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POSITIVE CLIFFORD SEMIGROUPS ON THE PLANEC()
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REUBEN W. FARLEY

Abstract. This work is devoted to a preliminary investigation of positive Clifford
semigroups on the plane. A positive semigroup is a semigroup which has a copy of the
nonnegative real numbers embedded as a closed subset in such a way that 0 is a zero
and 1 is an identity. A positive Clifford semigroup is a positive semigroup which is the
union of groups. In this work it is shown that if S is a positive Clifford semigroup on
the plane, then each group in S is commutative. Also, a necessary and sufficient con-
dition is given in order that § be commutative, and an example is given of such a
semigroup which is, in fact, not commutative. In addition, both the number and the
structure of the components of groups in S is determined. Finally, it is shown that §
is the continuous isomorphic image of a semilattice of groups.

A topological semigroup is a Hausdorff space together with a continuous
associative multiplication. A real semigroup has been defined by J. G. Horne, Jr.
[4] to be a topological semigroup containing a subsemigroup R iseomorphic to
multiplicative semigroup of real numbers, embedded as a closed subset of E? in
such a way that 1 is an identity and 0 is a zero. Similarly, the author has defined a
positive semigroup to be a topological semigroup containing a subsemigroup N
iscomorphic to the multiplicative semigroup of nonnegative real numbers, em-
bedded as a closed subset of E2 so that 1 is an identity and 0 is a zero [2]. Relying
heavily on the work done by Horne in [4] and [5], this work is devoted to a study
of positive semigroups on E? with the additional requirement that these semigroups
be the union of groups. Let us call such semigroups positive Clifford semigroups [3].
We will show that if S is a positive Clifford semigroup on EZ2, then each group in
S is commutative. Also, we will give a necessary and sufficient condition in order
that a positive Clifford semigroup on E? be commutative, and we will give an
example of a positive Clifford semigroup on E? which is, in fact, not commutative.
We will show that each group in a positive Clifford semigroup S on E2 has one,
two, or four components, that each two dimensional groupis Px P, Px Px {1, —1},
or Px P x F, where F is the four group, and that each one dimensional group is P,
Px{l, —1}, or Px F. Also, we will characterize S in terms of the sector of identity
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components of these groups, and we will show that S is the continuous isomorphic
image of a semilattice of groups.

2. Preliminaries. The closure of a subset 4 of a topological space is denoted
A. The set-theoretic difference of two sets A4 and B is denoted A\B. An iseomorphism
between two topological semigroups is a function which is both an algebraic
iseomorphism and a homeomorphism. The inverse of an element s is denoted s~ *.
The set H(1) denotes the set of elements with inverses with respect to the identity
element 1. In general, H(e) denotes the maximal group having e as identity [I,
p. 22]. Let G denote the component of the identity in H(1). Throughout this work,
E? will denote the Euclidean plane. We will use the terminology two dimensional
to mean having an interior relative to E2, and one dimensional to mean nontrivial
but having no interior relative to E2. Unless otherwise indicated, R will denote a
semigroup iseomorphic to the multiplicative semigroup of real numbers. The set
of all positive members of R is denoted P, and the set of all negative members by
—P. The set of all nonnegative members of R, i.e. P U {0}, is denoted by N. The
null set is denoted by [J. For additional terminology the reader is referred to [4].

3. Components of maximal groups. Henceforth S will denote a positive Clifford
semigroup on E2. We intend to imply that a fixed iseomorphic copy of the non-
negative real numbers has been chosen. The proof of the first lemma is not difficult.

LEMMA 1. The decomposition space [E?\{0}]/® of E*\{0} is homeomorphic to a
topological circle.

LeEMMA 2. If H(e), e#1, is a two dimensional group in S, a positive Clifford semi-
group on E2, and D, is the component of H(e) containing e, then D, is iseomorphic
to NxN.

Proof. It follows from [7] that D,, as well as G, is a Lie group which is an open
subset of E2. Just as in the case of G, D, is iseomorphic to the nonzero complex
numbers, to the two dimensional vector group, or to the group of affine transforma-
tions of the line [8, pp. 283, 257, 258]. Under the assumptions of this lemma, since
0e D,, Dy#E? and, consequently, D, cannot be iscomorphic to the nonzero
complex numbers. Hence, D, must be one of the latter two possibilities. The
results of [6] in which Mostert determined the possibilities for the boundary L of
G are also applicable in the present case. If L’ is the boundary of D,, the only
possibility in which S is the union of groups is that L'=4 U B U {0}, where 4
and B are groups having the property that 4 B={0}. Now, Pe is an open ray meeting
D, in e, and since Pe cannot meet A, B, or {0}, Pe is contained in D,. By [4, p. 983],
Pe is homeomorphic to P. Also, if py, p; € P, (p, p2)e=pi(pse) =p.(epse) = (p.e)(p.e),
s0 that Pe is, in fact, iscomorphic to P. In other words, Pe is a one-parameter sub-
group. Thus, Horne’s argument in [4] can be adapted to show that D, is iscomorphic
to NxN.
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LeMMA 3. If P is the copy of the multiplicative positive real numbers contained in
G, the identity component of H(l), then for each nonzero group element y € H(e),
Py< H(e).

Proof. First, Py=P(ey)=(Pe)y. Then, since Pe is a one-parameter subgroup
contained in H(e) (see the proof of Lemma 2), Py=(Pe)y< H(e).
The proof of the next lemma is straightforward.

LeMMA 4. Let D, be the identity component of H(e), a group in S, and let D,
be a component of H(e) distinct from Dgo. Then, D, =xDy= Dox for each x € D,.

LEMMA 5. Let D, D, be components of H(e), a group in S. Then D,D, is a
component of H(e).

Proof. From the previous lemma, D; =xDy,=Dyx, and Dy=yD,= D,y, where
x € Dy, y € Dy, and D, is the identity component of H(e). We also know that D,
is a subgroup of H(e). Thus, D, Dy=(xDo)(Dyy)=x(DoDo)y=x(Doy)=x(yDy)
=(xy)D,, which is the component of H(e) containing xy.

In view of Lemma 2, the following result is analogous to that in [5, p. 19].

LEMMA 6. If H(e) is a two dimensional group in S, then H(e) has only a finite
number of components.

LEMMA 7. The number of two dimensional maximal groups in S is finite.

