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POSITIVE BIORTHOGONAL CURVATURE ON S2 × S2

RENATO G. BETTIOL

(Communicated by Lei Ni)

Abstract. We prove that S2×S2 satisfies an intermediate condition between
Ric > 0 and sec > 0. Namely, there exist metrics for which the average of the
sectional curvatures of any two planes tangent at the same point, but separated
by a minimum distance in the 2-Grassmannian, is strictly positive. This can
be done with an arbitrarily small lower bound on the distance between the
planes considered. Although they have positive Ricci curvature, these metrics
do not have nonnegative sectional curvature. Such metrics also have positive
biorthogonal curvature, meaning that the average of sectional curvatures of
any two orthogonal planes is positive.

1. Introduction

Let (M, g) be a 4-dimensional Riemannian manifold. For each plane σ ⊂ TpM
at a point p ∈ M , denote by σ⊥ the orthogonal plane to σ; i.e., σ⊕ σ⊥ = TpM is a
g-orthogonal direct sum. Define the biorthogonal (sectional) curvature of σ as the
average of the sectional curvatures of σ and σ⊥, i.e.,

sec⊥g (σ) :=
1
2

(
secg(σ) + secg(σ

⊥)
)
.

The Hopf Conjecture, that asks if S2×S2 admits a metric with sec > 0, remains one
of the most intriguing open problems in Riemannian geometry. With the standard
product metric g0, at every point p ∈ S2×S2 there exists σ ⊂ TpM with sec⊥g0(σ) =
0. Namely, any mixed plane σ at p (i.e., spanned by vectors of the form (X, 0) and
(0, Y )) is such that σ⊥ is also a mixed plane; hence secg0(σ) = secg0(σ

⊥) = 0. A
natural question in this context is if the weaker condition sec⊥ > 0 can be satisfied
in S2 × S2 [2].

The goal of this note is to give a positive answer, also covering a stronger cur-
vature positivity condition, that can be defined in any dimension. Namely, choose
a distance (inducing the standard topology) on the Grassmannian bundle Gr2TM
of planes tangent to M , and for each θ > 0 and σ ⊂ TpM , let

secθg(σ) := min
σ′⊂TpM

dist(σ,σ′)≥θ

1
2

(
secg(σ) + secg(σ

′)
)
.

Theorem. For every θ > 0, there exist Riemannian metrics gθ on S2 × S2 with
secθgθ > 0, arbitrarily close to the standard product metric g0 in the Ck-topology,

k ≥ 0. In particular, S2 × S2 admits metrics of positive biorthogonal curvature.
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The condition secθg > 0 means that at every point p ∈ M , the average of sectional
curvatures of any two planes σ1, σ2 ⊂ TpM that are at least θ > 0 apart from each
other is positive. One can intuitively think of θ as a lower bound for the “angle”
between the planes considered. Notice that if θ1 < θ2, then secθ1g > 0 clearly implies

secθ2g > 0. Furthermore, for every metric g on M , there exists θg > 0 such that if

secθg > 0 for some 0 < θ ≤ θg, then Ricg > 0; see Proposition 4.1. In particular, for

4-manifolds, if θ ≤ minp∈M,σ⊂TpM dist(σ, σ⊥), then secθg > 0 implies sec⊥g > 0.

The construction of gθ is so that these metrics converge to a limit metric g0

as θ → 0 (possibly different from the product metric), in the Ck-topology, for
any k ≥ 0. This convergence easily implies that, for θ > 0 sufficiently small, the
metrics gθ have positive Ricci curvature (Proposition 4.1) and positive biorthogonal
curvature. In particular, the above theorem shows that a natural interpolating
condition between Ric > 0 and sec > 0 is satisfied on S2 × S2.

We stress that sec⊥ > 0 alone does not imply Ric > 0, as illustrated by S1 × S3

with the standard product metric. This metric clearly has sec⊥ > 0, but since
S1 × S3 has infinite fundamental group, it does not support any metrics with
Ric > 0. Thus, in order to have a condition of this type that is stronger than
Ric > 0, it is crucial that secθ > 0 can be satisfied no matter how small θ > 0,
and that the corresponding metrics converge. In general, sec⊥ > 0 only implies
positive scalar curvature, which poses some topological restrictions on 4-manifolds
(e.g., vanishing of all the Seiberg-Witten invariants), but these restrictions are by
far not as strong as the ones implied by sec > 0 or Ric > 0. In particular, although
sec⊥ > 0 is comparatively flexible, generic smooth 4-manifolds do not support
metrics with this property. Another indication of this relative flexibility of sec⊥ > 0

is that CP 2#CP
2
also admits metrics with this property (Proposition 5.1), while,

similarly to S2 × S2, it remains an open question whether it admits a metric with
sec > 0.

Our metrics gθ with secθ > 0 on S2 × S2 can be chosen invariant under the
antipodal action of Z2 ⊕ Z2. Thus, for all θ > 0, the quotient RP 2 × RP 2 also
admits metrics with secθ > 0, arbitrarily close to the standard product metric. This
illustrates a remarkable difference between secθ > 0 (in particular, sec⊥ > 0) and
sec > 0 since, by Synge’s Theorem, RP 2 ×RP 2 cannot have a metric with sec > 0.
It is, however, somewhat expected that obstructions of Synge type do not detect
these average curvature conditions, since even finiteness of the fundamental group
goes unnoticed. We also remark that (S2 × S2, gθ) has many points with planes
of zero curvature (and even negative curvature); however, any two such planes are
always within distance θ from one another in the Grassmannian of planes tangent
at that point. In this way, θ corresponds to a measure of how big the regions
formed by planes with nonpositive curvature can be in the Grassmannian. It would
be interesting to know if metrics with secθ > 0 on S2 × S2 can also be constructed
while keeping sec ≥ 0, as this could give a quantitative insight on the possibility of
existence of quasipositively curved metrics.

