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POSITIVE CLIFFORD SEMIGROUPS ON THE PLANEO
BY

REUBEN W. FARLEY

Abstract. This work is devoted to a preliminary investigation of positive Clifford
semigroups on the plane. A positive semigroup is a semigroup which has a copy of the
nonnegative real numbers embedded as a closed subset in such a way that 0 is a zero
and 1 is an identity. A positive Clifford semigroup is a positive semigroup which is the
union of groups. In this work it is shown that if S is a positive Clifford semigroup on
the plane, then each group in S is commutative. Also, a necessary and sufficient con-
dition is given in order that S be commutative, and an example is given of such a
semigroup which is, in fact, not commutative. In addition, both the number and the
structure of the components of groups in 5 is determined. Finally, it is shown that S
is the continuous isomorphic image of a semilattice of groups.

A topological semigroup is a Hausdorff space together with a continuous
associative multiplication. A real semigroup has been defined by J. G. Home, Jr.
[4] to be a topological semigroup containing a subsemigroup R iseomorphic to
multiplicative semigroup of real numbers, embedded as a closed subset of E2 in
such a way that 1 is an identity and 0 is a zero. Similarly, the author has defined a
positive semigroup to be a topological semigroup containing a subsemigroup N
iseomorphic to the multiplicative semigroup of nonnegative real numbers, em-
bedded as a closed subset of E2 so that 1 is an identity and 0 is a zero [2]. Relying
heavily on the work done by Home in [4] and [5], this work is devoted to a study
of positive semigroups on E2 with the additional requirement that these semigroups
be the union of groups. Let us call such semigroups positive Clifford semigroups [3].
We will show that if S is a positive Clifford semigroup on E2, then each group in
S is commutative. Also, we will give a necessary and sufficient condition in order
that a positive Clifford semigroup on E2 be commutative, and we will give an
example of a positive Clifford semigroup on E2 which is, in fact, not commutative.
We will show that each group in a positive Clifford semigroup S on E2 has one,
two, or four components, that each two dimensional group isPxP,PxPx{l, — 1},
or PxPxF, where F is the four group, and that each one dimensional group is P,
Px{l, — I}, or PxF. Also, we will characterize 5 in terms of the sector of identity
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components of these groups, and we will show that 5 is the continuous isomorphic
image of a semilattice of groups.

2. Preliminaries. The closure of a subset A of a topological space is denoted
A. The set-theoretic difference of two sets A and B is denoted A\B. An iseomorphism
between two topological semigroups is a function which is both an algebraic
iseomorphism and a homeomorphism. The inverse of an element s is denoted s'x.
The set H (I) denotes the set of elements with inverses with respect to the identity
element 1. In general, H(e) denotes the maximal group having e as identity [1,
p. 22]. Let G denote the component of the identity in H (I). Throughout this work,
E2 will denote the Euclidean plane. We will use the terminology two dimensional
to mean having an interior relative to E2, and one dimensional to mean nontrivial
but having no interior relative to E2. Unless otherwise indicated, R will denote a
semigroup iseomorphic to the multiplicative semigroup of real numbers. The set
of all positive members of R is denoted P, and the set of all negative members by
—P. The set of all nonnegative members of R, i.e. P u {0}, is denoted by N. The
null set is denoted by □• For additional terminology the reader is referred to [4].

3. Components of maximal groups. Henceforth S will denote a positive Clifford
semigroup on E2. We intend to imply that a fixed iseomorphic copy of the non-
negative real numbers has been chosen. The proof of the first lemma is not difficult.

Lemma 1. The decomposition space [F2\{0}]/O of E2\{0} is homeomorphic to a
topological circle.

Lemma 2. If H(e), e^l, is a two dimensional group in S, a positive Clifford semi-
group on E2, and D0 is the component of H(e) containing e, then D0 is iseomorphic
to NxN.

Proof. It follows from [7] that D0, as well as G, is a Lie group which is an open
subset of E2. Just as in the case of G, D0 is iseomorphic to the nonzero complex
numbers, to the two dimensional vector group, or to the group of affine transforma-
tions of the line [8, pp. 283, 257, 258], Under the assumptions of this lemma, since
0 e D0, D0^E2 and, consequently, D0 cannot be iseomorphic to the nonzero
complex numbers. Hence, D0 must be one of the latter two possibilities. The
results of [6] in which Mostert determined the possibilities for the boundary L of
G are also applicable in the present case. If F' is the boundary of D0, the only
possibility in which 5 is the union of groups is that L' = A\jBu {0}, where A
and B are groups having the property that AB={0}. Now, Pe is an open ray meeting
D0 in e, and since Pe cannot meet A, B, or {0}, Pe is contained in D0. By [4, p. 983],
Pe is homeomorphic to P. Also, ifpx,p2 e P, (pxp2)e =px(p2e) =px(ep2e) = (pxe)(p2e),
so that Pe is, in fact, iseomorphic to P. In other words, Pe is a one-parameter sub-
group. Thus, Home's argument in [4] can be adapted to show that D0 is iseomorphic
to NxN.
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Lemma 3. IfPis the copy of the multiplicative positive real numbers contained in
G, the identity component of H il), then for each nonzero group element y e Hie),
Py^Hie).

Proof. First, Py=Piey) = iPe)y. Then, since Pe is a one-parameter subgroup
contained in Z/(e) (see the proof of Lemma 2), Py=iPe)y<^Hie).

The proof of the next lemma is straightforward.

Lemma 4. Let D0 be the identity component of Hie), a group in S, and let Dx
be a component of Hie) distinct from D0. Then, Dx = xD0= D0xfor each x e Dx.

Lemma 5. Let Dx, D2 be components of Hie), a group in S. Then DXD2 is a
component of Hie).

Proof. From the previous lemma, Dx=xD0 = D0x, and D2=yD0 = D0y, where
x e Dx, y e D2, and D0 is the identity component of Hie). We also know that D0
is a subgroup of Hie). Thus, DxD2 = ixD0)iDûy)=xiDQD0)y=xiD0y)=xiyDQ)
=ixy)D0, which is the component of Z/(e) containing xy.

In view of Lemma 2, the following result is analogous to that in [5, p. 19].

Lemma 6. If Hie) is a two dimensional group in S, then Hie) has only a finite
number of components.

Lemma 7. The number of two dimensional maximal groups in S is finite.

