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POSITIVE CESARO MEANS OF NUMERICAL SERIES

RICHARD ASKEYl

ABSTRACT.   If a series has positive Cesaro means of order  y, then

its Abel means have positive Cesaro means of order   a for  0 < T <

U + l)/(7 +1), -1 < a<7.

1.   Introduction.   Fejér [4] proved the nonnegativity of the partial sums

of the series

(1.1) 1 + 2  Y,   r" cos ra0

77 = 1

when  0 < r < 1/2. In this paper he gave two proofs, one using the convexity of

the sequence   1, r, r2, • • ■ , rn, 0, 0, • • • , for  0 < r < 1/2, and a second by ex-

plicity   summing the series

7      o   ^    ft          m     1-r2 + 2r" + 1[rcos ra0-cos(ra+ 1)0]
1 + 2  2^  r   cos kd =-

f,=l 1 - 2r cos 0 + r

This result brought forth many similar results.   Schur and Szegö [9] used

the convexity argument to prove that the  (C, of means of (1.1) are nonnega-

tive for 0 < r < (a + l)/2, - 1 < a < 1. Using a different argument, a summa-

tion by parts and the nonnegativity of ££     Pk(x), Szegö [lO] proved that the

partial sums of

oo

(1.2) £  r"(2ra+ l)P„U),        -1 < * < 1,

77=0

are nonnegative for 0< r < l/3.  Here  P'n(x)  is the Legendre polynomial.

Finally Fejér [5] observed that these theorems have nothing to do with co-

sines or Legendre polynomials; they are theorems about numerical series

which have a positive Cesaro mean of some order.  The (C,  l)  means of

(1.1) and the (C, 2) means of (1.2) are positive for 0 < r < 1  and this is the
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basic fact behind these results.   Fejer then proved that the  (C, 1) means of

(1.2) are positive for  0 < r < 2/3-   Fejér [6] later proved that

77

Ytrk(k+ l)sinU+ 1)0 > 0

e=0

for 0 < r < 1/4.  Here the (C, 3) means are positive.

To complete the above results we will prove

Theorem 1.   Let  —1 < a < y and assume that the  (C, y) means of

Xo*    a    are nonnegative.   Then the  (C, a) means of Xo3    a  r" are nonnega-

tive for  0 < r <(a + l)/(y + l), and this interval is best possible.

For the convenience of the reader, we recall the definition of the

Cesàro means (C, a).   The (C, a)  means of the formal series

oo

(1.3) Z  an
77=0

are defined by

r,\ "    (a + 1)     ,
.,    ,. a «I ^ 72-ft .
(1.4) o    =-   >    -a,,       a > -1,
K n       a+1 ,¿    (n-k)\      k

77     ft =0

where (ct),   is defined by

(1.5) (a)k = T(k + a)/F(a) = a(a + 1) • •. (a + k - 1).

2.   Proof of Theorem 1.  Since we will only be concerned with positivity

properties, and  a > — 1, it will be sufficient to consider

"     (a+  l)n-k

Multiply by  s"   and sum.   This gives

(<x+ 1)

(2.2)

Y  g (r)sn =  Y  aÁrs)k X   ———s"~k

W=U ft=U W=R

.,    Wl        ,_a-l     Q-rsr+1 firs)
= /(rs)(l - s)

(l_s)a+1      (l-rs)r+1

The assumption that ~ï.™_Qan  has nonnegative Cesàro means of order y

means that (l - t)~^~  f(t) has nonnegative power series coefficients.  Thus

Theorem 1 will be proved when we show that
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(l-rsV+Kl-s)-*-1 = £   h(r; a, y)sn

77=0

with  h (r; a, y) > 0,   0 < r < (a + l)/(y + l).   A simple calculation gives

(a+ 1)      »   (-ra).(-y- 1).

ft=0 " a'"-*-

(a + l)n
=--—^(-«.-y-l; -ra-a; r).

Thus Theorem 1 reduces to proving

Theorem 2.  For - 1 < a < y araa"  0 < r < (a + l)/(y + l) ,

(2.3) kn = 2F1(-ra, -y- 1; -ra - a; r) > 0,       ra = 0, 1,-

We will prove Theorem 2 by induction.  When n = 0,   &Q ■ 1, and when

ra= 1,

kl = l-(y+ l)r/(a + l) > 0    if r < (a + l)/(y + l).