Proof. Suppose that S has infinitely many two dimensional maximal groups.
Then, there are infinitely many identity components of two dimensional groups,
and each identity component is issomorphic to P x P. If this is the case, there must
be a sequence {C,} of these identity components whose bounding rays converge
(in the limit superior, limit inferior sense) to a ray, say P,. Let P, and P, be the
bounding rays of C,. Then, lim sup{P,,,}=lim inf{P,,}=P, and lim sup {P,}
=lim inf {P,}=P,. Let T be a simple closed curve with the origin in the bounded
component of its complement, and let T* be a second simple closed curve which
contains 7 in the bounded component of its complement. By the Jordan Curve
Theorem each of these simple closed curves separates E? into two components,
one of which is bounded and the other unbounded. So, each of the rays P, and
P, .. are cut by both T and T, since a ray is unbounded but meets the bounded
component of E? created by T and the one created by T'. Now, it is not difficult
to show that the decomposition space is both upper and lower semicontinuous.
Consequently, we can pick a sequence {x,,} such that x,., € P, and x,,, lies
in the annular region between 7 and T”, and such that {x,,,} converges to x,
where x € P, and x lies in the annular region between T and T". Similarly, we can
pick a sequence {x,} where x, € P, and lies in the annular region between T and T",
and such that {x,} converges to x. Then, {x, . ,x,} converges to x2. But, x,, ;x,=0,
for each n, and x%#0, since x#0 and x is an element of a group. Thus, we have a
contradiction.
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The following lemma is a generalization of that in [4, p. 989].

LeMMA 8. Let S be a positive Clifford semigroup on E?, and let e be the identity
of a group in S. Let Dy, Dy, ..., D, be the components of H(e), and let y be the
squaring function defined by y(x)=x2. Then x(\U?-, D)=t D;, x(Do)= Dy, and
x(D) N D=1 ifi>0.

LEMMA 9. Let D;, D; be components of H(e), a two dimensional group contained
in S. Let M and M’ be the two bounding rays of D;. If x(D;)= D;, then x(M) and
x(M’) are the bounding rays of D,.

Proof. By Lemma 4, D;=xD,= Dyx, where x € D, and Dy is the identity com-
ponent of H(e). Let A and B be the bounding rays of D,. By Lemma 2, we know
that A B={0}. Since e is an identity for D,, multiplication by x is a homeomorphism
on D,. Hence, the boundary of D; must be x(4 U B) U {0}=(4 vV B)x U {0}.
But, x(4 U B)=(4 U B)x, and we have x4 = Ax, and xB= Bx. For, suppose that
for some a € A, b € B we have xa=bx. Then, (xa)(xa)=(xa)(bx)=x(ab)x=x0x=0,
whence xa is a nilpotent element, and we have a contradiction [5, p. 19]. So, x4 =Ax
and xB= Bx are the bounding rays of D,. Since x4 and xB are contained in groups
distinct from H(e), but x(x4) and x(xB)< D;, x(xA4)=(xA)(xA)=(xA}Ax)=x(Ax)
=x24, and x(xB) = x?B are distinct (since multiplication by x? is a homeomorphism
on D,) bounding rays of x(D;)=D,.

Let us pause for a moment for some additional terminology. If D; and D, are
components of groups in S such that there is a ray Px with the property that
Px< D, n D,, we will say that the two components share a bounding ray.

LeMMA 10. Let D, D,, D,, ... be components of a two dimensional group H(e)
contained in S, with D, denoting the identity component. Then, if D, and D, share a
bounding ray Px, and D, and D, share a bounding ray Pa, then H(e)=H(l), H(e)
has exactly four components, Cl [H(e)]= E?, and C| [H(e)] is iseomorphic to Rx R.

Proof. Sirice x(Do)= D, and x(D,)= D, for some i#1, we see that x(D,)= D,
whence, by the preceding lemma, Pa? is the bounding ray of D, distinct from the
bounding ray Px. Now, Pa? must also be a bounding ray of x(D,). So, either
x(D;) is a component D; sharing the bounding ray Pa® with D, or x(D,)= D,.
Observe that DyD,= D;Dy=D,. For if x € D;, Do(Dyx)=(DyDy)x= Dox= D;, and
(xDy)Dy=x(DyDy)=x(Dy)= D,. Suppose that x(Dz)=D,. Let {x,} be a sequence
in D, and {y,} be a sequence in D, such that {x,} converges to a, and { y,} converges
to a, where a is on the bounding ray Pa shared by D, and D,. Then, {x,y,} converges
to a® € Pa?, the bounding ray shared by D, and D;. Since D; D, must be a com-
ponent of H (e), this implies that D, Dy= Dy, or Dy Dy= D,. If D, Dy= D, D,(D,Dy)
=D,;Dy, (DyD,)Dy=D,Dy=D,, DyD;=D,, and D,=D,, which is a contra-
diction. So, we must assume that D;D,= D;. Then, (D, D;)Dy= D3 D,, D,(D;D,)
=D3D,, and D,D3=D3;D,. Also, Dy(D,D;)=D,D;, (D;D,)D;=D,D3, DD,
=D,D;, and D,=D,D;. So, Dy;=D Dy=D;D, Then, D,Dy=(D;3D,)D,,
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D,D,=Dy(D,D,), D;=D3;D;, and Dz= D,, which is a contradiction. So, we
must have y(D,)= Dq. If x(D2)= D,, Pb?>=Px, where Pb is the bounding ray of
D, distinct from Pa. In this case any component sharing the bounding ray Pb
with D, must go onto D, or D; under the squaring map. Thus, any such component
must be some D,. Suppose D, does not share a bounding ray with D,. We saw
above that D, D,= D;, where D, shares the bounding ray Pa? with D,. In a similar
fashion, DyDy=D;, or DyD,=Dq. If D;D,= Do, Dy(D;D,)=D,Dy, (DyDy)D,
=D,, DyD,=D,, and D,= D,, which is a contradiction. So, D,D,= D,. Now,
D1(D2Dk) =D, D,=D, =(D1 D2)Dk= Dy D,. But, if D3 D= D, DS(DSDk) = D3D,,
(D3D3)D=D;, DyD,= D3, and D,= Dg, which is a contradiction. So, we are
forced to conclude that D, does indeed share a bounding ray with D,, in which
case, H(e)=H(1), H(e) has exactly four components, and Cl [H(e)]= E?, which
is Rx R[S, p. 18].

LeEMMA 11. Let C, be the identity component of a two dimensional group H(e)
contained in S. Suppose that C, shares bounding rays with each of C, and C,, both
components of the same group as C,. Then H(e)=H(l), H(e) has exactly four
components, and Cl [H(e)]=E=>.