Proof. Suppose that S has infinitely many two dimensional maximal groups.
Then, there are infinitely many identity components of two dimensional groups,
and each identity component is iseomorphic to PxP. If this is the case, there must
be a sequence {Cn} of these identity components whose bounding rays converge
(in the limit superior, limit inferior sense) to a ray, say Pt. Let Pn and Pn+X be the
bounding rays of Cn. Then, lim sup{Pn+1} = lim inf {Pn+1}=Pi( and limsup{ZJn}
= lim inf {Pn}=Pt. Let T be a simple closed curve with the origin in the bounded
component of its complement, and let 7" be a second simple closed curve which
contains T in the bounded component of its complement. By the Jordan Curve
Theorem each of these simple closed curves separates E2 into two components,
one of which is bounded and the other unbounded. So, each of the rays Pn and
Pn+X are cut by both T and T, since a ray is unbounded but meets the bounded
component of E2 created by T and the one created by T. Now, it is not difficult
to show that the decomposition space is both upper and lower semicontinuous.
Consequently, we can pick a sequence {xn+1} such that xn+xePn+x and xn+x lies
in the annular region between T and T', and such that {xn+1} converges to x,
where xePt and x lies in the annular region between T and 7". Similarly, we can
pick a sequence {xn} where xn e Pn and lies in the annular region between T and T',
and such that {xn} converges to x. Then, {xn+xxn} converges to x2. But, xn+xxn = 0,
for each n, and x2 ̂  0, since x / 0 and x is an element of a group. Thus, we have a
contradiction.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



356 R. W. FARLEY [October

The following lemma is a generalization of that in [4, p. 989].

Lemma 8. Let S be a positive Clifford semigroup on E2, and let e be the identity
of a group in S. Let D0, A,..., Dn be the components of //(e), and let v be the
squaring function defined by x(x) = x2. Then x(U?=o A)<=U?=o A, x(A) = A» and
x(A)n A = D(//>0.

Lemma 9. Let A> A be components of H(e), a two dimensional group contained
in S. Let M and M' be the two bounding rays of A- //"x(A) = A» inen x(M) and
x(M') are the bounding rays of Dj.

Proof. By Lemma 4, Di~xD0 = Dox, where x e A and A is the identity com-
ponent of H(e). Let A and B be the bounding rays of D0. By Lemma 2, we know
that AB = {0}. Since e is an identity for D0, multiplication by x is a homeomorphism
on Ä- Hence, the boundary of A must be x(AvB)v{0}=(AvB)x\j{0}.
But, x(/l ufi)=(^u B)x, and we have x/1 = j4.x, and xB=Bx. For, suppose that
for some a e A, b e B we have xa = bx. Then, (xa)(;ca) = (;ca)(/)x) = x(ae).x = jc0.x: = 0,
whence xa is a nilpotent element, and we have a contradiction [5, p. 19]. So, xA = Ax
and xB=Bx are the bounding rays of A- Since x^4 and x5 are contained in groups
distinct from H(e), but x(xA) and x(xB)<^D}, x(xA) = (xA)(xA) = (xA)(Ax) = x(Ax)
= x2A, and x(x^) = *2^ are distinct (since multiplication by x2 is a homeomorphism
on A) bounding rays of x(A) = A-

Let us pause for a moment for some additional terminology. If A and D¡ are
components of groups in S such that there is a ray Px with the property that
Px<= Ä n A, we w'" sav that the two components share a bounding ray.

Lemma 10. Let D0, Dx, D2,... be components of a two dimensional group H(e)
contained in S, with D0 denoting the identity component. Then, if D0 and Dx share a
bounding ray Px, and Dx and D2 share a bounding ray Pa, then H(e) = H(l), H(e)
has exactly four components, Cl [H(e)] = E2, and Cl [//(e)] is iseomorphic to RxR.

Proof. Since x(A) = A and y(A) = A for some i#I, we see that x(A) = A»
whence, by the preceding lemma, Pa2 is the bounding ray of D0 distinct from the
bounding ray Px. Now, Pa2 must also be a bounding ray of x(A)- So, either
x(D2) is a component D3 sharing the bounding ray Pa2 with D0, or x(A) = A-
Observe that AA = AA = A- For if xe Dt, Do(Dox)=(D0Do)x=Dox=Dl, and
(xD0)D0 = x(D0D0) = x(D0) = Di. Suppose that x(A) = A- Let {xn} be a sequence
in A and {jn} be a sequence in A such that {*„} converges to a, and {yn} converges
to a, where a is on the bounding ray Pa shared by A and D2. Then, {x„_yn} converges
to a2 e Pa2, the bounding ray shared by A and D3. Since A A must be a com-
ponent of//(e), this implies that A A = A, or DXD2 = D3. If A A = A, A(A A)
= DXD0, (AA)A = AA = A» AA = A, and A = A» which is a contra-
diction. So, we must assume that DXD2 = D3. Then, (AA)A = AA. A(AA)
= AA, and AA = AA- Also, Dx(DxDa) = DxDa, (AA)A = AA, A A
= AA,  and   A = AA-   So,   A = AA = AA-  Then,   AA = (AA)A,
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D2D2 = DAD2D2), D3 = D3D3, and D3 = D0, which is a contradiction. So, we
must have y(Z>2)= D0. If v(Z)2) = Z)0, Pb2=Px, where Pb is the bounding ray of
D2 distinct from Pa. In this case any component sharing the bounding ray Pb
with D2 must go onto D0 or Dx under the squaring map. Thus, any such component
must be some Dk. Suppose Dk does not share a bounding ray with D0. We saw
above that DXD2 = D3, where D3 shares the bounding ray Pa2 with D0. In a similar
fashion, DaDk = Dx, or D2Dk = D0. If D2Dk = D0, D2(D2Dk) = D2D0, (D2D2)Dk
= D2, D0Dk = D2, and Dk= D2, which is a contradiction. So, D2Dk=Dx. Now,
Dx(D2Dk) = DxDx = D0 = (DxD2)Dk = D3Dk. But, if D3Dk= D0, D3(D3Dk) = D3D0,
(D3D3)Dk = D3, D0Dk = D3, and Dk = D3, which is a contradiction. So, we are
forced to conclude that Dk does indeed share a bounding ray with D0, in which
case, H(e) = H(l), H(e) has exactly four components, and Cl [H(e)] = E2, which
is RxR [5, p. 18].

Lemma 11. Let C0 be the identity component of a two dimensional group H(e)
contained in S. Suppose that C0 shares bounding rays with each of Cx and C2, both
components of the same group as C0. Then H(e) = H(l), //(e) has exactly four
components, and Cl [H(e)] = E2.