When ra = 2 ,

k = i   2(y+1)r Jzjii]z!l_
2~ (a+ 2)   +(a + 2)(a+ l)

and this is nonnegative when

/(r) = yiy+ Dr2 - 2(y + l)(a + Dr + (a + l)(a + 2) > 0.

Assume that  y 4 0.

1(0) > 0 and l(r) takes its extreme value when r= (a+ l)/y, which

does not lie in the interval [0, (a + l)/(y + l)].  Thus l(r) > 0,  0 < r <

(a+ l)/(y+ 1) if l((a+ l)/(y+ l)) > 0.  But l((a+ l)/(y + l)) -

(a + l)(y - a)/(y + l)  and this is nonnegative.   When  y = 0,   /(r) is linear

so  l(r)>0 follows from the above inequalities.

Now we can start the induction. We would like to use one of the Gauss

contiguous relations on the hypergeometric function (2.3). This can be done

after we apply the Euler transformation

2Fx(a, b; c; r) = (1 - r)~b2FA.c - a, b; c; r/(r - l)),        [2, 2.1.4(22)]

to k . This gives

k   =(l-r)r+1,F.(-a, -y- l;-ra-a; r/(r - l))
77 2       1''

and this is nonnegative if

(2.4) ln(t) = 2Fj(-a, -y- 1; -ra - a; t) > 0,       -(a + l)/(y - a) < / < 0..
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This has been proven for ra = 0, 1, 2.  The Gauss contiguous relation applied

to   ln_At), l(t) and  ln + At) is

(ra + a)(ra + a - l)(l - t)l_+,0) = (ra + a)[(ra + a + 1) - (2ra + a - y)t]l (t)

(2.5)
+ ra(ra+ a-y- l)/n_1(z),       [2,2.8(45)].

The coefficient of  I     .(/) is positive, and the coefficients of  / (/) and77 + 1 r ' 77

/ _ j(i) are nonnegative if ra > 2,  -(a+ l)/(y - a) < t < 0, and y - 1 < a <

y.  Thus by induction  /   +At) is nonnegative if  / (t) and  /      .(/)  are non-

negative when we make the extra assumptions that  y — 1 < a < y and  ra > 2.

The condition ra > 2  is no problem, since we have shown I At), l,(t) and

I At) ate nonnegative.   And surprisingly the assumption  y — 1 < a < y is

also no problem. Let y-2<a<y-l. Then (2.4) holds for ra = 0, 1, • • • , if

and only if (1 — rs)   + (1 — s)~   ~     has nonnegative power series coeffi-

cients for 0 < r < (a + l)/(y + l).  Consider

(2 6) (l-rsV + 1     (l-pusV+1     (l-us)a + 2

(l-s)a + 1       (l-us)a + 2   '  (l-s)a + 1

where n = (a + l)/(a + 2), p = (a + 2)r/(a + l).  The first: factor on the

right in (2.6) has nonnegative power series coefficients because

2

-    - \a + l/\y + 1/     y + 1

and y— l<a + l<y. And the second also has nonnegative power series co-

efficients. Therefore the product does. This argument can be iterated to com-

plete the proof.

The result is best possible, for k. < 0  when  r > (a + l)/(y + l)  and by

choosing  an_ , = 1,  a^ = -(y + 1), a. = 0,  j 4 n - 1, ra, g(r) in (2.2)  is

(a + l)kv

One application of this result to an interesting class of expansions is

given below. For notation the reader is refered to the Bateman project [3].

For ultraspherical expansions these results imply

Theorem 3.   LetX>0  and assume that fl_ ,|/(x)|(l - x2)X " 1/2 dx < oo .

Define

CX(x)
a   =   P    /W_4_(l_x2)*-1/2ax.

72 J-l' CX(1)
n

Then if f{x) > 0, the (C, a)  means of
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(2.7) Z  r-..^cJU)
77=0

are nonnegative for 0 < r < (a + l)/(2À + 2), - 1 < a < 2À + 1.