Proof. Let us denote by M the bounding ray shared by C, and C,, by N the
bounding ray shared by C, and C,, and by K the bounding ray of C, not belonging
to C,. It follows from Lemmas 5 and 8 and from the continuity of the squaring map
that only another component C; of H(e) can share the ray K with C,. For, y(K)=N,
and if {x,} is a sequence none of whose elements belongs to C;, but such that
{x,} converges to k € K, then the sequence {x2} converges to k% € N. So, the sequence
{x2} must eventually be in C, or C,. The possibility that x2 € N for every n can be
eliminated by a relatively elementary proof. Hence, the sequence {x,} is eventually
in a component C; of H(e) which shares the bounding ray K with C,. The result
now follows from Lemma 10.

LEMMA 12. Let C, be the identity component of a two dimensional group H(e)
contained in S, and let M be a bounding ray of C,. Let D be a component of a two
dimensional group such that M is also one of its bounding rays. Then, D cannot be a
nonidentity component of a two dimensional group distinct from H(e).

Proof. Since x(M)= M, by continuity the boundary of x(D) must contain M.
But, since (D) N D=[] by Lemma 8, this is impossible.

THEOREM 1. The union of all the identity components of the nonzero groups in S
forms a sector.

Proof. If the hypotheses of Lemma 11 are satisfied, G\{0} is a sector and the
theorem is established. By Lemma 12 an identity component of a two dimensional
group cannot share a bounding ray with a nonidentity component of another two
dimensional group. However, .S can contain sectors of one dimensional groups,
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by which we mean nontrivial sectors with the property that each element of the
sector lies on a one dimensional group contained in the sector. Thus, an identity
component of a two dimensional group could possibly share a bounding ray, say
M, with a sector T of one dimensional groups. Now, since y(M)= M, by a continuity
argument like the one used in the proof of Lemma 11 we can show that T must,
in fact, be a sector of identity components of one dimensional groups. So, the
identity components of groups in S cannot be separated by nonidentity components,
and hence they form a sector.

LeEMMA 13. Suppose that H(1) has exactly two components, with C, denoting the
identity component and C, denoting the other component. Let T denote the sector
of identity components of all the nonzero groups in S, with M and M’ denoting the
bounding rays of T. Then, there is an x in C, such that x®=1, and right translation
by x leaves M and M’ pointwise fixed.

Proof. Let us consider the decomposition circle, and let us label arcs in a
clockwise fashion. Let (a, b) denote the arc ®(C,). It follows from Lemmas 5
and 8 that x(C,)=C,, and consequently that there is an element x in C, such that
x2=1. It has been shown by Horne [5, pp. 18-21] that x is, in fact, in the center of
S. By Lemma 4, xC,=C,, and since translation by x is a homeomorphism, it
follows that the arc ®(C,) on the decomposition circle is either (xa, xb) or (xb, xa).
Suppose that this arc is (xa, xb). Then, the arc (xb, @) contains no points which
are the image under @ of elements of H(1). Since the squaring map y is continuous,
x[(xb, @)] must contain the arc (a2, x2b%)=(a, b) or the arc (b, a). Each of these
arcs contains arcs ®(C,), where C; is a component of H(1). This implies that for
some z € S\H(1), z2 € H(1), which is impossible because S is the union of groups.
So, the arc ®(C;) must be (xb, xa). Now let us consider the arc (xa, a). The x
translate of (xa, @) must contain (a, xa) or (xa, a). If the x translate of (xa, a)
contains (a, xa), then there is an element z in S\H(1) such that xz € H(1). This is
impossible, since if xze H(1) and x € H(l), then x(xz)=(xx)z=1-z=z € H(l).
So, x-[(xa, a)] must contain (xa, a), and for the same reason as just given must,
in fact, be equal to (xa, a). Similarly, x-[(b, xb)]=(b, xb). Hence, there is a point
p in (xa, @) and a point g in (b, xb) such that xp=p and xg=q. Now, translation by
x is obviously an involution, by which we mean a homeomorphism of period two.
So, if translation by x leaves more than two points fixed on the decomposition
circle, every point on the circle would have to be left fixed [5, p. 20]. However,
since x-[(a, b)]#(a, b) not every point is left fixed. So, p and ¢ are the only fixed
points under this translation. Now, p?=pp=(xp)p=xp?, so that p?=p or p*=q.
But, p? cannot be g. For, if so, x[(p, a)] must contain (a, b) or (xb, xa) which is
impossible, because z2 cannot be in H(1) if z € S\H(1). Similarly, g =q. Since p*=p
and g%2=¢q, the arc ®(T") on the decomposition circle must contain (p, g). Now,
the points p and g must be the image under ® of one dimensional groups. For, if
xe=e, where e is the identity of a two dimensional group, the translation by x
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leaves the identity component of the group, and hence an arc on the circle point-
wise fixed. Suppose that there is a point z on the arc (xa, p) which is the image
under ® of a ray from an identity component of a group in S. Then, xz is in the
arc (p, a) which contains only points which are images under @ of rays in identity
components. This implies that the arc (z, xz) is the image under @ of the identity
component of a group. But, p € (2, xz), and p is the image under ® of a one dimen-
sional group, which is a contradiction. So, the arc on the circle which is the image
under @ of the sector T must be (p, ¢). Since xp=p=p?, and xg=q=4¢?, translation
by x must leave M and M’ pointwise fixed.

THEOREM 2. If H(1) has exactly two components, then the two bounding rays of
the sector T of identity components of groups of S are connected maximal groups,
and every other nonzero group has exactly two components. Furthermore, every
group in S is commutative.

Proof. Using the notation of the previous lemma, let the arc (p, q) on the de-
composition circle be the image under @ of the sector 7, where xp=p and xgq=gq.
Then, x- [(P’ q)] must contain (p, q) or (q’ P) Since x- [(a, b)]c(q’ P), X [(p’ ‘I)]
cannot contain (p,q). So, x-{(p,q¢)] must contain (g, p). Thus, S\{0}=T U xT.
Now, let e be the identity of a group H(e) in S, and let D, be the identity component
of H(e). Then (xe)?=x%e%=e¢, so that xe € H(e). As seen in the previous lemma,
xe=e only if e is the identity of M or of M’, the bounding rays of T.

Let us note that Dy is uniquely divisible, by which we mean that each element
of D, has a unique nth root. For, by Lemma 3, each nonzero group is a union of
rays, and therefore each connected group is a sector. If the identity component
of H(e) has more than one ray, it has an interior, and hence must be open in S.
Therefore, it is a Lie group, and by Lemma 2 its closure must be iseomorphic
to Nx N, so that it is isecomorphic to P x P itself. If the identity component of
H(e) is a trivial sector, it must be a single ray sector, and hence is of the form Pe,
where e € E. Then, as in the proof of Lemma 2, Pe is iscomorphic to P.