The techniques used to construct all of the above metrics are (smooth) defor-
mations. Metric deformations to improve curvature have a long history, stemming
from Berger and his students in the 1970s to the recent construction proposed
by Petersen and Wilhelm [7, 8] of a positively curved exotic sphere. Of partic-
ular importance in the present note are techniques developed by Müter [6] and
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POSITIVE BIORTHOGONAL CURVATURE ON S2 × S2 4343

Strake [11,12], respectively, regarding Cheeger deformations and deformations pos-
itive of first-order. The Cheeger deformation is a method to attempt to increase
curvature on nonnegatively curved manifolds with symmetries by shrinking the
metric in the direction of orbits of a large isometry group. This technique was
introduced by Cheeger [1], inspired by the construction of Berger metrics on odd-
dimensional spheres, where the round metric is shrunk in the direction of the Hopf
fibers. Müter [6] carried out a systematic study of Cheeger deformations in his
PhD thesis under W. Meyer, establishing ground for a much better understanding
of these deformed metrics. Strake [12], another PhD student of W. Meyer during
the same period, studied metric deformations of nonnegatively curved metrics for
which the first variation of the sectional curvature of any zero curvature plane is
positive. These deformations are called positive of first-order, and if the manifold
is compact, they yield actual positively curved metrics. They also observed that,
in this infinitesimal sense, Cheeger deformations are nonnegative of first-order.

Our deformation process from the product metric g0 to a metric with secθ > 0
has two steps in which the above techniques are combined. The first is a Cheeger
deformation, described in detail by Müter [6, 13]. More precisely, we consider the
cohomogeneity one diagonal SO(3)-action on S2×S2 and shrink g0 in the direction
of the orbits. This deformation gives a family of metrics gt, t > 0, with secgt ≥ 0
and much fewer planes of zero curvature than g0. Namely, (S2 × S2, gt) has a
circle’s worth of zero curvature planes on points that lie on the diagonal or the
anti-diagonal ±ΔS2 = {(p,±p) : p ∈ S2} ⊂ S2 × S2, and a unique zero curvature
plane at any other point. This means that secθ ≥ 0, and equality holds only for
some planes whose base point is in one of the submanifolds ±ΔS2 (Proposition 2.3).
Next, for fixed t > 0, set g := gt. The second step is to employ a first-order
local conformal deformation gs = g + s h, where h = φ g and φ is supported in a
tubular neighborhood of ±ΔS2. Given the geometry of (S2 × S2, g), we construct
φ such that the first derivative with respect to s of the average of two gs-sectional
curvatures is positive (Proposition 3.2). The function φ is proportional to the
squared g-distance to ±ΔS2, multiplied by a cutoff function. The strategy for such
a construction is adapted from Strake [11, 12]. Finally, a standard compactness
argument (Proposition 3.3) implies that secθgs > 0 for all sufficiently small s > 0,
proving the desired result.

This paper is organized as follows. In Section 2, we review basic aspects of
Cheeger deformations, following Müter [6, 13]. We describe the metric on S2 × S2

obtained by a Cheeger deformation with respect to the diagonal SO(3)-action in
terms of secθ. In Section 3, we analyze the effects of a first-order deformation
and construct the variation starting from the Cheeger deformed metric that proves
the above theorem. Some remarks on the geometry of the constructed metrics are
given in Section 4. Finally, we briefly discuss 4-manifolds with positive biorthogonal

curvature (including the construction for CP 2#CP
2
) in Section 5.

2. First step: Cheeger deformation

Although the techniques used in this section are mostly available elsewhere in
the literature (see [6, 13, 14]), we briefly recall a few basic aspects as a service to
the reader. For convenience, we use the same notation as the above references.
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2.1. Cheeger deformation. Let (M, g) be a Riemannian manifold and G a com-
pact Lie group that acts on M by isometries. The Cheeger deformation of g is a
1-parameter family gt, t ≥ 0, of G-invariant metrics on M , defined as follows. Let
Q be a bi-invariant metric on G, and endow M×G with the product metric g+ 1

tQ.
Consider the submersion

(2.1) ρ : M × G → M, ρ(p, h) = h−1p,

and define gt as the metric on M that turns ρ into a Riemannian submersion. The
family of metrics gt extends smoothly across t = 0, with g0 = g, thus providing
a deformation of such metric. Since secQ ≥ 0, it follows immediately from the
Gray-O’Neill formula that if secg0 ≥ 0, then also secgt ≥ 0, t ≥ 0. As we will see,
many planes with zero curvature with g0 usually gain positive curvature with gt.

For each p ∈ M , denote by Gp the isotropy group at p and by gp its Lie algebra.
Fix the Q-orthogonal splitting g = gp ⊕ mp, and identify mp with the tangent
space TpG(p) to the G-orbit through p via action fields. More precisely, we identify

X ∈ mp with X∗
p = d

ds exp(sX)p
∣∣
s=0

∈ TpG(p). This determines a gt-orthogonal

splitting TpM = Vp ⊕ Hp in vertical space Vp := TpG(p) = {X∗
p : X ∈ mp} and

horizontal space Hp := {v ∈ TpM : gt(v,Vp) = 0}. Notice that the dimensions of
Vp and Hp may vary with p ∈ M , hence these are not distributions.