Proof. Let us denote by M the bounding ray shared by C0 and Cx, by N the
bounding ray shared by C0 and C2, and by A'the bounding ray of Cx not belonging
to C0. It follows from Lemmas 5 and 8 and from the continuity of the squaring map
that only another component C3 of H(e) can share the ray K with Cx. For, x(K) = N,
and if {xn} is a sequence none of whose elements belongs to Cx, but such that
{jc„} converges to k e K, then the sequence {x2} converges to k2 e N. So, the sequence
{x2} must eventually be in C0 or C2. The possibility that x% e N for every n can be
eliminated by a relatively elementary proof. Hence, the sequence {xn} is eventually
in a component C3 of H(e) which shares the bounding ray K with Cx. The result
now follows from Lemma 10.

Lemma 12. Let C0 be the identity component of a two dimensional group H(e)
contained in S, and let M be a bounding ray of C0. Let D be a component of a two
dimensional group such that M is also one of its bounding rays. Then, D cannot be a
nonidentity component of a two dimensional group distinct from //(e).

Proof. Since y(M) = AZ, by continuity the boundary of \(T>) must contain M.
But, since xiD) n Z)= □ by Lemma 8, this is impossible.

Theorem 1. The union of all the identity components of the nonzero groups in S
forms a sector.

Proof. If the hypotheses of Lemma 11 are satisfied, G\{0} is a sector and the
theorem is established. By Lemma 12 an identity component of a two dimensional
group cannot share a bounding ray with a nonidentity component of another two
dimensional group. However, 5 can contain sectors of one dimensional groups,
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by which we mean nontrivial sectors with the property that each element of the
sector lies on a one dimensional group contained in the sector. Thus, an identity
component of a two dimensional group could possibly share a bounding ray, say
M, with a sector F of one dimensional groups. Now, since x(^) = M,bya continuity
argument like the one used in the proof of Lemma 11 we can show that T must,
in fact, be a sector of identity components of one dimensional groups. So, the
identity components of groups in 5 cannot be separated by nonidentity components,
and hence they form a sector.

Lemma 13. Suppose that H(l) has exactly two components, with C0 denoting the
identity component and Cx denoting the other component. Let T denote the sector
of identity components of all the nonzero groups in S, with M and M' denoting the
bounding rays of T. Then, there is an x in Ci such that x2 = 1, and right translation
by x leaves M and M' pointwise fixed.

Proof. Let us consider the decomposition circle, and let us label arcs in a
clockwise fashion. Let (a, b) denote the arc ®(C0). It follows from Lemmas 5
and 8 that x(Ci) = C0, and consequently that there is an element x in Cx such that
x2 = 1. It has been shown by Home [5, pp. 18-21] that x is, in fact, in the center of
S. By Lemma 4, xC0 = Cx, and since translation by x is a homeomorphism, it
follows that the arc 0(d) on the decomposition circle is either (xa, xb) or (xb, xa).
Suppose that this arc is (xa, xb). Then, the arc (xb, a) contains no points which
are the image under <P of elements of H(l). Since the squaring map x is continuous,
x[(xb, a)] must contain the arc (a2, x2b2) = (a, b) or the arc (b, a). Each of these
arcs contains arcs O(Cj), where C¡ is a component of H(l). This implies that for
some z e S\H(l), z2 e H(l), which is impossible because S is the union of groups.
So, the arc ^>(CX) must be (xb, xa). Now let us consider the arc (xa, a). The x
translate of (xa, a) must contain (a, xa) or (xa, a). If the x translate of (xa, a)
contains (a, xa), then there is an element z in S\H(l) such that xz e H(l). This is
impossible, since if xzeH(l) and xeH(l), then x(xz) = (xx)z=lz = z e H(l).
So, x[(xa, a)] must contain (xa, a), and for the same reason as just given must,
in fact, be equal to (xa, a). Similarly, x- [(b, xb)] = (b, xb). Hence, there is a point
p in (xa, a) and a point q in (b, xb) such that xp=p and xq=q. Now, translation by
x is obviously an involution, by which we mean a homeomorphism of period two.
So, if translation by x leaves more than two points fixed on the decomposition
circle, every point on the circle would have to be left fixed [5, p. 20]. However,
since x[(a, b)fa(a, b) not every point is left fixed. So, p and q are the only fixed
points under this translation. Now, p2=pp=(xp)p = xp2, so that p2=p or p2=q.
But, p2 cannot be q. For, if so, x[(p, a)] must contain (a, b) or (xb, xa) which is
impossible, because z2 cannot be in H(l) if z e S\H(l). Similarly, q2=q. Since p2=p
and q2=q, the arc 0(F) on the decomposition circle must contain (p,q). Now,
the points p and q must be the image under O of one dimensional groups. For, if
jce=e, where e is the identity of a two dimensional group, the translation by jc
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leaves the identity component of the group, and hence an arc on the circle point-
wise fixed. Suppose that there is a point z on the arc ixa, p) which is the image
under 0 of a ray from an identity component of a group in S. Then, xz is in the
arc ip, a) which contains only points which are images under 0 of rays in identity
components. This implies that the arc (z, xz) is the image under 0 of the identity
component of a group. But, p e iz, xz), and p is the image under 0 of a one dimen-
sional group, which is a contradiction. So, the arc on the circle which is the image
under 3> of the sector T must be ip, q). Since xp=p=p2, and xq=q=q2, translation
by x must leave M and M' pointwise fixed.

Theorem 2. If H il) has exactly two components, then the two bounding rays of
the sector T of identity components of groups of S are connected maximal groups,
and every other nonzero group has exactly two components. Furthermore, every
group in S is commutative.

Proof. Using the notation of the previous lemma, let the arc ip, q) on the de-
composition circle be the image under 0 of the sector T, where xp=p and xq=q.
Then, x[\p, q)] must contain ip, q) or iq, p). Since x[\a, b)]<^iq, p), x-[(p, q)]
cannot contain ip,q). So, x[\p,q)] must contain iq,p). Thus, S\{0} = fu xT.
Now, let e be the identity of a group Hie) in S, and let D0 be the identity component
of Hie). Then ixe)2=x2e2 = e, so that xe e Hie). As seen in the previous lemma,
xe = e only if e is the identity of M or of M', the bounding rays of T.

Let us note that D0 is uniquely divisible, by which we mean that each element
of D0 has a unique «th root. For, by Lemma 3, each nonzero group is a union of
rays, and therefore each connected group is a sector. If the identity component
of //(e) has more than one ray, it has an interior, and hence must be open in S.
Therefore, it is a Lie group, and by Lemma 2 its closure must be iseomorphic
to NxN, so that it is iseomorphic to P x P itself. If the identity component of
Hie) is a trivial sector, it must be a single ray sector, and hence is of the form Pe,
where e e E. Then, as in the proof of Lemma 2, Pe is iseomorphic to P.