Now, if xe € Dy, xe=e, since D, is uniquely divisible. Otherwise, xe € D,, a
component of H(e) distinct from the identity component, in which case D, =(xe) D,
=xD,. Since S\{0}=T U xT, every nonzero group in S, except M and M’, there-
fore has exactly two components. The closure of the identity component, D, of
H(e) is either iseomorphic to N x N by Lemma 2 or to N as above and is therefore
commutative. Let y, z € D,. Then, y=xs, z=xt, for some s, t € D,. So, yz=(xs)(xt)
=(xs)(tx) = x(st)x =(xt)(sx)=(xt)(xs)=zy. Similarly, if ye D, and ze€ D,, we
have yz=zy.

LEMMA 14. Suppose that H(1) has exactly four components, with C, denoting the

identity component, and Cy, C,, Cs denoting the other components. Let T denote the
sector of identity components of all the nonzero groups in S, with N, and N, denoting
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the bounding rays of T. Then, there is an x; € C,, i=1, 2, 3 such that x=1. Moreover,
there is a pair of these elements, say x, and x3, such that x,N,= N, and x;N,= N,.

Proof. Let us consider the decomposition circle, and let us label arcs in a clock-
wise fashion. Let (a, b) denote the arc ®(C,). Since H(1) is the four group when
there are four components, we know that x(C)=C,, for i=1, 2, 3, and conse-
quently there is an x; in each C; such that x?=1. It has been shown by Horne
[5, pp. 18-21] that each x; is, in fact, in the center of S. By Lemma 4, x;C,= C;, and
since translation by x is a homeomorphism, it follows that the arc ®(C,) on the
decomposition circle is either (x,a, x;b) or (x;b, x,a). We might as well assume that the
endpoints of all these arcs are distinct. The other cases can be handled similarly. Let
us call the first of these arcs going clockwise on the circle from (a, b), (xza, x;b) or
(x3b, x3a) whichever is correct. If the arc is (xza, x3b), x5-[(b, x3a)] would have to
contain an arc which is the image under ® of a component of H(1). This is a contra-
diction, since if x5z € H(1), x3(x3z) =x3z=2z € H(1). So, this arc is correctly labeled
(x3b, x5a). Let us label the next arc which is the image under ® of a component
of H(1) going clockwise from (xsb, x3a), (x2b, xqa) or (x.a, x,b), and the final
such arc (x,a, x,b) or (x,b, x,a), whichever is correct. By the same type of argument
as above, we can show that the final arc is correctly labeled (x5, x,a). Now, if the
middle arc is (x3b, x2a), x;-[(x2b, x3a)] must contain (x;x5b, x,x.a)=(x3b, x3a)
or (xaa, xgb). In either case, this implies that x,z € H(1) for some z e S\H(1),
which is a contradiction. So, the middle arc is properly labeled (x.a, x.b). Now,
x; - [(x,a, a)] must contain (a, x,a) or (x,a, a). The same argument as above shows
that x, - [(x4, a)] cannot contain (a, x,4), and in fact, must be equal to (x,a, a).
So, there is a point p in (x,a, a) such that x; p=p. Similarly, there is a point ¢ in
(xaa, x,a) such that x,g=¢q. Now, x, p>=(x,p)p=p?, and x,9®=4q> Since transla-
tion by x; is an involution and does not leave every point fixed because x,Co=C;,
p and q are the only points left fixed under this translation. So, p?=p or p2=g4,
and ¢%2=p or ¢>=q. If p?=4q, x[(p, a)] contains (a, q) or (g, a). In either case, this
implies that there is some element z in S\H(1) such that z2 e H(1), which is a
contradiction. If g2=q, we get the same contradiction. So, p?2=¢2?=p. In a similar
fashion, we can show that there is a point r in (b, x3b) and a point s in (x3b, x,b)
such that xsr=r, x3s=s, and s?=r2=r. The argument that the arc (p,r) is
the arc ®(T') on the circle is exactly analogous to the argument in Lemma 13.
Also, by the same argument as appealed to repeatedly in this proof, we can show
that x,-[(x,a, a)]=(x.a, @), x3-[(b, x3b)]=(b, x5b), x3-[(b, x3b)]=x1-[(b, x3b)]=
(x2b, x,b), and x,-[(x.a, a)]=x3[(x1a, @)]=(xsa, x.a). Furthermore, let us con-
sider x,p = x5(x1 p) =(x2%1)p=x3p. We have x,(x,p) = x5(x, p) = x,p, so that trans-
lation by x; leaves x,p fixed. So, x,p=x3p is either p or ¢. But, x,-[(x.4, @)]=
(xaa, x2a), so that x,p =x,p=gq. Similarly, x,r =x,r=s. For our conclusion, x, p=p
and xgr=r implies that x, N, =N, and xgN;=N,.

THEOREM 3. If H(1) has exactly four components, then the two bounding rays of
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the sector T of identity components of groups are identity components of one dimen-
sional groups having exactly two components, and every other nonzero group has
exactly four components. Further, every group in S is commutative.

Proof. Using the notation of the previous lemma, the arc (p, r) on the decom-
position circle is the image under ® of the sector T, where x,p=p, and xgr=r.
In the proof of the lemma we noted that x,p=x3p=¢ and x;r=x,r=s. It now
follows, using the same argument as in Lemma 14, that x;-[(p, @)]=(x.a, p),
x3-[(b, r)]1=(r, x3b), x3- [(p, @] =(xsa, q), x5- [(p, @)]=(4, Xx30), x2-[(b, r)]=(x2b, 5),
and x, - [(b, r)]=(s, x,b). Thus, S\{0}=(T U x,T U x,T U x3T). Now, let e be the
identity of a maximal group H(e) in S. Let D, be the identity component of H(e).
Then, (x;e)?=x?e*=e, so that x,e € H(e). As seen in the previous lemma, xe=e
only if e is the identity of P, or P,, the bounding rays of T, and i=1 or 3 respec-
tively. Also, if x;e € D,, x;e=e, since D, is uniquely divisible (see proof of Theorem
2). Otherwise, x;e € D, a component of H(e) distinct from the identity component,
in which case D;=(x;e)D,=x;D,. If i#j, x,e and x;e are in distinct components.
Otherwise, (x;e)(x;e)=(xx;)e=x.e € D,, which has been shown above to be a
contradiction. Since S\{0}=(T U x;T U x,T U x;T), every nonzero group in S,
except N; and N, has exactly four components. The identity component, D,, of
H{e) is either iscomorphic to Nx N or to N, and is, in any case, commutative.
The proof that H(e) is commutative follows in the same fashion as in Theorem 2.