Let Pt : mp → mp be the Q-symmetric automorphism that relates the metrics Q
and gt, i.e., such that

(2.2) Q(Pt(X), Y ) = gt(X
∗
p , Y

∗
p ), X, Y ∈ mp.

It is an easy computation that Pt is determined by P0 in the following way:

(2.3) Pt = (P−1
0 + t Id)−1 = P0 (Id+tP0)

−1, t ≥ 0;

see [13, Prop 1.1]. Thus, if we let Ct : TpM → TpM be the g-symmetric automor-
phism that relates g and gt, i.e., such that

(2.4) g(Ct(X), Y ) = gt(X,Y ), X, Y ∈ TpM,

we then get

(2.5) Ct(X) = P−1
0 Pt(X

V) +XH, X ∈ TpM,

where XV and XH are the vertical and horizontal components of X respectively.
This reveals how the geometry of gt changes with t, since if P0 has eigenvalues λi,
then Ct has eigenvalues

1
1+tλi

corresponding to the vertical directions and eigenval-
ues 1 in the horizontal directions. In other words, as t grows, the metric gt shrinks
in the direction of the orbits and remains the same in the orthogonal directions.

2.2. Curvature evolution. Let us now analyze how the curvature changes under
this deformation. Henceforth, we assume that the initial metric g0 has secg0 ≥ 0.
As explained above, this implies secgt ≥ 0 for all t ≥ 0. Given X ∈ TpM , denote
by Xm the unique vector in mp such that (Xm)

∗
p = XV

p . Also, given a plane
σ = span{X,Y }, we write

C−1
t (σ) := span{C−1

t X,C−1
t Y }.

As explained by Ziller [13], the crucial observation of Müter is that, to analyze
the evolution of secgt , it is much more convenient to study secgt(C

−1
t (σ)) rather

than secgt(σ). In more recent literature, the 1-parameter family of bundle au-

tomorphisms induced by C−1
t in the Grassmannian bundle Gr2TM of planes on
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M is being called Cheeger reparametrization; see [7, 8]. The following result of
Müter [6, Satz 3.10] (see also [13, Cor 1.4]) summarizes how the curvature of gt
evolves.

Proposition 2.1. Let gt be the Cheeger deformation of g0, secg0 ≥ 0. Given σ =

span{X,Y } ⊂ TpM , consider the unnormalized gt-sectional curvature of C−1
t (σ):

kc(t) :=
∥∥C−1

t X ∧ C−1
t Y

∥∥2
gt
secgt(C

−1
t (σ)) = gt

(
Rt(C

−1
t X,C−1

t Y )C−1
t Y,C−1

t X
)
,

where Rt is the curvature tensor of gt. If secg0(σ) = 0, then:

(i) k′c(0) ≥ 0.
(ii) If k′c(0) = 0 and [Xm, Ym] 	= 0, then k′′c (0) = 0, k′′′c (0) > 0 and kc(t) > 0

for all t > 0.
(iii) If k′c(0) = 0 and [Xm, Ym] = 0, then kc(t) = 0 for all t > 0.

In particular, if secg0(σ) = 0 and [Xm, Ym] 	= 0, i.e., the plane span{P0Xm, P0Ym}
has positive curvature in (G, Q), then secgt(C

−1
t (σ)) > 0 for all t > 0.

Observe that, from (iii), if σ is tangent to a totally geodesic flat torus in M that
contains a horizontal direction, then secgt(C

−1
t (σ)) = 0, t ≥ 0, i.e., σ remains flat.

On the other hand, we also get the following important positive result:

Corollary 2.2. Assume G = SO(3) or G = SU(2), so that secQ > 0. If secg0(σ) = 0
and the image of the projection of σ ⊂ Vp ⊕ Hp onto Vp is 2-dimensional, then

secgt(C
−1
t (σ)) > 0 for all t > 0. In other words, up to the Cheeger reparametriza-

tion, zero curvature planes with nondegenerate vertical projection have positive cur-
vature with gt, for all t > 0.

2.3. The case of S2 × S2. Consider S2 × S2 endowed with the standard product
metric g0 and the diagonal SO(3)-action:

A · (p1, p2) = (Ap1, A p2), p = (p1, p2) ∈ S2 × S2 ⊂ R
3 ⊕ R

3, A ∈ SO(3).

This is a cohomogeneity one isometric action with orbit space a closed interval, so
there are codimension one principal orbits (corresponding to interior points of the
interval) and two singular orbits (corresponding to the endpoints); see [14]. These
singular orbits are the diagonal and anti-diagonal submanifolds:

±ΔS2 := {(p1,±p1) : p1 ∈ S2} ⊂ S2 × S2.

The principal isotropy Gp, p 	∈ ±ΔS2, is trivial, since it consists of orientation-
preserving isometries of R3 that fix two linearly independent directions. The sin-
gular isotropies are formed by orientation-preserving isometries of R3 that fix one
direction, hence are isomorphic to SO(2). Thus, the group diagram of this action
is {1} ⊂ {SO(2), SO(2)} ⊂ SO(3).