Now, if xeeD0, xe = e, since D0 is uniquely divisible. Otherwise, xe e Dx, a
component of Z/(e) distinct from the identity component, in which case Dx — ixe)D0
=xD0. Since S\{0}=7'u xT, every nonzero group in 5, except M and M', there-
fore has exactly two components. The closure of the identity component, D0, of
Z/(e) is either iseomorphic to N x N by Lemma 2 or to N as above and is therefore
commutative. Let j, z e Dx. Then, y=xs, z=xt, for some s, te D0. So, yz—ixs)ixt)
= ixs)itx)=xist)x=ixt)isx)=ixt)ixs) = zy. Similarly, if yeDx and z e D0, we
have yz=zy.

Lemma 14. Suppose that H il) has exactly four components, with C0 denoting the
identity component, and Cx, C2, C3 denoting the other components. Let T denote the
sector of identity components of all the nonzero groups in S, with Nx and Ni denoting
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the bounding rays ofT. Then, there is an x¡ e C¡, i= 1, 2, 3 such that xf = 1. Moreover,
there is a pair of these elements, say xx andx3, such that xxNí = Ní andx3Ni = Nl.

Proof. Let us consider the decomposition circle, and let us label arcs in a clock-
wise fashion. Let (a, b) denote the arc <t>(C0). Since H(l) is the four group when
there are four components, we know that x(Q) = C0, for /=1, 2, 3, and conse-
quently there is an xt in each C¡ such that xf=l. It has been shown by Home
[5, pp. 18-21] that each x¡ is, in fact, in the center of S. By Lemma 4, XiC0 = C¡, and
since translation by x is a homeomorphism, it follows that the arc 0(C¡) on the
decomposition circle is either faa, xtb) or fab, xta). We might as well assume that the
endpoints of all these arcs are distinct. The other cases can be handled similarly. Let
us call the first of these arcs going clockwise on the circle from (a, b), (x3a, x3b) or
(x3b, x3a) whichever is correct. If the arc is (x3a, x3b), x3 ■ [(b, x3a)] would have to
contain an arc which is the image under O of a component of H(l). This is a contra-
diction, since if x3z e H(l), x3(x3z)=x3z = z e H(l). So, this arc is correctly labeled
(x3b, x3a). Let us label the next arc which is the image under <P of a component
of H(l) going clockwise from (x3b, x3a), (x2b,x2a) or (x2a, x2b), and the final
such arc (^a, xxb) or (xxb, Xíü), whichever is correct. By the same type of argument
as above, we can show that the final arc is correctly labeled (xxb, Xid). Now, if the
middle arc is (x2b, x2a), xx ■ [(x2b, x2a)] must contain (xxx2b, XiX2a) = fab, x3a)
or (x3a, x3b). In either case, this implies that xxz e H(l) for some z e S\H(l),
which is a contradiction. So, the middle arc is properly labeled (x2a, x2b). Now,
xx ■ [(Xia, a)] must contain fa XiO) or (xjß, a). The same argument as above shows
that xx ■ [(xxa, a)] cannot contain (a, xxa), and in fact, must be equal to faa, a).
So, there is a point p in (xxa, a) such that xxp=p. Similarly, there is a point q in
(x3a, x2a) such that xxq=q. Now, XiP2 = (Xip)p=p2, and xxq2=q2. Since transla-
tion by xx is an involution and does not leave every point fixed because jc1C0 = C1,
p and q are the only points left fixed under this translation. So, p2=p or p2=q,
and q2=p or q2=q. If p2=q, x[(P> a)] contains (a, q) or (q, a). In either case, this
implies that there is some element z in S\H(l) such that z2 e H(l), which is a
contradiction. If q2=q, we get the same contradiction. So, p2=q2=p. In a similar
fashion, we can show that there is a point r in (b, x3b) and a point s in (x2b, Xib)
such that x3r=r, x3s=s, and s2 = r2 = r. The argument that the arc (p, r) is
the arc <t>(T) on the circle is exactly analogous to the argument in Lemma 13.
Also, by the same argument as appealed to repeatedly in this proof, we can show
that xx[(xxa,a)] = faa,a), x3-[(b, x3b)]=(b, x3b), x2[(b, x3b)]=Xi[(b, x3b)] =
(x2b, Xib), and x2 ■ [(XiO, a)] = x3 ■ [(Xíü, a)] = (x3a, x2a). Furthermore, let us con-
sider x2p = x2(XiP) = (x2Xi)p=x3p. We have xx(x2p)=x2(xxp)=x2p, so that trans-
lation by Xi leaves x2p fixed. So, x2p = x3p is either p or q. But, x2 ■ [faa, a)] =
(x3a, x2a), so that x2p = x3p = q. Similarly, xxr = x2r = s. For our conclusion, xxp =p
and x3r = r implies that xxNi = Ni and x3Nt = N^.

Theorem 3. If H (I) has exactly four components, then the two bounding rays of
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the sector T of identity components of groups are identity components of one dimen-
sional groups having exactly two components, and every other nonzero group has
exactly four components. Further, every group in S is commutative.

Proof. Using the notation of the previous lemma, the arc ip, r) on the decom-
position circle is the image under 3> of the sector T, where xxp =p, and x3r = r.
In the proof of the lemma we noted that x2p=x3p—q and xxr=x2r=s. It now
follows, using the same argument as in Lemma 14, that xx[(p,a)] = (xxa,p),
x3■ [ib, r)]=(r, x3b), x3■ [(p, a)] = (x3a, q),x2- [\p, a)] = iq, x2a), x2■ [\b, r)]=ix2b, s),
and xx[(b, r)]=is, xxb). Thus, 5\{0} = (7u xxTu x2Tu x3T). Now, let e be the
identity of a maximal group Z/(e) in S. Let D0 be the identity component of //(e).
Then, (xte)2 = xfe2 = e, so that xteeH(e). As seen in the previous lemma, jc¡e=e
only if e is the identity of Pi or P4, the bounding rays of T, and i= 1 or 3 respec-
tively. Also, if x¡e e D0, x¡e = e, since D0 is uniquely divisible (see proof of Theorem
2). Otherwise, x¡e e Du a component of Z/(e) distinct from the identity component,
in which case Di = ixie)DQ = xiD0. If iftj, x{e and x,e are in distinct components.
Otherwise, ixie)ixje) = ixixj)e=xkee D0, which has been shown above to be a
contradiction. Since 5\{0} = (7,u xxTu x2T\J x3T), every nonzero group in S,
except Nx and N4 has exactly four components. The identity component, D0, of
Hie) is either iseomorphic to NxN or to N, and is, in any case, commutative.
The proof that Z/(e) is commutative follows in the same fashion as in Theorem 2.