THEOREM 4. Let S be a positive Clifford semigroup on EZ%. Then, the following
are equivalent :

(i) If e and f are arbitrary idempotent elements of S, then ef=fe.

(ii) Each idempotent element of S is in the center of S.

(iii) S is commutative.

Proof. It is shown in [1, p. 127] that (i) implies (ii). Let e and f be arbitrary
idempotent elements of S. If e and f are in the center of S, then translation by
either of these elements is a homomorphism. So, e[ H(f)] is the continuous homo-
morphic image of the group H(f) and must therefore be a group. Moreover
e[H(f)] meets the group H(ef) in ef, so that e[H(f)]< H(ef). Similarly, [H(e)]
Sf< H(ef). Thus,

H(e)-H(f) = (H(&)le)- (STH())) = [H(eNeNH(N] = [H(e)N fe)[H(f)]
= ([H(@)]If)-(e[H(N)]) < H(ef).
Now, let x € H(e) and y € H(f). Then, xy, yx, xf, and ey € H(ef) which we know
is commutative. So, xy=(xe)(fy)=x(ef)y=x(fe)y=(xf)ey)=(ey)xf)=e(yx)f
=(yx)(ef)=yx, and we have that (ii) implies (iii). It is immediate that (iii) implies
(i), and we are done.
LeMMA 15. Let S be a positive Clifford semigroup on E? such that H(1) has exactly

two components. Let T denote the sector of identity components of groups in S, and
let the boundary of T be denoted (P, U P, U {0})=1. Then, IT<1I and TI<I.
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Proof. Let e be the idempotent element of P,, let f be the idempotent element of
P,, and let P, U {0}=N, and P, v {0}=N,. By Lemma 13 there is an element
x € S\T such that x2=1, and x is in the center of S. Hence, (xe)®>=e. If H(1) has
exactly two components, the group H(e) (see proof of Lemma 2) is connected,
whence xe=e. Now, let y € T and z € Pe. Then, yz=yze, and xyz=x(yze)=(yze)x
=(yz)(ex)=(yz)(xe)=yze. Thus, yz=yze=xyz. Suppose that yze S\T. Then,
yz=xw, for some we T. But yz=x(yz)=x(xw)=x2w=w e T, which is a contra-
diction. If yze T, yz=x(yz) € xT, so that yze (T N xT)=1I. Similarly, we can
show that zy € I. Thus, T(Pe) and (Pe)T are contained in I. Likewise, T(Pf) and
(Pf)T are contained in /. Finally, T-0=0-7=0, and we are done.

LEMMA 16. Let S be a positive Clifford semigroup on E? such that H(1) has
exactly four components. Let T denote the sector of identity components of groups of
S, and let the boundary of T be denoted (P, v P,V {0})=1I. Then, if ze P, and
yeT, zye (P, U {0})) and yz € (P, U{0}). Also, if ze Py and yeT, zy e (P, U {0})
and yz € (P, U {0}).

Proof. Let p be the identity element of P, and let  be the identity element of P,.
Let C,=P; be the identity component of H(p), and let C; be the remaining com-
ponent. Then, using the notation of Theorem 3, C,=x,Cy=x3C,, as seen in the
proof of Theorem 3. Also, S\{0}=(T U x,T U x,T U x3T). It must be shown that
for ze C, and ye T, zy and yz € (C, U {0}). It suffices to show that yp and py
€ (C, U {0}). We might as well assume that yp#0. Since x;p=p and Xx, is in the
center of S, x,yp=yp. If ype T, yp=x,yp € x,T, so that ype (x;T N T)=C,.
Suppose yp € x;T. Then, yp=x,w, for some weT. But, yp=x,yp=x,(x;w)
=x?w=we T, which is a contradiction. If yp € x,T, yp=x,w, for some weT.
Then, yp=x,(yp) = x,(xaw) = (x1x2)w=x3w € X3T. S0, yp € (x,T N x3T)=C,. Simi-
larly, if yp € x5T, we can show that yp € C;. So, yp € H(p). Let H(e) be the group
containing y. Now, there exists an element k in H(p) such that (yp)k=p. Then,
ep=e(ypk)=(ey)(pk)=ypk=p. Let us now show that yp ¢ C,, if y#e. Suppose
that yp € C,. Let g be the element in C; such that g>=p. By Lemma 4, C,=¢C,
=C,q. So, there exists 1 € C, such that yp=1g=qr. Indeed, we can take r=yq.
For, yp=tq implies that ypg=1qq. Then yg=ypg=1t9q=tp=t. Now, y*p=y(yp)=
Wqt)=(yq)t=(yq)(yq)=(yq)*=12 € C,. Let [y] be the one parameter subgroup in
H(e) generated by y. Let us consider the interval 4 from y to y* in [y]. We have
shown that yp and y%p € H(p). If k is any element in A distinct from y and y?
we can show that kp € H(p) by using the same type of argument as was used to
show that if y € H(e) and yp#0, then yp € H(p). So, the interval (yp, y°p) is in
H(p), and this interval must be contained in Ap. Since yp is in C; and y®p is in C,,
0 must be in Ap. This implies that there exists an s in [y] such that sp=0. But, in
this case, we have s~ (sp)=(s's)p=ep=0, which is a contradiction. So, we must
conclude that yp € (C, U {0}) =(P; U {0}). The remaining conclusions of the lemma
follow similarly.
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THEOREM 5. Let S be a positive Clifford semigroup on E2, and let T denote the
sector of identity components of nonzero groups in S. If the set E of idempotent
elements of S is a subsemigroup, then T is a semigroup.

Proof. Let e, f < E. Let the identity component of the group H(e) be denoted C,.
Let us consider C,-C,, denoting ef=g+#0, g E. Then C,C, is a connected set
meeting C, in g. So, if C,C; N (S\T)# [, then C,C; N I£[], where I is the boun-
dary of T. The previous two lemmas show that /T< I and TI<I. Suppose 0 € C,C,.
Then, there is an x in C, and a y in C, such that xy=0. But x " (xy)y~!=(x"'x)
-(yy~')=ef=0, which is a contradiction. Suppose C,C; N N, # [, where N,=P,
U {0} and P, is a bounding ray of T. Then, there exist x € C,, y € C;, t € N, such that
xy=te Ny<l. So, x '(xy)y '=(x"'x)yy )=efel Thus, C,C,=(C.e)(fC))
=C,(ef)C,cI<T.

