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Abstract: We define and study the totally nonnegative part of the Chow quotient of the
Grassmannian, or more simply the nonnegative configuration space. This space has a
natural stratification by positive Chow cells, and we show that nonnegative configura-
tion space is homeomorphic to a polytope as a stratified space. We establish bijections
between positive Chow cells and the following sets: (a) regular subdivisions of the
hypersimplex into positroid polytopes, (b) the set of cones in the positive tropical Grass-
mannian, and (c) the set of cones in the positive Dressian. Our work is motivated by
connections to super Yang–Mills scattering amplitudes, which will be discussed in a
sequel.
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1. Introduction

This is the first in a sequence of papers where we define and study the totally nonneg-
ative part of the Chow quotient of the Grassmannian, or more simply the nonnegative
configuration space. In this paper, we focus on the combinatorics and topology of this
space. In a sequel [ALS+], we will further study the geometry and its relations to cluster
algebras, canonical bases, and scattering amplitudes. Some of the applications of our
work to N = 4 super Yang–Mills amplitudes were announced in the note [ALS].

1.1. Lusztig [Lus] and Postnikov [Pos] defined the totally nonnegative Grassmannian
Gr(k, n)≥0 (informally, the positive Grassmannian), the closed subspace of the real
Grassmannian Gr(k, n)(R) of k-planes in R

n cut out by the condition that all Plücker
coordinates are nonnegative. Postnikov [Pos] (see also [Rie]) studied the stratification
of Gr(k, n)≥0 by positroid cells �M,>0 and Galashin, Karp, and Lam [GKLa,GKLb]
showed that positroid cells endowGr(k, n)≥0 with the structure of a regularCW-complex
homeomorphic to a closed ball. Positroid cells are indexed by a class of matroids called
positroids. Positroids have been completely classified [Oh] and are in bijection with
Grassmann necklaces [Pos] and bounded affine permutations [KLS], among other com-
binatorial objects. This is in stark contrast to the situation ofmatroids. There is no explicit
classification of (realizable) matroids, and the geometry of matroid strata [GGMS] is
notoriously complicated [Mne].

Recently, the positive Grassmannian hasmade a prominent appearance in the study of
scattering amplitudes [ABCGPT,AT], where the boundary structure of Gr(k, n)≥0 was
connected to the singularities of tree-level scattering amplitudes in maximally super-
symmetric Yang–Mills theory. Part of this connection is formalized in the statement
that Gr(k, n)≥0 is a positive geometry [ABL], and one driving force in this developing
subject, and of the present work, is to find positive geometries that have relations to
physical problems.

1.2. The Grassmannian Gr(k, n) has a natural action of a torus T that acts by scaling
the basis vectors of the underlying vector space C

n . The quotient Gr(k, n)/T is closely
related to the configuration spaceConf(k, n) of n points inP

k−1. Kapranov [Kap] studied
the Chow quotient Ch(k, n) of the Grassmannian, which is a compactification of the
subspace ˚Conf(k, n) ⊂ Conf(k, n) of generic configurations. In the case k = 2, the
Chow quotient Ch(2, n) is isomorphic to the Deligne–Knudsen–Mumford space M0,n
of n-pointed stable rational curves.

The image of the positive Grassmannian Gr(k, n)>0 in ˚Conf(k, n) ⊂ Ch(k, n) is
the positive component Conf(k, n)>0 of generic configuration space. We define the
totally nonnegative part of the Chow quotient of the Grassmannian, or simply nonneg-
ative configuration space Ch(k, n)≥0, as the closure of this positive component inside
Ch(k, n). Aswe shall explain inmore detail in a sequel [ALS+], see also [ALS,GGSVV],
scattering amplitudes can be thought of as “functions" on Gr(4, n)/T . Just as the
combinatorics of Gr(k, n)≥0 controls the singularities of the amplitude at tree-level,
we expect the combinatorics of Ch(4, n)≥0 to be closely related to the singularities
of the full scattering amplitude (integrated, and at all loops). Some connections of
(the closely related) tropical Grassmannians to amplitudes have also been discussed
in [CEGM,CR,DFOKa,SG,DFOKb,HP,DFOKc].
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1.3. Our first aim in this work is to study the combinatorics of a natural stratification
{��̃,>0} of Ch(k, n)≥0, extending the combinatorics associated to positroid cells of
Gr(k, n)≥0. We call these strata {��̃,>0} positive Chow cells.

Theorem 1.1. There are canonical bijections between the following sets.