Proof. (2.7) is

J.
. °°   r"(ra+A)CA(x)Cx(y)

1 ,/(y)Z-¿-^-(l-^X-1/2^
To ACA(1)

and the (C, 2A + 1) means of S"° . r"(ra + A) CX(x) CX(y)/XCX(l) ate nonnega-
TI =U 72 72   ^ 72 °

tive.  This was first proven by Kogbetliantz [7], and a simple proof is given

in [1].

If we let  X —» 0  this gives the Schur-Szegö result.

In the case of Fourier series, (1.1), and probably for the corresponding

sums associated with the spherical harmonic expansion on the  ^-dimen-

sional sphere, there is a refinement of Theorem 1.  In the case of (1.1),

Schur and Szegö called  /'„the  largest  r for which   1 + 2S   _.r"cos ra0 > 0,

0 < 0 < 27.  They proved

log 2N     log log 2N     tN
rN = 1-+-+ — ,        eN —♦ 0.N N N N N

Related results for Fourier sine series were given by Robertson [8].  These

are deep results and it is unlikely we could obtain results of similar pre-

cision in the case of general spherical harmonic expansions.

3.  Further questions.  There are many problems suggested by Theorem

1.  The Cesaro means can be replaced by many families of summability

methods, or by summability methods applied to integrals.  Somewhat surpris-

ingly the most natural analogue for integrals of Theorem 1 fails.

The (C, 1)  (or Riesz) mean of cos yt is

fx /.A               ,       1 — cos yx
(3.1) Jo^l--jcosy/-a'i =-~->0,       x > 0.

xy

The analogue of (1.1) is

(3.2) /(*)= f* e~H cos ytdt
e - (e cos yx - y sin yx)e

T7y~2

-ex

li f(3n/(2y)) > 0 then an integration by parts shows that f(x) > 0,  x > 0

when e > 0.  So it is necessary and sufficient to consider f('irt/(2y)).  But

A3/r/(2y)) < 0  if f - y exp (- 3m/(2y)) < 0  or

(3.3) t/y < exp (- 3ne/2y).
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Let f,   be the unique positive root of g(x) = x - exp (-3/7x/2) = 0.  It exists

since  g(0) = — 1   and  g(l) > 0  and is unique because  g (x) > 0.  To seven

decimal places   e, = 0.2744106.

Thus if ( > 0  is given then  y can be chosen so that  y > e/r.   and then

/q        y'e"e'cos ytdt <0. Therefore the most natural analogue of Theorem 1

fails for integrals.

REFERENCES

1. R. Askey and H. Pollard, Some absolutely monotonie and completely mono-

tonic functions, SIAM J. Math. Anal. 5 (1974).

2. A. Erdelyi  et al., Higher transcendental functions. Vol. I. The hypergeomet-

ric function, Legendre functions, McGraw-Hill, New York, 1953.     MR 15, 419.

3. -, Higher transcendental functions. Vol. II, McGraw-Hill, New York,

1953.    MR 15, 419.

4. L. Fejer,  Über die Positivität von Summen, die nach trigonometrischen oder

Legendreschen Funtktionen fortschreiten (Erste Mitteilung), Acta Litt, ac Sei.

Szeged 2(1925), 75-86.

5. ———, Einige Sätze, die sich auf das Vorzeichen einer ganzen rationalen

Funktion beziehen; nebst Anwendungen dieser Sätze auf die Abschnitte und

Abschnittsmittelwerte von ebenen und räumlichen harmonischen Entwicklungen und

von beschränkten Potenzreihen, Monatsh. Math. Phys. 35 (1928), 305—344.

6. -, Neue Eigenschaften der Mittelwerte bei den Fourierreihen, J. London

Math. Soc. 8 (1933), 53-62.

7. E. Kogbetliantz, Recherches sur la sommabilite des series ultraspheriques

par la méthode des moyennes arithmétiques, J. Math. Pures Appl. 3 (1924), 107 — 187.

8. M. S. Robertson, Cesaro partial sums of harmonic series expansions, Pacific

J. Math. 8 ( 1958), 829-846.    MR 21 #2150.

9. I. Schur and G. Szegö, Über die Abschnitte einer im Einheitskreise beschränk-

ten Potenzreihe, S.-B. Preuss. Akad. Wiss. 1925, 545—560.

10. G. Szegö, Koeffizientenabschätzungen bei ebenen und räumlichen harmonischen

Entwicklungen, Math. Anal. 96 (1927), 601-632.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN

53706

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