Following Müter [6], we identify the Lie algebra of SO(3) with R
3 by

so(3) 
 Z =

⎛
⎝ 0 −z3 z2

z3 0 −z1
−z2 z1 0

⎞
⎠ ←→

⎛
⎝ z1

z2
z3

⎞
⎠ = z ∈ R

3.

Considering (so(3), Q) endowed with the standard bi-invariant metric, the above is
an isometric identification with Euclidean space (R3, 〈·, ·〉). In this way, since the
Lie exponential in SO(3) is given by matrix exponentiation, the action field induced
by Z ∈ so(3) is

(2.6) Z∗
p = (Z∗

p1
, Z∗

p2
) = (Z p1, Z p2) = (z ∧ p1, z ∧ p2) ∈ Tp(S

2 × S2).
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So, if x, y ∈ R3 are such that 〈x, p1〉 = 〈y, p2〉 = 0, then for all z ∈ R3,

(2.7) g0
(
(X∗

p1
, Y ∗

p2
), Z∗

p

)
= 〈x ∧ p1, z ∧ p1〉+ 〈y ∧ p2, z ∧ p2〉 = 〈x+ y, z〉.

Thus, the vector (X∗
p1
,−X∗

p2
) ∈ Tp(S

2×S2) is horizontal whenever x ∈ {p1, p2}⊥ :=

{x ∈ R3 : 〈x, p1〉 = 〈x, p2〉 = 0}. By dimensional reasons, it then follows that the
horizontal space for the SO(3)-action on S2 × S2 at p = (p1, p2) is

Hp =
{
(X∗

p1
,−X∗

p2
) ∈ Tp(S

2 × S2) : x ∈ {p1, p2}⊥
}
.

Recall that the vertical space is Vp = {(X∗
p1
, X∗

p2
) : X ∈ mp}; see (2.6). For general

x, y ∈ R
3, analogously to (2.7), we have

g0
(
X∗

p , Y
∗
p

)
= g0

(
(X∗

p1
, X∗

p2
), (Y ∗

p1
, Y ∗

p2
)
)
= 〈x ∧ p1, y ∧ p1〉+ 〈x ∧ p2, y ∧ p2〉

= 〈p1 ∧ (x ∧ p1), y〉+ 〈p2 ∧ (x ∧ p2), y〉 =
〈
(2x− 〈x, p1〉p1 − 〈x, p2〉p2), y

〉
.

From (2.2), the above is equal to 〈P0 X,Y 〉, so we get an explicit formula for
P0 : mp → mp in our example:

P0 X = 2X − 〈X, p1〉p1 − 〈X, p2〉p2.
In particular, it follows that the subspace {p1, p2}⊥ ⊂ mp is invariant under P0 and
hence under Pt and Ct; see (2.3) and (2.5).

Let π : {p1, p2}⊥ → {p1, p2}⊥/ ∼ be the projection onto the corresponding real
projective space. For each x ∈ {p1, p2}⊥, consider the vertizontal1 plane

(2.8) σπ(x) := span{(X∗
p1
, 0), (0, X∗

p2
)} = span{(X∗

p1
, X∗

p2
), (X∗

p1
,−X∗

p2
)}.

This is the unique mixed plane at p that contains the horizontal vector (X∗
p1
,−X∗

p2
).

Thus, from Corollary 2.2, {σπ(x) ⊂ Tp(S
2×S2) : x ∈ {p1, p2}⊥} are the only g0-flat

planes at p that remain gt-flat for t > 0, up to the Cheeger reparametrization. As a
matter of fact, by the above, the Cheeger reparametrization fixes such planes, i.e.,

(2.9) C−1
t (σπ(x)) = σπ(x).

In conclusion, for any t > 0, secgt ≥ 0 and secgt(σ) = 0 if and only if σ =
σπ(x) ⊂ Tp(S

2 × S2) for some x ∈ {p1, p2}⊥. In particular, gt-flat planes at p are

parametrized by π({p1, p2}⊥). Thus, in (S2×S2, gt), t > 0, there is a circle’s worth
of zero curvature planes at each p ∈ ±ΔS2, a unique zero curvature plane at each
p 	∈ ±ΔS2, and all other planes have positive curvature. In terms of secθ, we thus
have the following.

Proposition 2.3. Let gt be the Cheeger deformation of (S2×S2, g0) with respect to
the diagonal SO(3)-action. Then, for any θ > 0 and t > 0, secθgt ≥ 0 and equality

only holds for planes at some p = (p1,±p1) ∈ ±ΔS2. If σ ⊂ Tp(S
2 × S2) has

secθgt(σ) = 0, then σ = σπ(x) for some x ∈ {p1}⊥; in particular, σ is not tangent to

the submanifold ±ΔS2.

Proof. The above statements follow immediately from Müter [6, Satz 4.26] (see also
Ziller [13, p. 5] and Kerin [4, Rem 4.3]), as well as from the above discussion. �

Remark 2.4. For n ≥ 3, although there exists an analogous cohomogeneity one
SO(n+1)-action on Sn×Sn, the corresponding Cheeger deformation fails to produce
so many positively curved planes. This is due to the fact that SO(n+ 1), n ≥ 3, is

1That is, this plane is spanned by one vertical and one horizontal vector.
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not positively curved; cf. Corollary 2.2. As a result, this step in the construction
of our metrics with secθ > 0 only works on Sn × Sn if n = 2.

