤ I(un) ≤ c2 +
1
n
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and
I(v) ≥ I(un)− 1

n
‖v − un‖X , for all v ∈ N±. (4.17)

For any fixed ϕ ∈ X , n ∈ N, we introduce the C1-functions h±n : R3 → R given by

h±n (t, s, l) :=
∫
|∇(un + tϕ + su+

n + lu−n )±|2

+
∫

V (x)|(un + tϕ + su+
n + lu−n )±|2

−
∫

f((un + tϕ + su+
n + lu−n )±)(un + tϕ + su+

n + lu−n )±.

Note that h±n (0, 0, 0) = 0, (∂h+
n /∂l)(0, 0, 0) = 0 and (∂h−n /∂s)(0, 0, 0) = 0. Moreover,

recalling that I ′(u+
n )u+

n = 0 and using (f̂3), we get

∂h+
n

∂s
(0, 0, 0) = 2

∫
(|∇u+

n |2 + V (x)(u+
n )2)

−
∫

f ′(u+
n )(u+

n )2 + f(u+
n )(u+

n )

=
∫

f(u+
n )(u+

n )− f ′(u+
n )(u+

n )2

≤ −C

∫
|u±n |σ+1.

(4.18)

Claim 1. There exists C1 > 0 such that
∫
|u±n |σ+1 ≥ C1 > 0.

In order to prove the claim we first notice that (un) is bounded in X . Moreover, for any
given δ > 0, we can use (f1), I ′(u+

n )u+
n = 0 and (2.2) to obtain Cδ > 0 such that

(
1− ‖V −‖N/2

S

)
‖u+

n ‖2X ≤ δ

∫
|u+

n |q+1 + Cδ

∫
|u+

n |η+1.

Arguing by contradiction we suppose that, up to a subsequence,
∫ |u+

n |σ+1 → 0. Since
(un) is bounded in X and 2 ≤ q+1 < η+1 ≤ σ+1, we can use interpolation to conclude
that the right hand side of the above expression goes to zero, contradicting (4.1). The same
can be done for u−n and therefore the claim holds.

It follows from (4.18) and the above claim that

∂h+
n

∂s
(0, 0, 0) < 0.

Similarly, we can check that
∂h−n
∂l

(0, 0, 0) < 0.
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Hence, we can apply the Implicit Function Theorem to obtain δn > 0 and two C1-functions
sn, ln : (−δn, δn) → R such that sn(0) = ln(0) = 0 and

h±n (t, sn(t), lm(t)) = 0. (4.19)

Claim 2. There exists C2 > 0 such that

|s′n(0)| ≤ C2, |l′n(0)| ≤ C2.

Indeed, by using (4.19) we get

s′n(0) =
(∂h+

n /∂t) (0, 0, 0)(
∂h+

n /∂s
)
(0, 0, 0)

= −
2

∫ (∇u+
n∇ϕ + V (x)u+

n ϕ
)−

∫
(f ′(u+

n )u+
n + f(u+

n ))ϕ
∫

f ′(u+
n )(u+

n )2 − f(u+
n )u+

n

.

This, (4.19), (f1) and the boundedness of un in X imply that |s′n(0)| ≤ C2 for some
C2 > 0. A similar argument can be applied for the sequence (l′n(0)).

We now note that, by (4.19), we have that

un + tϕ + sn(t)u+
n + ln(t)u−n ∈ N±, for any t ∈ (−δn, δn)

and therefore we can use (4.17) to get

I(un + tϕ + sn(t)u+
n + ln(t)u−n )− I(un) ≥ − 1

n
‖tϕ + sn(t)u+

n + ln(t)u−n ‖X , (4.20)

for any t ∈ (−δn, δn).

Claim 3. We have that
I ′(un)ϕ ≥ − 1

n
‖ϕ‖X − C3

n
. (4.21)

If this is true, it follows that

‖I ′(un)‖ ≤ C4

n
,

and therefore the second statement in (4.2) holds and the proof is complete.
It remains to prove Claim 3. Let wn := tϕ + sn(t)u+

n + ln(t)u−n and notice that, since
I ′(un)u±n = I ′(u±n )u±n = 0, we have that

I(un + wn)− I(un) = I ′(un)wn + r(t, n) = tI ′(un)ϕ + r(t, n), (4.22)

where r(t, n) = o(‖tϕ + sn(t)u+
n + ln(t)u−n ‖X) as t → 0. This expression, (4.20), the

boundedness of (un) and Claim 2 imply that

I ′(un)ϕ + r(t,n)
t ≥ − 1

n‖ϕ‖X − 1
n

∥∥∥ sn(t)
t u+

n + ln(t)
t u−n

∥∥∥
X

≥ 1
n‖ϕ‖X − C3

n ,
(4.23)
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for any t > 0. By using Claim 2 again we conclude that

r(t, n)
t

=
r(t, n)

‖tϕ + sn(t)u+
n + ln(t)u−n ‖X

.
‖tϕ + sn(t)u+

n + ln(t)u−n ‖X

t
= o(1),

as t → 0. Letting t → 0+ in (4.23) we get (4.21) and therefore the proposition is proved.

In view of the two previous propositions we can argue as in [9] to prove Theorem 1.2.
For the sake of completeness, we present the proof here.

Proof of Theorem 1.2. Let (un) ⊂ N± be the sequence given by the above proposition.
We can easily check that (un) is bounded in X . Hence, up to a subsequence, un ⇀ u0

weakly in X with I ′(u0) = 0. In view of Lemma 2.3 we have either un → u0 strongly
in X or there exists u1, . . . , uk nontrivial solutions of (P∞) satisfying the conclusions of
Lemma 2.3(b). Since c1 < c∞ it follows from (2.5) that k ≤ 1.

Suppose that u0 ≡ 0. In this case, since c2 > 0, we have that k = 1 and therefore

‖un − u1(· − y1
n)‖X → 0.

Since |y1
n| → ∞ and (un) ⊂ N±, the convergence above and (4.1) imply that (u1)± ∈

N∞. Hence,

c1 + c∞ > c2 = I∞(u1) = I∞((u1)+) + I∞((u1)−) ≥ 2c∞

contradicting c1 < c∞. Thus u0 6≡ 0 and we can use c2 < c1 + c∞ again to conclude
that k = 0, that is, un → u0 strongly in X . It follows from (4.1) that u0 ∈ N± is a sign
changing solution of (P ).
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