Theorem 4. Let S be a positive Clifford semigroup on E2. Then, the following
are equivalent:

(i) If e andf are arbitrary idempotent elements of S, then ef=fe.
(ii) Each idempotent element of S is in the center ofS.

(iii) S is commutative.

Proof. It is shown in [1, p. 127] that (i) implies (ii). Let e and/be arbitrary
idempotent elements of S. If e and / are in the center of S, then translation by
either of these elements is a homomorphism. So, e[//(/)] is the continuous homo-
morphic image of the group //(/) and must therefore be a group. Moreover
e[/7(/)] meets the group Hief) in efi so that e[H(f)]^H(ef). Similarly, [Hie)]
f^Hief). Thus,

H(e)H(f) = ([H(e)]e)Af[H(f)}) = [H(e)](ef)[H(f)] = [H(e)](fe)[H(f)]
= ([H(e)]f)(e[H(f)]) <= H(ef).

Now, let x e H(e) and y e H(f). Then, xy, yx, xfi and ey e H(ef) which we know
is commutative. So, xy = (xe)(fy) = x(ef)y = x(fe)y = (xf)(ey) = (ey)(xf) = e(yx)f
=(yx)(ef)=yx, and we have that (ii) implies (iii). It is immediate that (iii) implies
(i), and we are done.

Lemma 15. Let S be a positive Clifford semigroup on E2 such that H(l) has exactly
two components. Let T denote the sector of identity components of groups in S, and
let the boundary of T be denoted (Px u P4 u {0})=Z. Then, IT^Iand 27<=/.
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Proof. Let e be the idempotent element of Px, let/be the idempotent element of
Pt, and let Px u {0} = ^ and F4 u {0} = /V4. By Lemma 13 there is an element
xe S^F such that x2= I, and x is in the center of S. Hence, (xe)2 = e. If H (I) has
exactly two components, the group //(e) (see proof of Lemma 2) is connected,
whence xe = e. Now, let y e T and z e Pe. Then, yz=yze, and xyz = x(yze) = (yze)x
= (yz)(ex) = (yz)(xe)=yze. Thus, yz=yze = xyz. Suppose that yz e S\T. Then,
yz = xw, for some weT. But yz = x(yz) = x(xw)=x2w=we T, which is a contra-
diction. If yzeT, yz = x(yz)exT, so that yze(Tn xT) = I. Similarly, we can
show that zy e I. Thus, T(Pe) and (Pe)T are contained in /. Likewise, T(Pf) and
(Pf)T are contained in /. Finally, F 0 = 0F=0, and we are done.

Lemma 16. Let S be a positive Clifford semigroup on E2 such that H (I) has
exactly four components. Let T denote the sector of identity components of groups of
S, and let the boundary of T be denoted (Px uf4u {0}) = /. Then, if zePx and
yeT, zy e (Px u {0}) and yz e (Px u {0}). Also, if z e F4 and yeT, zye (F4 u {0})
and yz e (F4 u {0}).

Proof. Let/» be the identity element of Fj and let r be the identity element of F4.
Let C0=Pi be the identity component of H(p), and let Cx be the remaining com-
ponent. Then, using the notation of Theorem 3, Ci=x2C0 = x3C0, as seen in the
proof of Theorem 3. Also, S\{0} = (Fu XjFu x2Fu x3T). It must be shown that
for z e C0 and yeT, zy and yz e (C0 u {0}). It suffices to show that yp and py
e (C0 u {0}). We might as well assume that yp ^0. Since XiP=p and xx is in the
center of S, xxyp=yp. If yp e T, yp = xxyp e xxT, so that yp e(xxT n T) = C0.
Suppose ypexxT. Then, yp = xxw, for some weT. But, yp=Xiyp=Xi(xiw)
= x\w=weT, which is a contradiction. If yp e x2T, yp = x2w, for some weT.
Then, yp = Xi(yp) = xx(x2w) = (xiX2)w = x3w e x3T. So, yp e (x2T n x3T) = Cx. Simi-
larly, if yp e x3T, we can show that yp e Cx. So, yp e H(p). Let //(e) be the group
containing y. Now, there exists an element k in H(p) such that (yp)k=p. Then,
ep = e(ypk) = (ey)(pk)=ypk=p. Let us now show that yp <£ Cx, if y^=e. Suppose
that yp e Ci. Let q be the element in Cx such that q2=p. By Lemma 4, Cx=qC0
= C0q. So, there exists t e C0 such that yp = tq=qt. Indeed, we can take t=yq.
For, yp = tq implies that ypq = tqq. Then yq=ypq = tqq = tp = t. Now, y2p=y(yp) =
y(qt) = (.yq)t=(y<l)(yq) = (yq)2 = t'2 e C0. Let [y] be the one parameter subgroup in
H(e) generated by y. Let us consider the interval A from y to y2 in [y]. We have
shown that yp and y2p e H(p). If k is any element in A distinct from y and y2
we can show that kp e H(p) by using the same type of argument as was used to
show that if y e H(e) and yp¥=0, then yp e H(p). So, the interval (yp, y2p) is in
H(p), and this interval must be contained in Ap. Since yp is in Cx and y2p is in C0,
0 must be in Ap. This implies that there exists an s in [y] such that sp = 0. But, in
this case, we have s'x(sp) = (s'xs)p = ep = 0, which is a contradiction. So, we must
conclude that yp e (C0 u {0}) = (Fj u {0}). The remaining conclusions of the lemma
follow similarly.
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Theorem 5. Let S be a positive Clifford semigroup on E2, and let T denote the
sector of identity components of nonzero groups in S. If the set E of idempotent
elements of S is a subsemigroup, then T is a semigroup.

Proof. Let e,feE. Let the identity component of the group H(e) be denoted Ce.
Let us consider CeC,, denoting ef=g¥=0, geE. Then CeC, is a connected set
meeting C9 in g. So, if CeC¡ n (S\T) ¿ D, then CeCf n /^ □, where / is the boun-
dary of T. The previous two lemmas show that /7<=Z and 77c z. Suppose 0 e CeC¡.
Then, there is an x in Ce and a y in C¡ such that xy=0. But x'Axy)y'1=(x'1x)
•(vj"1) = e/'=0, which is a contradiction. Suppose CeC,C\ Nx^ □> where NX=PX
u {0} and Px is a bounding ray of 7. Then, there exist xeCe,yeCf,te Nx such that
xy = teNx<^I. So, x-'^r^ir'^-^e/e/. Thus, CeCf=(Cee)(fCt)
=CAef)Cf<=IcT.

Theorem 6. Let S be a positive Clifford semigroup on E2 such that H (I) has
exactly two components. Let T denote the sector of identity components of groups in
S. If T is a semigroup, then S is iseomorphic to [(7u {0})x{l, — 1}]¡R, for a suitable
relation R.