3. Second step: First-order local conformal deformation

As seen above, the Cheeger deformed metrics gt, t > 0, have secθgt ≥ 0, and

equality holds only for certain planes (of the form (2.8)) at ±ΔS2. In order to get
these planes to also have secθ > 0, we now carry out a (local) first-order conformal
deformation, inspired by results of Strake [11]. More precisely, choose g to be a
Cheeger deformed metric gt for any t > 0 and consider the new 1-parameter family

(3.1) gs := g + s h, s ∈ ]− ε, ε[,

where h is some symmetric (0, 2)-tensor to be defined and ε > 0 is small enough
so that gs is still a Riemannian metric. Given the above geometry of the Cheeger
deformed metric g, we will choose h such that

(3.2)
d

ds

(
secgs(σ1) + secgs(σ2)

)∣∣∣
s=0

> 0, for all σ1, σ2 ⊂ Tp(S
2 × S2) with

p ∈ ±ΔS2 and secg(σ1) = secg(σ2) = 0.

The crucial observation that makes this possible is that these planes are never
tangent to ±ΔS2. Our choice will be such that h is supported only near ±ΔS2 and
is pointwise proportional to g, justifying the terminology. We start by recalling the
first variation of secgs(σ); see Strake [11, Sec 3.a].

Proposition 3.1. Let (M, g) be a Riemannian manifold with secg ≥ 0 and X,Y ∈
TpM be g-orthonormal vectors that span a g-flat plane σ ⊂ TpM . Consider a
first-order variation gs = g + s h. Then the first variation of secgs(σ) is given by

d

ds
secgs(σ)

∣∣∣
s=0

= ∇X∇Y h(X,Y )− 1
2∇X∇Xh(Y, Y )− 1

2∇Y ∇Y h(X,X).

In particular, if h = φ g, then

(3.3)
d

ds
secgs(σ)

∣∣∣
s=0

= − 1
2 Hessφ (X,X)− 1

2 Hessφ (Y, Y ).

Now, observe that if N ⊂ M is an embedded submanifold, the squared distance
function ψ(p) = distg(p,N)2 is smooth in a sufficiently small tubular neighborhood
of N . The gradient of ψ at p vanishes if p ∈ N , and points in the outward radial
direction if p 	∈ N . The Hessian of ψ at p ∈ N is given by

(3.4) Hessψ (X,X) = 2g(X⊥, X⊥) = 2‖X⊥‖2g, X ∈ TpM,

where X = X�+X⊥ ∈ TpN⊕(TpN)⊥ is the g-orthogonal decomposition in tangent
and normal parts to N .

Proposition 3.2. Consider the metrics gs on S2×S2, given by (3.1). There exists
a smooth function φ : S2 × S2 → R, supported in a neighborhood of ±ΔS2, such
that if h = φ g, then (3.2) holds.

Proof. From Proposition 2.3, the only planes σ with secθg(σ) = 0 are of the form

σπ(x) ⊂ T(p1,±p1)(S
2 × S2) for some x ∈ {p1}⊥. These planes are vertizontal, i.e.,

they contain a direction normal to ±ΔS2.
Let us analyze the plane σπ(x) at (p1, p1) ∈ ΔS2, the case of (p1,−p1) ∈ −ΔS2

being totally analogous. As mentioned above, the function ψ+(p) = distg(p,ΔS2)2
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is smooth in a tubular neighborhood D(ΔS2). Let χ+ : S2 × S2 → R be a smooth
cutoff function that vanishes outside D(ΔS2) and is equal to 1 in a smaller tubular
neighborhood of ΔS2. According to (2.8), (3.3) and (3.4), if we set h+ = −(χ+ψ+) g
and g+s = g + s h+, then

d

ds
secg+

s
(σπ(x))

∣∣∣
s=0

=
∥∥(X∗

p1
,−X∗

p1
)
∥∥2
g
> 0.

Defining ψ− and χ− analogously, we get h− = −(χ−ψ−) g and g−s = g + s h− with
the same property as above for planes at (p1,−p1) ∈ −ΔS2 with zero g-curvature.
Thus, the function φ := −(χ+ψ+) − (χ−ψ−) has the desired properties. More
precisely, h = φ g = h+ + h− is such that gs = g + s h coincides with g±s near
±ΔS2. Hence d

ds secgs(σ)
∣∣
s=0

> 0 for all planes σ at ±ΔS2 such that secg(σ) = 0;
in particular, (3.2) holds. �

In order to conclude the proof of the Theorem in the Introduction, we quote the
following elementary fact.

Proposition 3.3. Let f : ] − ε, ε[×K → R be a smooth function, where K is a
compact manifold (possibly with boundary). Assume that f(0, x) ≥ 0 for all x ∈ K

and ∂f
∂s (0, x) > 0 if f(0, x) = 0. Then, there exists s∗ > 0 such that f(s, x) > 0 for

all x ∈ K and 0 < s < s∗.

Proof. Follows by a routine compactness argument, using the Taylor polynomial of
f(s, x) at s = 0. �

Consider the following compact subset of the fibered product of two copies of
the Grassmannian bundle Gr2TM , where M = S2 × S2:

Kθ :=
{
(p, σ1, σ2) ∈ M ×Gr2TM ×Gr2TM : σ1, σ2 ⊂ TpM, dist(σ1, σ2) ≥ θ

}
.