THEOREM 6. Let S be a positive Clifford semigroup on E® such that H(1) has
exactly two components. Let T denote the sector of identity components of groups in
S. If T is a semigroup, then S is iseomorphic to [(T U {0}) x{l, — 1})/R, for a suitable
relation R.

Proof. In Theorem 2 it was noted that the bounding rays P, and P, of T are each
connected groups. Let N;=P, U {0}, and let N,=P, U {0}. Also, let x#1 be a
square root of 1. Since x is in the center of S, (xN;)2= N, and (xN;)?>= N,. Since P,
is a connected group and S is the union of groups, it follows that xN; < N, and hence
that xN,=N,, because the translate by x of a ray is a ray. Similarly, xN,=N,.
By Lemma 13, N; U N, is an ideal in 7. Now, with the usual topology and coordi-
natewise multiplication [(7 v {0}) x{l, —1}] is a topological semigroup. Let us
define a relation R on {(T v {0}) x{l, —1}] in the following manner. Let [(a, 1),
(b, D] € R if and only if a=b. Let [(a, —1), (b, —1)] € R if and only if a=b. Let
[(a, 1), (b, —D] € R if and only if a=be (N, U N,). Let us require by definition
that R be symmetric. Then, R is clearly an equivalence relation. Using the fact
that N; U N, is an ideal in 7, it also follows easily that R is a closed congruence, and
consequently that [(TU {0})x{l, —1}}/R is a topological semigroup on EZ2 In
the proof of Theorem 2 it was shown that S=7T U xT U {0}. Let f be a function
from W=[(T v {0)) x{1, —1}] onto S defined by f[(a¢, —1)]=xa and f[(a, 1)]=a,
where x>=1 and x# 1. Let ® be the natural map from W onto W /R. We see that
[ is one-to-one, except on elements of N; U N,. The continuity of f and f?
follows from the continuity of multiplication in 7. It is easy to see that fis a homo-
morphism. Now, a function f* is induced from W/R onto S, if we define f*(z)
=f[®~1(2)]. It follows easily that f* is an isecomorphism.

It should be noted that, in view of the preceding theorem, if we have any positive
semigroup on the closed half plane which is the union of connected groups, then
we can easily construct a positive Clifford semigroup on E2 in which each two
dimensional group has exactly two components, and that a/l such entities in which
T is a subsemigroup are formed in this manner.
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THEOREM 7. Let S be a positive Clifford semigroup on E? such that H(1) has
exactly four components. Let T denote the sector of identity components of nonzero
groups in S. Then, if T is a semigroup, S is iseomorphic to [(T U {0}) x F]/R for a
suitable relation R, where F is the four group.

Proof. Let F={x,, x,, x5, 1}, where x;, i=1,2,3 are as in Theorem 3. Then,
F is the four group with x;x,=x,%; =X3, XoX3=2X3X3=X;, X1X3=X3X,=Xs, and
x}=x%=xZ=1. Now, with the usual topology and coordinatewise multiplication,
[(T v {0}) x F] is a topological semigroup. Let us define a relation R on [(T" v {0})
x F] in the following manner. Let [(a, x,), (b, 1)] € R if and only if a=be N,,
where N;=P, U {0}, and P, is a bounding ray of T. Let [(a, x,), (b, x5)] € R if
and only if a=be N,, where N,=P, U {0}, and P, is a bounding ray of T. Let
[(a, x3), (b, x3)] € R if and only if a=b € N;. Let [(a, x3), (b, 1)] € R if and only if
a=be N,. Let [(a, 1), (b, x5)] € Rif and only if a=b=0, and let [(a, 1), (b, x3)] € R
if and only if a=b=0. Also, let us require that R be symmetric by definition, and
let [(a, x;), (b, x;)] € Rif and only if a=b, for i=1, 2, 3. Finally, let [(a, 1), (b, 1)]e R
if and only if a=b. Then, R is clearly an equivalence relation, and using the fact
that N, and N, are ideals in T and that N, N,={0} (since N;N,<(N, N N,)={0}),
it is easily seen that R is a closed congruence. Consequently, [(7'V {0}) x F]/R is a
topological semigroup on E2. It was shown in the proof of Theorem 3 that S\{0}
=(TVU x,TV x,TU x3T). Let f be a function from W=[TU {0})x F] onto S
defined by f[(a, 1)]=a and f[(a, x)]=xa, for i=1,2,3. Let ® be the natural
map from W onto W/R. Just as in Theorem 6, it is not difficult to show that f
is a homomorphism, and that an iseomorphism f* is induced from W/R onto S.

To conclude this section, let us construct an example of a noncommutative
positive Clifford semigroup on £2 In view of Theorem 4, the set E of idempotent
elements must fail to be commutative. However, E does form a semigroup in the
forthcoming example.

ExAMPLE 1. Let us consider five copies of N x N. Let these copies be denoted by
IJxJ, FxF, NxN, GxG, and Kx K. Let us now define a relation R on T=
[(xJ)U((FxFYU(NxN)u(GxG)u (KxK)], by first requiring that A<R.
Also, let us define [(a, b);, (¢, d);] € R if and only if a=0=c and b=d, where
(a, b); € (JxJ), and (c, d); € (Fx F). Continuing, let us define [(a, b),, (¢, d);] € R
if and only if a=¢ and b=0=d, and [(q, b),, (¢, d),] € Rif and only if a=0=d and
b=c, where (a, b); e (NxN) and (c, d), e (GxG). Also, let us define [(a, b),,
(¢, d);] € R if and only if a=¢ and b=0=d, where (c, d), € (K% K). Finally, let us
require that R be symmetric. Now, let us define a multiplication on T in the follow-
ing manner. Let multiplication be coordinatewise in each copy of Nx N. Let
(09 b)j'(c’ d)/=(c, d)f'(aa b)i=(0, bd)j’ ((1, b)j'(c’ d)1=(C, d)l '(as b).i:(a"‘d’ de)ja
(a, b);+(c, d)g=(bc, 0),, (a, b),(c, d);=(0, ad);, (a, b);(c, d)=(bc, 0), and (a, b);
-(c, d);=(0, ad),. Also, let (a, b),-(c, d),=(c, d),-(a, b).=(ac, O), (a, b),-(c, d),
=(c, d),-(a, b),=(acd, bed),, (a, b),-(c, d);=(0, ad),, and (a, b),-(c, d),,=(bc, O),.
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Finally, let (a, b);-(c, d),=(c, d),-(a, b);=(ac, bed),, (a, b),-(c, d),=(c, d),-(a, b),
=(acd, bd),, (a, b);-(c, d),=(bc, 0),, and (a, b),-(c, d);=(0, ad),. This multiplica-
tion is associative, though the cases to be checked are numerous, and its continuity
follows from the continuity of real number multiplication. Moreover, the relation
R, while obviously an equivalence relation, can easily be checked to be a closed
congruence. The proof that T/R is Hausdorff is similar to that in [2, p. 29].