Proof. In Theorem 2 it was noted that the bounding rays Px and P2 of 7 are each
connected groups. Let NX=PX u {0}, and let N2=P2 u {0}. Also, let */l be a
square root of 1. Since x is in the center of S, (xNx)2 = Nx and (xN2)2 = N2. Since Px
is a connected group and S is the union of groups, it follows that xNx<^Nx and hence
that xNx = Nx, because the translate by x of a ray is a ray. Similarly, xN2 = N2.
By Lemma 13, Nx u N2 is an ideal in 7. Now, with the usual topology and coordi-
natewise multiplication [(7u{0})x{l, —1}] is a topological semigroup. Let us
define a relation R on [(7u{0})x{l, —1}] in the following manner. Let [(a, 1),
(b, 1)] e R if and only if a=b. Let [(a, -1), (b, -l)]eR if and only if a = b. Let
[(a, 1), (b, —l)]eR if and only if a = b e (Nx u 7V2). Let us require by definition
that R be symmetric. Then, R is clearly an equivalence relation. Using the fact
that Nx u N2 is an ideal in 7, it also follows easily that R is a closed congruence, and
consequently that [(7u{0})x{l, —1}]/R is a topological semigroup on E2. In
the proof of Theorem 2 it was shown that S=T<J xTu {0}. Let /be a function
from W=[(T\J {0})x{l, -1}] onto 5 defined by f[(a, -l)] = xa and/[(a, l)] = a,
where x2= 1 and jc# 1. Let 3> be the natural map from W onto W\R. We see that
/ is one-to-one, except on elements of Nx u N2. The continuity of / and /"1
follows from the continuity of multiplication in 7. It is easy to see that/is a homo-
morphism. Now, a function /* is induced from W/R onto S, if we define f*(z)
=f[Q>~Az)]- It follows easily that/* is an iseomorphism.

It should be noted that, in view of the preceding theorem, if we have any positive
semigroup on the closed half plane which is the union of connected groups, then
we can easily construct a positive Clifford semigroup on E2 in which each two
dimensional group has exactly two components, and that all such entities in which
7 is a subsemigroup are formed in this manner.
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Theorem 7. Let S be a positive Clifford semigroup on E2 such that H (I) has
exactly four components. Let T denote the sector of identity components of nonzero
groups in S. Then, if T is a semigroup, S is iseomorphic to [(T u {0}) x F]/R for a
suitable relation R, where F is the four group.

Proof. Let F={xx, x2, x3, 1}, where xt, /=1,2, 3 are as in Theorem 3. Then,
F is the four group with xxx2=x2xx=x3, x2x3 = x3x2=xx, x1x3 = x3x1=x2, and
x2 — x2 = x3 = l. Now, with the usual topology and coordinatewise multiplication,
[(T u {0}) x F] is a topological semigroup. Let us define a relation R on [(T u {0})
xF] in the following manner. Let [(a, Xi), (b, 1)] e R if and only if a=b e Nx,
where NX=PX u {0}, and Px is a bounding ray of T. Let [(a, xx), (b, x2)] e R if
and only if a = b e Nit where Ni=Plu {0}, and F4 is a bounding ray of F. Let
[(a, x2), (b, x3)] e R if and only if a = b e Nx. Let [(a, x3), (b, 1)] e R if and only if
a = be Ni. Let [(a, l), (b, x2)] e R if and only if a = b = 0, and let [(a, 1), (b, x3)] e R
if and only if a = b = 0. Also, let us require that R be symmetric by definition, and
let [(a, x¡), (b, x,)] e R if and only if a = b, for /= 1, 2, 3. Finally, let [(a, 1), (b, \)]eR
if and only if a = b. Then, R is clearly an equivalence relation, and using the fact
that Ni and Nt are ideals in Fand that ^^ = {0} (since Ni/V^A^ n ^={0}),
it is easily seen that F is a closed congruence. Consequently, [(F u {0}) x F]/R is a
topological semigroup on E2. It was shown in the proof of Theorem 3 that 5\{0}
= (Tvj xj"v x2T\J x3T). Let / be a function from W =[(Fu {0})x F] onto S
defined by f[(a, I)} —a and f[(a, x¡)] = x¡a, for /=1,2, 3. Let <P be the natural
map from W onto W/R. Just as in Theorem 6, it is not difficult to show that/
is a homomorphism, and that an iseomorphism/* is induced from W/R onto S.

To conclude this section, let us construct an example of a noncommutative
positive Clifford semigroup on E2. In view of Theorem 4, the set E of idempotent
elements must fail to be commutative. However, E does form a semigroup in the
forthcoming example.

Example 1. Let us consider five copies of N x N. Let these copies be denoted by
JxJ, FxF, NxN, GxG, and KxK. Let us now define a relation R on T=
[(JxJ)<u(FxF)u(NxN)<o(GxG)u(KxK)], by first requiring that A<=F.
Also, let us define [(a, b)¡, (c, d)r] e R if and only if a = 0 = c and b = d, where
(a, b), e (JxJ), and (c, d), e (Fx F). Continuing, let us define [(a, b),, (c, d)x] e R
if and only if a = c and b = 0 = d, and [(a, b)u (c, d)g] e R if and only if a = 0=d and
b = c, where fab)ie(NxN) and (c, d)g e (G x G). Also, let us define [(a, b)g,
(c, d)k] e R if and only if a = c and b=0 = d, where (c, d)k e(KxK). Finally, let us
require that R be symmetric. Now, let us define a multiplication on Fin the follow-
ing manner. Let multiplication be coordinatewise in each copy of NxN. Let
(a, b),(c, d)i = (c, d)r(a, b), = (Q, bd)¡, (a, b)r(c, d)x=(c, d)x-(a, b), = (acd, bed),,
(a, b)r(c, d)g = (bc, 0)g, fa b)g(c, d)j = (0, ad),-, (a, b),(c, d)k = (bc, 0)fc, and (a, b)k
■(c, d)¡=(0, ad)j. Also, let (a, b)k-(c, d)g = (c, d)g-(a, b)k = (ac, 0)k, (a, b)k(c, d)x
= (c, d)x-(a, b)k = (acd, bcd)k, (a, b)k(c, d)f = (0, ad)„ and (a, b)r(c, d)k = (bc, 0)k.
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Finally, let (a, b)r(c, d)x = (c, d)x(a, b)f = (ac, bcd){, (a, b)gAc, d)x = (c, d)x(a, b)g
= (acd, bd)g, (a, b)f ■ (c, d)g = (be, 0)g, and (a, b)g ■ (c, d)¡ = (0, ad),. This multiplica-
tion is associative, though the cases to be checked are numerous, and its continuity
follows from the continuity of real number multiplication. Moreover, the relation
R, while obviously an equivalence relation, can easily be checked to be a closed
congruence. The proof that TjR is Hausdorff is similar to that in [2, p. 29].