Due to (3.2) and θ > 0, the function

f : ]− ε, ε[×Kθ −→ R, f(s, σ1, σ2) =
1
2

(
secgs(σ1) + secgs(σ2)

)
satisfies the hypotheses of Proposition 3.3. Hence there exists sθ > 0 such that
f(s, σ1, σ2) > 0 for all (σ1, σ2) ∈ Kθ and 0 < s < sθ. This is equivalent to
secθgs > 0, for 0 < s < sθ, so we can finally choose gθ := gs, for any 0 < s < sθ.
Moreover, it follows immediately from the above results (Propositions 2.3, 3.1 and
3.3) that gθ can be constructed arbitrarily close to the standard product metric
g0, in any Ck-topology, k ≥ 0, by choosing t > 0 (the duration of the Cheeger
deformation) and s > 0 sufficiently small. This concludes the proof of the Theorem
in the Introduction.

4. Remarks on the construction

4.1. First-order deformations and the Hopf conjecture. The above first-
order deformation gs works to get secθ > 0 on all of M = S2×S2 because the only
points p ∈ M that have planes σ1, σ2 ⊂ TpM with f(0, σ1, σ2) = 0 are contained in
the submanifolds ±ΔS2, which admit a relatively compact neighborhood and where
∂f
∂s (0, σ1, σ2) > 0. The same cannot be done for the sectional curvature because
at every point there is a plane σ with secg(σ) = 0. The only type of first-order

deformation that would give secgs > 0 would be one with d
ds secgs(σ)

∣∣
s=0

> 0 for all

σ with sec(σ) = 0. It was proved by Strake [11, Prop. 4.3] that such a deformation
does not exist on (S2 × S2, g), due to the presence of totally geodesic flat tori.
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4.2. Other compact subsets. Notice that condition (3.2) does not contain any
information on the compact subset Kθ, which is the domain considered for the func-
tion f(s, σ1, σ2) =

1
2

(
secgs(σ1) + secgs(σ2)

)
. This means that the same argument

above could be applied to obtain positivity of the average of sectional curvatures of
planes that satisfy some other conditions codified in the form of a compact subset

K ⊂
{
(p, σ1, σ2) ∈ M ×Gr2TM ×Gr2TM : σ1, σ2 ⊂ TpM

}
,

where M = S2 × S2. Replacing the domain of f by K, provided that K does not
intersect the diagonal (i.e., the subset Δ = {(p, σ, σ) : σ ⊂ TpM}), we get from
Proposition 3.3 that f(s, σ1, σ2) > 0 for s > 0 small enough and all (σ1, σ2) ∈ K.
We must require that K be away from the diagonal, otherwise f(0, σ1, σ2) would
also have zeros on points outside the singular orbits ±ΔS2, and there is no first-
order variation that accounts for ∂f

∂s (0, σ1, σ2) > 0 at all such points. Notice also
that for every K with the required properties above, there exists θ > 0 such that
K ⊂ Kθ, so all other possibilities are accounted for by using the domains Kθ.

4.3. Ricci curvature. Since we know that gθ can be constructed arbitrarily Ck-
close (for any k ≥ 0) to the product metric g0, it automatically follows that such
metrics can be chosen with positive Ricci curvature. Nevertheless, the existence of
metrics with Ric > 0 can be directly deduced from the existence of metrics with
secθ > 0 for arbitrarily small θ > 0, that converge to a limit metric as θ → 0, in
the Ck-topology, k ≥ 0, as we shall now prove. This abstract property is hence
stronger2 than Ric > 0 for compact manifolds (and, of course, weaker than sec > 0),
regardless of the dimension of M . In this way, the Theorem in the Introduction
shows that a natural interpolating condition between Ric > 0 and sec > 0 is satisfied
on S2 × S2.

Proposition 4.1. Let M be a compact n-dimensional manifold such that for every
θ > 0 there exists a metric gθ with secθgθ > 0. Assume that there exists a metric g0

on M such that gθ → g0 in the C0-topology, as θ → 0. Then Ricgθ > 0 for θ > 0

sufficiently small; in particular, if gθ → g0 also in the C2-topology, then Ricg0 ≥ 0.3

Proof. For any metric g on M , define

(4.1) θg := min
p∈M

⎛
⎜⎜⎜⎝ min

v∈TpM,
g(v,v)=1

⎛
⎜⎜⎜⎝ min

w1,w2∈TpM,
g(v,wj)=0,

g(wi,wj)=δij

dist
(
span{v, w1}, span{v, w2}

)
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ .

The above defines a positive number, that depends continuously on the metric g,
such that if secθg > 0 for some 0 < θ ≤ θg, then Ricg > 0. In fact, Ricg(v) > 0 for
any direction v, since this is a sum of (n − 1) sectional curvatures whose pairwise
average is positive, because secθg > 0.

Given the continuous family G := {gθ : θ ∈ [0, 1]}, let θ∗ := min{θg : g ∈ G}. It
then follows that θ∗ > 0, and hence for any 0 < θ ≤ θ∗, we have Ricgθ > 0. �

2Notice that the same is not true for sec⊥ > 0 on 4-manifolds, as illustrated by S1 × S3 with
the standard product metric. The crucial point is that secθ > 0 has to be satisfied no matter how
small θ > 0, and the metrics that do so do not diverge or degenerate.