Thus, we have constructed an example of a noncommutative positive semigroup
on a half plane. According to the comment following Theorem 6, we can now
easily construct an example of a noncommutative positive Clifford semigroup on
E? in which each two dimensional group has exactly four components. It is of
interest to note that the semigroup on a half plane consisting of T'=[(Fx F)
U (Nx N) U (Gx G)], with points identified according to the relation R, is a
subsemigroup of T/R. Moreover, T'/R can be used to construct an example of
a noncommutative positive Clifford semigroup on E2 in which each two dimensional
group has exactly two components. However, since the bounding rays of T'/R
are not individually ideals, 7'/R cannot be used to construct by the method sug-
gested in Theorem 7 such a semigroup in which each two dimensional group has
exactly four components.

4. Structure theorems. In this section we will describe the structure of the
maximal groups contained in S, a positive Clifford semigroup on E2. We will also
show that, under appropriate conditions, S is the continuous homomorphic
image of the disjoint union of semigroups which are the closures of groups, and
that S is iseomorphic to a semilattice of groups. By a semilattice of groups we will
mean any isomorphic copy of a disjoint union of groups constructed in the follow-
ing manner. First, let K be any semilattice, by which we mean a commutative
idempotent semigroup. To each element « of K let us assign a group G, such that
G, and G, are disjoint if 8 in K. To each pair of elements «, 8 of K such that
o> B, let us assign a homomorphism @, ; of G, into G, such that if «> 8>y then
®, ;05 ,=D, ,. Let O, , be the identity automorphism of G,. Let 4 be the union
of all the groups G, (« € K), and let us define the product of any two elements a,,
bs of A4 (a, in G, and b, in Gy) by a,by=(a, P, )b, ,), where y is the product
off in K. Then, we will call 4 a semilattice of groups [1, p. 128]. We will also need
to use the notion of disjoint union topology which can be described in the following
manner. If T is the disjoint union of sets Sg, 8 € Q, then for T to have the disjoint
union topology we define a set 0 to be open in T if and only if ¢ N S; is open in
Sy, for each B e Q. For the sake of simplification, throughout this section let us
adopt the following notation. Let us denote the four group by F. Let

U=(NxNx{l, —1})/e,

where « identifies (0, 0, 1) and (0, 0, —1). Let ¥=(N x N x F)/a, where o identifies
0,0,1), (0,0, x,), (0,0, x5), and (0, 0, x3). Let W=(Nx Rx{l, —1})/«, where «
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identifies (0,0, 1) and (0,0, —1). Finally let Y=(Nx F)/e, where « identifies
(0, 1)’ (O’ xl); (0’ x2)a and (09 xa)-

THEOREM 8. Let H(e) be a two dimensional maximal group contained in S, a
positive Clifford semigroup on E2. Then Cl [H(e)] is iseomorphic to the complex
numbers, Nx N, NXR, RxR, U, V, or W.

Proof. Let us first enumerate the cases involved in this theorem. First, H(e)
may be connected. In this case Cl [H(e)] is iseomorphic to the multiplicative semi-
group of complex numbers if S has only two idempotent elements [4, p. 987],
and, by Lemma 2, Cl [H(e)] is iseomorphic to N x N if § has more than two idem-
potent elements. Secondly, H(e) may have exactly two components. In this case,
the two components either share one bounding ray, two bounding rays, or their
closures intersect only in {0}. We will show that Cl {H(e)] is NxR, RxR, or U
respectively in these cases. Finally, H(e) may have exactly four components.
If H(e) s the only two dimensional group in S, by [5, p. 18] Cl [H(e)] is iscomorphic
to Rx R. There are two more subcases. First, the intersection of the closures of
any two components of H(e) may be {0}, in which case we will show that Cl [H(e)]
is iseomorphic to V. Also, if a nonidentity component of H(e) shares a bounding
ray with the identity component of H(e), by arguments on the decomposition
circle like those used in the proof of Lemma 14, it can be shown that the other two
nonidentity components of H(e) share a bounding ray. Then, if S has more than
one two dimensional group, we will show that Cl [H(e)] is iseomorphic to W.

Now, suppose H(e) has exactly two components D, and D,. By Lemma 2,
D, is iseomorphic to N x N. Then, either these two components share a bounding
ray, say Pe,, where e?=e,, or D, N D,={0}, or the two components share two
bounding rays. Let us consider the first case. Let Pe,, where e2=e,, be the other
bounding ray of D,, and let Px, where x?= e, (see Lemma 9), be the other bounding
ray of D,. Also, let G,={x € D, : xe,;=e,}, and let Go,={x € D, : xe;=e,}. Now,
x(D;)= D, so that there is some element @ € D, such that a2=1. Let us consider
G, U aG,. Since G, is isecomorphic to P, where P is the multiplicative group of
positive real numbers [4, p. 987], the map f from G, U aG, onto R defined by
flg1))=g, and f(ag,)= —g,, where g, € G,, is a homeomorphism. Now, let us
consider the map (x, y) — xy from (aG, U G,) x G, to

361G, V GG, = [aGy(G2 Y {ea}) U (G1Gy)] = (aG,G; U aGre; U G, Go)
= (D, U Px U D) = CI [H(e)].

This map is one-to-one and onto G, X G, on {e;} X G,, on G, x{e,}, on {e,, e},
on aG; x Gy, and on aG, x {e,}, independently, and hence everywhere. It has been
shown by Horne [4, pp. 987-988] that the map is a homeomorphism on G, x G,.
Since translation by the element a is a homeomorphism (recall that a is in the
center of S), and consequently a set W is open in G, if and only if aW is open in
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aG,, it follows that the map (x, y) — xy is also open on aG, x G,, and hence is a
homeomorphism there. So, in this case, Cl [H(e)] is iscomorphic to N x R.

Let us now consider the case in which H(e) has two components, D, and D,,
such that D, n D, ={0}. If D, is the identity component, we know that D, is
iseomorphic to N x N, Furthermore, we know from Lemmas 4 and 13 that there
is an element x in H(1) such that x2=1 and xD,=D,. So, Cl [H(e)]=D, U xD,,
or Cl[H(e)]=(NxN)uU x(NxN). Let us define a function f from [(NxN)
x {1, —1}] onto Cl [H(e)] in the following manner. Let f[(a, b, 1)]=(a, b), and let
Sfl(a, b, —1)]=x(a, b). Then fis continuous and one-to-one, except that f[(0, 0, 1)]
=f[(0, 0, —1)}. It is easily checked that fis an algebraic homomorphism. Now, if
we define a relation « on [(Nx N) x {1, — 1}] which contains the diagonal and which
identifies (0, 0, 1) and (0, 0, —1), as in Theorem 6 an iscomorphism f* is induced
from U onto Cl [H(e)].