Thus, we have constructed an example of a noncommutative positive semigroup
on a half plane. According to the comment following Theorem 6, we can now
easily construct an example of a noncommutative positive Clifford semigroup on
E2 in which each two dimensional group has exactly four components. It is of
interest to note that the semigroup on a half plane consisting of 7' = [(7x7)
u (N x N) u (G x G)], with points identified according to the relation R, is a
subsemigroup of T/R. Moreover, T'/R can be used to construct an example of
a noncommutative positive Clifford semigroup on E2 in which each two dimensional
group has exactly two components. However, since the bounding rays of T'jR
are not individually ideals, T'jR cannot be used to construct by the method sug-
gested in Theorem 7 such a semigroup in which each two dimensional group has
exactly four components.

4. Structure theorems. In this section we will describe the structure of the
maximal groups contained in S, a positive Clifford semigroup on E2. We will also
show that, under appropriate conditions, S is the continuous homomorphic
image of the disjoint union of semigroups which are the closures of groups, and
that S is iseomorphic to a semilattice of groups. By a semilattice of groups we will
mean any isomorphic copy of a disjoint union of groups constructed in the follow-
ing manner. First, let K be any semilattice, by which we mean a commutative
idempotent semigroup. To each element a of A' let us assign a group Ga such that
Ga and Gß are disjoint if a+ß in K. To each pair of elements a, ß of K such that
a>ß, let us assign a homomorphism <t>a>/3 of Ga into Gß such that if a>ß>y then
®a,ii(&8,Y=(ba,y Let í>a a be the identity automorphism of Ga. Let A be the union
of all the groups Ga (a e K), and let us define the product of any two elements aa,
bß of A (aa in Ga and bB in Gß) by aabß = (aa^ay)(bß^ß^), where y is the product
aß in K. Then, we will call A a semilattice of groups [1, p. 128]. We will also need
to use the notion of disjoint union topology which can be described in the following
manner. If 7 is the disjoint union of sets Sß, ß eil, then for 7 to have the disjoint
union topology we define a set 0 to be open in 7 if and only if <S n Sß is open in
Sß, for each ß e £2. For the sake of simplification, throughout this section let us
adopt the following notation. Let us denote the four group by F. Let

U = (NxNx{l, -l})/cc,

where a identifies (0, 0, 1) and (0, 0, -1). Let V=(NxNxF)/a, where a identifies
(0, 0, 1), (0, 0, xx), (0, 0, Xa), and (0, 0, x3). Let W =(Nx R x {1, -1})/«, where a
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identifies (0,0,1) and (0,0, -1). Finally let Y=(NxF)/a, where a. identifies
(0, 1), (0, xx), (0, x2), and (0, x3).

Theorem 8. Let 77(e) be a two dimensional maximal group contained in S, a
positive Clifford semigroup on E2. Then Cl [/7(e)] is iseomorphic to the complex
numbers, NxN, NxR, RxR, U, V, or W.

Proof. Let us first enumerate the cases involved in this theorem. First, Z/(e)
may be connected. In this case Cl [H(e)] is iseomorphic to the multiplicative semi-
group of complex numbers if 5 has only two idempotent elements [4, p. 987],
and, by Lemma 2, Cl [Z/(e)] is iseomorphic to N x N if S has more than two idem-
potent elements. Secondly, /7(e) may have exactly two components. In this case,
the two components either share one bounding ray, two bounding rays, or their
closures intersect only in {0}. We will show that Cl [//(e)] is NxR, RxR, or U
respectively in these cases. Finally, /7(e) may have exactly four components.
If H(e) is the only two dimensional group in S, by [5, p. 18] Cl [//(e)] is iseomorphic
to RxR. There are two more subcases. First, the intersection of the closures of
any two components of //(e) may be {0}, in which case we will show that Cl [//(e)]
is iseomorphic to V. Also, if a nonidentity component of /7(e) shares a bounding
ray with the identity component of Z7(e), by arguments on the decomposition
circle like those used in the proof of Lemma 14, it can be shown that the other two
nonidentity components of //(e) share a bounding ray. Then, if S has more than
one two dimensional group, we will show that Cl [/7(e)] is iseomorphic to W.

Now, suppose /7(e) has exactly two components D0 and Dx. By Lemma 2,
D0 is iseomorphic to Nx N. Then, either these two components share a bounding
ray, say Pex, where e\ = ex, or D0 n Z)1={0}, or the two components share two
bounding rays. Let us consider the first case. Let Pe2, where e| = e2, be the other
bounding ray of 7>0, and let Px, where x2 = e2 (see Lemma 9), be the other bounding
ray of Dx. Also, let Gx={x e D0 : xex = ex}, and let G2={xe D0 : xe2 = e2}. Now,
x(Dx) = D0, so that there is some element ae Dx such that a2 = 1. Let us consider
Gx u aGx. Since Gx is iseomorphic to P, where P is the multiplicative group of
positive real numbers [4, p. 987], the map / from Gx u aGx onto R defined by

f(gi)=Si and f(agx)=— gx, where gxe Gx, is a homeomorphism. Now, let us
consider the map (x, y) ->- xy from (aGx u Gx) x G2 to

aGxG2 u GXG2 = [aGx(G2 u {e2}) u (GXG2)] = (aGxG2 u aGxe2 u GXG2)

= (Dx u Px u D0) = Cl [Z7(e)].

This map is one-to-one and onto GxxG2, on {ex}xG2, on Gxx{ex}, on {ex,e2},
on aGx x Gx, and on aGx x {ex}, independently, and hence everywhere. It has been
shown by Home [4, pp. 987-988] that the map is a homeomorphism on Gx x G2.
Since translation by the element a is a homeomorphism (recall that a is in the
center of S), and consequently a set W is open in Gx if and only if a If is open in
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aGx, it follows that the map (x, y) -> xy is also open on aGi x G2, and hence is a
homeomorphism there. So, in this case, Cl [//(e)] is iseomorphic to NxR.