3Moreover, in this case, one can also easily prove that secg0 ≥ 0.
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Remark 4.2. An immediate consequence of the above is that, although S1×S3 has
a metric with sec⊥ > 0, it cannot satisfy secθ > 0 for all θ > 0 with metrics that
do not diverge (otherwise, it would have a metric with Ric > 0).

4.4. Negative sectional curvatures. Although the first step in our deformation
preserves sec ≥ 0 from the product metric, the second step does not. In fact, for
all θ > 0 there are planes σ in (S2 × S2, gθ) with secgθ (σ) < 0. This follows from
an obstruction to positive first-order deformations observed by Strake [11, Sec. 4].
Namely, all zero planes in the Cheeger deformed metric g = gt from Section 2 are
tangent to a totally geodesic flat torus; see Müter [6, Satz 4.26]. Pick one such
torus i : T 2 ↪→ (S2 × S2, g) that intersects ±ΔS2. The first-order deformation
gs = g + s h on S2 × S2 induces a first-order deformation i∗gs on T 2. As observed
by Strake [11, Lemma 4.1], since i(T 2) is totally geodesic, the first variation for the
sectional curvature on T 2 coincides with the ambient variation:

(4.2)
d

ds
seci∗gs(σ)

∣∣∣
s=0

=
d

ds
secgs(di(σ))

∣∣∣
s=0

.

In fact, this follows directly by differentiating the Gauss equation of i(T 2) ⊂ (S2 ×
S2, gs) at s = 0. Let i(p) be a point where i(T 2) intersects±ΔS2. Then if σ = TpT

2,
di(σ) is such that secθg(di(σ)) = 0, so the construction in Section 3 is such that (4.2)

is positive. By the Gauss-Bonnet Theorem, A(s) =
∫
T 2 seci∗gs voli∗gs = 2πχ(T 2)

vanishes identically, so that

(4.3) 0 = A′(0) =

∫
T 2

(
d

ds
seci∗gs

∣∣∣
s=0

)
voli∗g.

Since the above integrand is positive at i(p) ∈ ±ΔS2, it must also be negative
somewhere. Together with (4.2) and the fact that i(T 2) ⊂ (S2 × S2, g) is totally
geodesic and flat, this means that gs, s > 0, must have some negative sectional
curvature.

4.5. Limiting case. Since θ > 0 can be chosen arbitrarily small for our construc-
tion, a natural question is what happens to gθ as θ → 0. By the above observations,
the metric gs in (3.1) has some negative sectional curvature as soon as s > 0. This
implies that as θ → 0, the interval 0 < s < sθ for which gs has secθ > 0 shrinks
until it disappears when θ = 0, since sθ must also go to zero. In fact, if there was
a uniform lower bound 0 < s∗ ≤ sθ for all θ > 0, then the metrics gs, 0 < s < s∗,
would be such that the average sectional curvatures of any two distinct planes at
the same point is positive, which in particular implies secgs ≥ 0, 0 < s < s∗, con-
tradicting Subsection 4.4. This is also reflected by the fact that the domain K must
be chosen compact in order for Proposition 3.3 to hold; hence one cannot simply
take K to be the complement of the diagonal. See also Subsection 4.2.

4.6. Finite quotient. Our construction of metrics gθ with secθ > 0 on S2 × S2

can be made invariant under the antipodal action of Z2 ⊕ Z2, so that they induce
metrics with secθ > 0 on RP 2×RP 2. In particular, RP 2×RP 2 admits metrics with
sec⊥ > 0. Since such metrics come from a local isometric covering (S2 × S2, gθ) →
RP 2 × RP 2, they also do not have sec ≥ 0 due to the above observations.

The first step in the construction gives rise to metrics invariant under Z2 ⊕ Z2,
since it is a Cheeger deformation with respect to the SO(3)-action, which commutes
with the Z2 ⊕ Z2-action. As a side note, it was observed by Müter [6, Satz 4.27]
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that the induced metric on RP 2 × RP 2 at this stage is such that all its zero cur-
vature planes are tangent to totally geodesic flat tori. The second and final step
of our construction can also be made so that the resulting metrics are Z2 ⊕ Z2-
invariant. Namely, this property is equivalent to the function φ : S2 × S2 → R

in Proposition 3.2 being Z2 ⊕ Z2-invariant, which can be achieved by defining the
cutoff functions χ± in a symmetric way.

4.7. Biorthogonal pinching and isotropic curvature. The biorthogonal cur-
vature of a manifold (M, g) is said to be (weakly) 1/4-pinched if there exists a positive
function δ such that δ

4 ≤ sec⊥g (σ) ≤ δ for all σ. This notion can be extended to any
dimensions by requiring that the average of any two mutually orthogonal planes is
1/4-pinched. As observed by Seaman [10], this pinching condition implies that the
manifold has nonnegative isotropic curvature. It was later proved by Seaman [9],
and independently by Micallef and Wang [5], that if an even-dimensional compact
orientable manifold (M, g) with b2(M) 	= 0 has nonnegative isotropic curvature
and positive biorthogonal curvature at one point, then (M, g) is Kähler, b2(M) = 1
and M is simply-connected. Consequently, our metrics of positive biorthogonal
curvature on S2 × S2 cannot satisfy the biorthogonal 1/4-pinching condition, since
b2(S

2×S2) = 2. Moreover, it also follows that such metrics do not have nonnegative
isotropic curvature.