(1) The set {��̃,>0} of positive Chow cells of Ch(k, n)≥0.
(2) The set D(k, n) of regular subdivisions of the hypersimplex �(k, n) into positroid

polytopes.
(3) The set of cones in the positive tropical Grassmannian Trop>0Gr(k, n), the space of

valuations of positive Puiseux series points Gr(k, n)(R>0).

(4) The set of cones in the space Dr(k, n)>0 ⊂ R([n]
k ) (called the positive Dressian) of

vectors satisfying the positive tropical (three-term) Plücker relations.

Our second main result is a description of the topology of Ch(k, n)≥0, a variant of the
results of [Pos,GKLa,GKLb]. Somewhat surprisingly, while the geometry of the Chow
quotient is considerably more complicated than that of the Grassmannian, the following
result is easier than its Grassmannian counterpart.

Theorem 1.2. There is a stratification-preserving homeomorphism from nonnegative
configuration space to a polytope. In particular, each positive Chow cell ��̃,>0 ⊂
Ch(k, n)≥0 is homeomorphic to an open ball.

We remark that Gr(k, n)≥0 is not homeomorphic to a polytope as a stratified space.
We now explain each of the objects in Theorem 1.1 in turn. Let [n] := {1, 2, . . . , n} and
let

([n]
k

)
denote the set of all k-element subsets of [n].

1.4. Each point X ∈ Ch(k, n) is represented by an algebraic cycle inside the Grassman-
nian. If X ∈ ˚Conf(k, n) ⊂ Ch(k, n) then X is represented by the torus orbit closure T · V
of a generic point V in the Grassmannian. The toric variety T · V is isomorphic to the
projective toric variety X�(k,n) associated to the hypersimplex �(k, n), the convex hull
of all vectors eI ∈ R

n , I ∈ ([n]
k

)
with k 0-s and (n−k) 1-s. A general point X ∈ Ch(k, n)

is represented by a union of toric varieties XP1 , . . . , XPm , where P1, . . . , Pm are poly-
topes that form a regular subdivision of the hypersimplex into matroid polytopes (see
Sect. 2). We thus obtain a stratification of Ch(k, n) by matroid subdivisions of the hyper-
simplex, see [Kap,KT,Laf]. However, it is a difficult question to describe which matroid
subdivisions of the hypersimplex occur in this way. This is a variant of the (also difficult)
question of which matroids are realizable.

When X ∈ Ch(k, n)≥0 is nonnegative, the matroid polytopes P1, . . . , Pm are
positroid polytopes (Proposition 6.1). Since positroids have been completely classi-
fied, subdivisions of the hypersimplex by positroid polytopes are far more tractable.
Indeed, Theorem 1.1 states that any regular subdivision of the hypersimplex �(k, n)

into positroid polytopes appears in nonnegative configuration space.

1.5. By definition, a regular subdivision of the hypersimplex arises from aweight vector

p• ∈ R([n]
k ): we lift each vertex eI of�(k, n) to height pI , and project the lower faces of

the resulting convex hull down to obtain a subdivision �̃(p•). Speyer [Spe] showed that
the subdivision �̃(p•) is into matroid polytopes if and only if p• satisfies the three-term
tropical Plücker relations.
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We say that p• satisfies the three-term positive tropical Plücker relations if for every
S and a < b < c < d not contained in S, we have that

pSac + pSbd = min(pSab + pScd , pSad + pSbc). (1.1)

We show in Proposition 8.3 that the subdivision �̃(p•) is into positroid polytopes if
and only if p• satisfies (1.1). Following [HJJS,HJS,OlPS], we call the space of vectors
satisfying (1.1) the positive Dressian, and denote it by Dr(k, n)>0. More generally, for
each positroidM, we have a positive local Dressian Dr(M)>0.

1.6. Speyer and Sturmfels [SS] studied the tropical Grassmannian TropGr(k, n) which
parametrizes tropical linear spaces. Every point p• ∈ TropGr(k, n) satisfies the three-
term tropical Plücker relations, but in general the converse is not true [HJJS].

Speyer andWilliams [SW]defined thepositive tropicalGrassmannianTrop>0Gr(k, n) ⊂
TropGr(k, n). LetR = ⋃∞

n=1 R((t1/n)) denote the field of Puiseux series andR>0 ⊂ R
those Puiseux series whose leading (lowest) coefficient is positive. Then Trop>0Gr(k, n)

is defined to be the closure of the set of valuations p• = (pI = val(�I (V )) | I ∈ ([n]
k

)
)

for V ∈ Gr(k, n)(R>0). We generalize this by also considering the positive tropical
positroid cell Trop>0�M. It is immediate that every point p• ∈ Trop>0Gr(k, n) or
p• ∈ Trop>0�M satisfies the three-term positive tropical Plücker relations (1.1). A key
technical result is that the converse holds (Theorem 9.2).