The final case when H(e) has two components is the one in which these com-
ponents share two bounding rays. Here, C1[H (e)] is issomorphic to R x R [4, p. 992].

The final two cases occur when H(e) has exactly four components. For these
remaining two cases, let D;, i=0, 1, 2, 3, denote the components of H(e), with D,
denoting the identity component. We know from Lemmas 4 and 14 that there
are elements x,, x,, x; in H(l) such that x3=x%=x3=1, x,Dy=D,, x,D,=D,,
x3Dy= Ds, and {x,, x,, x3, 1} is the four group. We also know that D, is iseo-
morphic to Nx N. Let us first consider the case in which D; n D,={0}, for i#j.
Since H(e)/D, is iscomorphic to the four group, it follows in a similar fashion
to the case just done that H(e) is iscomorphic to V. Here we define f[(a, b, 1)]
=(a, b) and f[(a, b, x)]=x(a, b) for i=1, 2, 3. Then, as before, an iseomorphism
f* is induced from V onto Cl [H(e)].

In the final case, D, and D, share a bounding ray, and D,and D;share a bounding
ray, but (D, U D,) N (D, U D3)={0}. We know from an earlier case that D, U D,
is iseomorphic to Nx R. Now, consider x,(Dy U D;)=xy(Dy U x,D4)=x,D,
U x3%, Do=x,Dy U x3Dy=D, U D;. Let us define a function from [(NxR)
x {1, —1}] onto Cl [H(e)] in the following manner. Let f[(a, b, 1)]=(a, b), and let
SflCa, b, —1)]=x4(a, b). It follows in a similar fashion to the earlier case in which
Ci[H(e)}isiseomorphicto U that fis continuous and is an algebraic homomorphism.
If we define a relation « on (Nx Rx{l, —1}) which contains the diagonal and
which identifies (0, O, 1) and (0, 0, — 1), again an iseomorphism f* is induced from
W onto Cl [H(e)].

THEOREM 9. Let S be a positive commutative Clifford semigroup on E2. Then,
S is the continuous homomorphic image of the disjoint union of semigroups which are
closures of groups and which are iseomorphic to the complex numbers, N x N, N x R,
RxR, U, V, W,N,R,or Y.

Proof. We know from Theorem 8 that the closure of each two dimensional
group in S is isecomorphic to one of the first seven possibilities given above. It is
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also not difficult to see that the closure of each one dimensional group is iseo-
morphic to one of the last three possibilities given above. Also, S is the union of
such one and two dimensional groups, along with {0}. For each e € E, let ¥, be an
iscomorphism from Cl [H(e)] onto whichever of the ten possibilities above is
appropriate. Let T be the disjoint union of {¥, Cl [H(e)] : e E}. Let us give T
the disjoint union topology. Thus, we define a set O to be open in T if and only if
0NnY,Cl[H(e)]is open in ¥, Cl [H(e)] for each e. Let us now proceed to define
a multiplication on T. In S the idempotent element ef defines a continuous homo-
morphism ®f,: H(e) — H(ef) by ®¢(x)=xef=xf=fx. Now, the following dia-
gram is analytic and the continuous homomorphism @ is induced.

(D*e
¥, Cl [H(e)] —'— ¥, Cl [H(ef)]

dq

Cl [H(e)] — 2 Cl H(ef)
Let x’, ¥, z2eT such that x'e¥,Cl[H(e)], y'e¥,CI[H(f)], and Z'€
¥, Cl [H(g)). Let us define a multiplication on T by defining x'y’ = ®}¢(x)- ®¥/(»).
Let x=¥;1(x"), y=¥;1(y"), and z=Y;(z'). Let us now show that 7 is a semi-
group. We must first show that the multiplication is associative. We have

(Y2 = YerglGey)]- Wersl(ef)z] = Ferglg(xy)ef)z] = Fepolxyz]
= Yerol(f2)x]- ¥erole(y2)] = x'(¥'2).

Now, let {x;} converge to x’ € ¥, Cl [H(e)] and {y,} converge to y' € ¥; Cl [H(f)].
By the nature of the disjoint union topology {x;} is eventually in ¥, Cl [H(e)},
and {y;} is eventually in ¥, Cl [H(f)]. It now follows by the continuity of &}’
and the continuity of multiplication in ¥',, Cl [H(ef)] that {x;y,} converges to
x'y’, and consequently that the multiplication is continuous. Since the disjoint
union topology is obviously Hausdorff, we have that T is a topological semigroup.
Finally, let us define «: T— S in the following way. If x’ € T, there is a unique e
such that x’' € ¥, Cl [H(e)]. So, let us define o(x’)=";'(x)=x. Since ¥, is a
homeomorphism, « is continuous. Suppose «(x)=x€Cl[H(e)] and o(y)=
y € CLIH(f)]. Then, x'y"= [V, (fX)]- [Ve/(ey)] =Y. (efxy) =T (xp), s0 that e(x'y’)
=xy=a(x)-o(y), and « is a homomorphism.

THEOREM 10. Let S be a positive commutative Clifford semigroup on E®. Then,
there exists a semilattice of groups T which is a topological semigroup in the disjoint
union topology, and there exists a continuous isomorphism from T onto S which,
when restricted to each maximal group of T, is an iseomorphism.

Proof. Let T be the disjoint union of the maximal groups in S. Since S is com-
mutative, T is a semigroup under coordinatewise operations and is clearly isomor-
phic to S under the map ®[(x, e)]=x. Let us give T the disjoint union topology.
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This is of course equivalent to thinking of T as a subset of Sx E, where S has
its usual topology, but where E has the discrete topology. If we let j be the sur-
jection of S x E, where E has the discrete topology, onto S x E, where E has the
usual topology, and II, be the projection in the first coordinate from S x E, where
E has the usual topology, into S, then ®=1II, o j. Since Il and j are clearly con-
tinuous, it follows that @ is a continuous isomorphism of 7" onto S. It now
follows from the definition of the disjoint union topology that the restriction of ®
to each maximal group is an iscomorphism.

In conclusion we should note that due to the structure of the groups as described
in this section, each maximal group H(e) is a topological group.
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