4.8. Modified Yamabe invariant. As observed by Costa [2], the minimum of the
biorthogonal curvature at each point is amodified scalar curvature, with correspond-
ing modified Yamabe invariant denoted by Y ⊥

1 (M) = supg Y
⊥
1 (M, g), where the

supremum is taken over all metrics g on M . It is observed that if a metric g ∈ [g0]
is conformal to the standard product metric on S2 × S2, then Y ⊥

1 (S2 × S2, g) ≤ 0.
In particular, no metric conformal to g0 can have positive biorthogonal curvature.
However, as a direct consequence of the Theorem in the Introduction, we have that
Y ⊥
1 (S2 × S2) > 0; see [2, Thm. 3 (1)].

5. Other 4-manifolds with positive biorthogonal curvature

In light of the above construction, it is natural to inquire how restrictive the pos-
itive biorthogonal curvature condition is on 4-manifolds. As noted before, sec⊥ > 0
automatically implies scal > 0 however, it does not necessarily guarantee Ric > 0
(cf. Subsection 4.3). On the one hand, this means that sec⊥ > 0 imposes rather
restrictive topological conditions on 4-manifolds, e.g., vanishing of all the Seiberg-
Witten invariants. On the other hand, such topological restrictions are by far not
as strong as the ones implied by sec > 0, or even Ric > 0. For instance, sec⊥ > 0
does not guarantee finiteness of the fundamental group, as illustrated by S1 × S3

with the standard product metric.
This suggests that more subtle Synge-type obstructions should also not detect

sec⊥ > 0. In fact, RP 2 × RP 2 admits metrics with sec⊥ > 0, as discussed in
Subsection 4.6. Another relevant example in this context is the nontrivial S2-

bundle over S2, which is diffeomorphic to the connected sum CP 2#CP
2
, where

CP
2
denotes the manifold CP 2 with the opposite orientation from the one induced

by its complex structure. We conclude by showing that this manifold also has
sec⊥ > 0, using arguments similar to the S2 × S2 case. It is important to observe

that it is also currently unknown whether CP 2#CP
2
admits a metric with sec > 0.
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Proposition 5.1. The manifold CP 2#CP
2
admits metrics with sec⊥ > 0.

Proof. Similarly to the S2×S2 case, CP 2#CP
2
admits cohomogeneity one metrics

with sec ≥ 0 invariant under the action of SU(2). In order to describe this initial
metric, notice that the normal bundle of the usual embedding CP 1 ↪→ CP 2 can
be identified with the vector bundle (S3 × R

2)/S1 over CP 1 = S3/S1. Take two
copies of the disk bundles given as tubular neighborhoods of the zero section of this
vector bundle. Each one of them is the complement of a metric ball on CP 2, that
is, deleted to carry out the connected sum. It is then easy to see that

(5.1) CP 2#CP
2
= (S3 × S2)/S1

by gluing these two disk bundles along the boundary. Here, the S1-action on S3×S2

is a product action, on S3 via the Hopf action and on S2 by rotation. The standard
product metric on S3 ×S2 then induces a submersion metric4 g0 with nonnegative

curvature on CP 2#CP
2
. The cohomogeneity one action of SU(2) comes from the

left-translation action of SU(2) = S3 on the first factor of S3 × S2, which induces
an action on the quotient since it commutes with the above circle action.

Both singular orbits of this cohomogeneity one action on (CP 2#CP
2
, g0) are

2-spheres that correspond to the zero section of the disk bundles that were glued
together. The zero curvature planes are images via the submersion of mixed planes
on S3 × S2 that are spanned by vectors orthogonal to the circle action field; cf.
Müter [6, Satz 4.29]. Thus, there is a circle’s worth of zero curvature planes at
every point, but any such planes tangent to a regular point must intersect. At
singular points, there are zero curvature planes orthogonal to each other, but all
of them are not tangent to the singular orbit. This scenario is totally analogous to
the Cheeger deformed metrics on S2 ×S2, i.e., metrics obtained after the first step
of our deformation (Proposition 2.3). More precisely, secg0 ≥ 0, and sec⊥g0 > 0 on
all regular points. Since the only points with zero biorthogonal curvature are along
the singular orbits and all zero curvature planes are not tangent to these orbits,
a first-order local conformal deformation using squared distance functions to the
singular orbits, totally analogous to the one in Proposition 3.2, gives the desired

metrics with sec⊥ > 0 on CP 2#CP
2
as a consequence of Proposition 3.3. �

Remark 5.2. As shown above, in order to construct metrics with sec⊥ > 0 on

CP 2#CP
2
, one can skip the first step in the construction for S2 × S2. This is an

important observation, because differently from S2×S2 with the standard product

metric, the Cheeger deformation of (CP 2#CP
2
, g0) with respect to the SU(2)-action

does not destroy any zero curvature planes; see Müter [6, Satz 4.29].

Remark 5.3. Since there is a circle’s worth of zero curvature planes at every point

on (CP 2#CP
2
, g0), although the first-order local conformal deformation produces

sec⊥ > 0, it cannot be used to produce metrics with secθ > 0 for every θ > 0.

4We remark that this construction is very similar to the original gluing construction of nonneg-
atively curved metrics on the connected sum of two compact rank one symmetric spaces, which
is due to Cheeger [1] and was later greatly generalized by Grove and Ziller [3]. The only subtle

difference is that (CP 2#CP
2
, g0) has only one orbit that is a totally geodesic hypersurface (the

boundary of the disk bundles glued together), while in the gluing construction the metric locally
splits as a product near this hypersurface.
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