Theorem 1.3. Every rational positive tropical Plücker vector is realizable. Thus

Trop>0Gr(k, n) = Dr(k, n)>0, Trop>0�M = Dr(M)>0.

We give two proofs of Theorem 1.3. The first one uses (1.1) directly. The second
one uses a tropical bridge reduction (Sect. 14) for positive tropical Plücker vectors, a
variant of the bridge reduction algorithm for points V ∈ Gr(k, n)≥0 in [Lam]. Whereas
usual bridge reduction gives parametrizations of�M,>0, tropical bridge reduction gives
parametrizations of Dr(M)>0 = Trop>0�M.

The space Dr(M)>0 has a number of different fan structures. Two of them, the
secondary fan structure and the Plücker fan structure, were shown to agree in [OlPS].
We study a class of positive fan structures (generalizing [SW]) coming from positive
parametrizations of�M,>0 and show inTheorem10.3 that all the fan structures coincide.

1.7. Let us give an example illustrating the bijections of Theorem 1.1. Full definitions
are given in the main text. Consider the curve V : [0,∞) → Gr(2, 5) given by

V (t) =
[
0 1 1 1 1

−1 0 1 1 + t 1 + 2t

]

which has Plücker coordinates �12 = �13 = �14 = �15 = �23 = 1 and

�24 = 1 + t �25 = 1 + 2t �34 = t �35 = 2t �45 = t.

Thus the curve V (t) lies in the positive Grassmannian Gr(2, 5)>0 for t > 0, and defines
a curve X (t) ∈ Conf(2, 5)>0 = Gr(2, 5)>0/T>0 in the positive component of generic
configuration space. Let X := limt→0 X (t) ∈ Ch(2, 5)≥0. We have

V1 := lim
t→0

V (t) =
[
0 1 1 1 1

−1 0 1 1 1

]
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and setting V ′(t) = V (t) · diag(t1/2, t1/2, t−1/2, t−1/2, t−1/2), we have

V2 := lim
t→0

V ′(t) = lim
t→0

[
0

√
t 1/

√
t 1/

√
t 1/

√
t

−√
t 0 1/

√
t (1 + t)/

√
t (1 + 2t)/

√
t

]

= lim
t→0

[
1 1 0 −1 −2
−t 0 1 1 + t 1 + 2t

]

=
[
1 1 0 −1 −2
0 0 1 1 1

]
.

The points V1 and V2 have matroids

M1 :=
([5]

2

)
\{34, 35, 45} and M2 :=

([5]
2

)
\{12}

respectively. The matroid polytopes PM1 and PM2 give a decomposition of the hyper-
simplex�(2, 5) into positroid polytopes: this decomposition comes from slicing�(2, 5)
using the hyperplane x1 + x2 = 1 (or, equivalently x3 + x4 + x5 = 1). It follows that
X ∈ Ch(2, 5)≥0 is represented by the union of the two toric varieties T · V1 and T · V2
(inside Gr(2, 5)), which have moment polytopes PM1 and PM2 respectively.

The valuation val( f (t)) of a polynomial (or formal power series) f (t) is the degree of

the lowest term in f (t). Defining pI := val(�I (V (t))) we obtain a vector p• ∈ R([5]
2 ),

given by p34 = p35 = p45 = 1 and pJ = 0 for J /∈ {34, 35, 45}. By definition, p• lies
the positive tropical Grassmannian. It is also easy to check that p• satisfies (1.1). For
example, 0 = p13 + p25 = min(p12 + p35, p15 + p23) = min(1, 0) = 0. This induces
the bijections of Theorem 1.1.

1.8. Finally, let us explain some ingredients of the proof of Theorem 1.2. We use the
notion of nearly convergent functions on Ch(k, n) (the nomenclature comes from the
stringy integrals of [AHLa]). These are certain T -invariant, subtraction-free, rational
functions on the Grassmannian whose tropicalizations take nonnegative values. The
ring C[�] generated by nearly convergent functions is isomorphic to the coordinate ring
of an affine open subset X ′

P(k,n) of a projective toric variety XP(k,n) (Proposition 11.8)
associated to some polytope P(k, n). We obtain a morphism

ϕ : C̃h(k, n) −→ X ′
P(k,n)

from an open subset C̃h(k, n) ⊂ Ch(k, n) of the Chow quotient to X ′
P(k,n). We show

that the restriction of ϕ to the nonnegative part Ch(k, n)≥0 is a homeomorphism onto the
nonnegative part XP(k,n),≥0 of the toric variety, which is known to be homeomorphic to
the polytope P(k, n).