Let us now consider the case in which //(e) has two components, A and Dx,
such that A n A={0}. If A is the identity component, we know that A is
iseomorphic to NxN. Furthermore, we know from Lemmas 4 and 13 that there
is an element x in H (I) such that x2 = 1 and xD0 = Dx. So, Cl [H(e)] = D0 u xD0,
or Cl[//(e)] = (A7xA7)ux(A7xAr). Let us define a function / from [(NxN)
x{l, -1}] onto Cl [//(e)] in the following manner. Let/[(a, b, l)]=(a, b), and let

f[(a, b, - l)]=x(a, b). Then/is continuous and one-to-one, except that/[(0, 0, 1)]
=/[(0, 0, -1)]. It is easily checked that/is an algebraic homomorphism. Now, if
we define a relation a on [(Nx N) x {1, — 1}] which contains the diagonal and which
identifies (0, 0, 1) and (0, 0, — 1), as in Theorem 6 an iseomorphism/* is induced
from U onto Cl [//(e)].

The final case when /7(e) has two components is the one in which these com-
ponents share two bounding rays. Here, Cl [//(e)] is iseomorphic to RxR [4, p. 992].

The final two cases occur when //(e) has exactly four components. For these
remaining two cases, let A> ¿=0, 1, 2, 3, denote the components of H(e), with A
denoting the identity component. We know from Lemmas 4 and 14 that there
are elements xx, x2, x3 in H(l) such that x\=x\ = x\ = l, xxD0 = A, x2D0 = D2,
x3D0 = D3, and fa,x2,x3, 1} is the four group. We also know that A is iseo-
morphic to NxN. Let us first consider the case in which A n Ä={0}, for /#/
Since //(e)/A is iseomorphic to the four group, it follows in a similar fashion
to the case just done that //(e) is iseomorphic to V. Here we define/[(a, b, 1)]
= (a, b) and f[(a, b, xi)] = xi(a, b) for /= 1, 2, 3. Then, as before, an iseomorphism

/* is induced from V onto Cl [//(e)].
In the final case, A and A share a bounding ray, and A and Ai share a bounding

ray, but (D0 u Dx) n (D2 u D3) = {0}. We know from an earlier case that D0 u Dx
is iseomorphic to NxR. Now, consider x2(A u A) = x2(A u ^iA) = ^2Ä
u x2XiA=*2A u x3A = A u A- Let us define a function from [(NxR)
x{l, -1}] onto Cl [//(e)] in the following manner. Let f[(a, b, l)] = (a, b), and let

f[(n, b, — l)] = x2(a, b). It follows in a similar fashion to the earlier case in which
Cl [//(e)] is iseomorphic to U that/is continuous and is an algebraic homomorphism.
If we define a relation a on (NxRx{l, -1}) which contains the diagonal and
which identifies (0, 0, 1) and (0, 0, — 1), again an iseomorphism/* is induced from
WontoCl[H(e)].

Theorem 9. Let S be a positive commutative Clifford semigroup on E2. Then,
S is the continuous homomorphic image of the disjoint union of semigroups which are
closures of groups and which are iseomorphic to the complex numbers, NxN, NxR,
RxR, U, V, W,N,R,or Y.

Proof. We know from Theorem 8 that the closure of each two dimensional
group in S is iseomorphic to one of the first seven possibilities given above. It is
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also not difficult to see that the closure of each one dimensional group is iseo-
morphic to one of the last three possibilities given above. Also, S is the union of
such one and two dimensional groups, along with {0}. For each e e E, let Ye be an
iseomorphism from Cl [//(e)] onto whichever of the ten possibilities above is
appropriate. Let F be the disjoint union of {Ye Cl [//(e)] : ee E}. Let us give F
the disjoint union topology. Thus, we define a set 6 to be open in F if and only if
6 nxYeCl [//(e)] is open in Te Cl [//(e)] for each e. Let us now proceed to define
a multiplication on T. In S the idempotent element ef defines a continuous homo-
morphism O^: H(e)^ H(ef) by <&eef(x)=xef=xf=fx. Now, the following dia-
gram is analytic and the continuous homomorphism O*/ is induced.

Tc Cl [//(e)] -^-> Yer Cl [H(ef)]

Cl [//(e)]-^—> Cl H(ef)
Let x', y', z'eT such that x' g Ye Cl [//(e)], y' e Y, Cl [//(/)], and z' e
T9 Cl [//(g)]. Let us define a multiplication on F by defining x'y' = 0*/(x) • <&*/(>>).
Let x=Y(r1(*'L j=,Fe"1(/), and z=xY-x(z'). Let us now show that F is a semi-
group. We must first show that the multiplication is associative. We have

(x'y')z' = Yefg[g(xy)].Yefg[(ef)z] = Yeig[g(xy)(ef)z] = Yefg[xyz]

= ^efg[(fg)x]x¥efg[e(yz)] = x'(v'z').

Now, let {x;} converge to x' e Ye Cl [/7(e)] and {>>;} converge to y' e Yr Cl [//(/)].
By the nature of the disjoint union topology {x^} is eventually in x¥e Cl [//(e)],
and {y'n} is eventually in Yf Cl [//(/)]. It now follows by the continuity of i>*/
and the continuity of multiplication in Yef Cl [H(ef)] that {x'ny'n} converges to
x'y', and consequently that the multiplication is continuous. Since the disjoint
union topology is obviously Hausdorff, we have that F is a topological semigroup.
Finally, let us define a : T —>- S in the following way. If x' e T, there is a unique e
such that x'e^Cl [//(e)]. So, let us define a(x')=Yëx(x') = x. Since Te is a
homeomorphism, a is continuous. Suppose afa) = x e Cl [//(e)] and a(j/) =
y e Cl [//Y/)]. Then, x'y' = rref(fx)]-\Yef(ey)]=Yef(efxy)=Wef(xy), so that a(x>')
= xy=a(x)-a(y), and a is a homomorphism.

Theorem 10. Let S be a positive commutative Clifford semigroup on E2. Then,
there exists a semilattice of groups T which is a topological semigroup in the disjoint
union topology, and there exists a continuous isomorphism from T onto S which,
when restricted to each maximal group of T, is an iseomorphism.

Proof. Let T be the disjoint union of the maximal groups in S. Since S is com-
mutative, F is a semigroup under coordinatewise operations and is clearly isomor-
phic to 5 under the map 0[(x, e)] = x. Let us give F the disjoint union topology.

Y.
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This is of course equivalent to thinking of 7 as a subset of SxE, where S has
its usual topology, but where E has the discrete topology. If we let j be the sur-
jection of SxE, where E has the discrete topology, onto SxE, where E has the
usual topology, and IT be the projection in the first coordinate from SxE, where
E has the usual topology, into <S", then 0 = 11! oj. Since IT and y are clearly con-
tinuous, it follows that <I> is a continuous isomorphism of 7 onto S. It now
follows from the definition of the disjoint union topology that the restriction of $
to each maximal group is an iseomorphism.

In conclusion we should note that due to the structure of the groups as described
in this section, each maximal group Z7(e) is a topological group.
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