Organization In Sect. 2, we discussmatroids, positroids, and their matroid polytopes. In
Sect. 3, we discuss the Grassmannian, configuration space, and the positroid stratifica-
tion. In Sect. 4, we review cluster parametrizations of positroid cells. In Sect. 5 and Sect.
6, we introduce our main object of interest: the nonnegative configuration space and its
stratification by positive Chow cells. In Sects. 7 and 8, we study positive tropical vectors
and positroid subdivisions of the hypersimplex. In Sect. 9, we show that the positive
Dressian and the positive tropical Grassmannian agree. In Sect. 10 we show that a num-
ber of fan structures on the positive Dressian coincide. In Sect. 11, we introduce nearly
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convergent functions. In Sect. 12, we prove that Ch(k, n)≥0 is homeomorphic to a ball.
The case k = 2 is studied as an example in Sect. 13. In Sect. 14, we introduce and study
tropical bridge operations. Sect. 15 contains some technical statements concerning con-
nected positroids. Appendix A contains data for the cases (k, n) = (3, 6), (3, 7), (3, 8).

Remark 1.4. Many of the results in this work were announced at Amplitudes 2019
[Namp]. Some of the results in Sects. 7–9 regarding the positive tropical Grassmannian,
the positive Dressian, and positroidal subdivisions of the hypersimplex are not surprising
to experts and overlap with independent recent work in [Ola,Eara,Earb,LPW,SW+]. For
instance, Proposition 7.2 is closely related to [LPW,Theorem3.8] and Proposition 8.3(2)
is [LPW, Theorem 9.12].

2. Matroids and Positroids

2.1. AmatroidM ⊂ ([n]
k

)
of rank k on [n] is a nonempty collection of k-element subsets

of [n], called bases, satisfying the exchange axiom:

if I, J ∈ M and i ∈ I then there exists j ∈ J such that I\{i} ∪ { j} ∈ M. (2.1)

The uniform matroid is the collection M = ([n]
k

)
of all k-element subsets of [n].

2.2. The matroid polytope PM of a matroid in M is the convex hull of the vectors
eI , for I ∈ M. Here, eI = ei1 + ei2 + · · · + eik is the sum of k basis vectors, where
I = {i1, . . . , ik}. Thus the matroid polytope of the uniform matroid is the hypersimplex
�(k, n), whose vertices are exactly the 0-1 vectors with k 1-s and (n − k) 0-s. We have
the following characterization of matroid polytopes.

Proposition 2.1 [GGMS]. A polytope P ⊂ R
n is the matroid polytope of a matroid of

rank k on [n] if and only if its vertex set is a subset of {eI | I ∈ ([n]
k

)}, and all edges of
P are in the direction of ei − e j , for i 
= j .

2.3. If M1 is a matroid on a set S1 and M2 a matroid on S2, then the direct sum
M1 ⊕ M2 is a matroid on the disjoint union S1 � S2, given by

M1 ⊕ M2 = {I1 � I2 | Ii ∈ Mi }.
We say that a matroid M of rank k on [n] is connected if the matroid polytope PM is
of full dimension, that is, has dimension n − 1. This is equivalent to the condition that
M is not a non-trivial direct sum of smaller matroids.

2.4. The Bruhat partial order on
([n]
k

)
is defined as follows. For two subsets I, J ∈ ([n]

k

)
,

we write I ≤ J if I = {i1 < i2 < · · · < ik}, J = { j1 < j2 < · · · < jk} and we have
ir ≤ jr for r = 1, 2, . . . , k. For I ∈ ([n]

k

)
, the Schubert matroid SI is defined as

SI := {J ∈
([n]

k

)
| I ≤ J }

and has minimal element I . For a ∈ [n], let ≤a denote the cyclically rotated order on
[n] with minimum a, which induces a partial order ≤a on

([n]
k

)
. Let SI,a := {J ∈ ([n]

k

) |
I ≤a J } denote the cyclically rotated Schubert matroid.
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2.5. A (k, n)-Grassmann necklace I = (I1, I2, . . . , In) [Pos] is a n-tuple of k-element
subsets of [n] satisfying the following condition: for each a ∈ [n], we have
(1) Ia+1 = Ia if a /∈ Ia ,
(2) Ia+1 = Ia − {a} ∪ {a′} if a ∈ Ia ,

with indices taken modulo n. A positroidM is the matroid of a totally nonnegative point
in the Grassmannian, and are in bijection with Grassmann necklaces.

Proposition 2.2 [Oh,Pos]. Let I = (I1, I2, . . . , In) be a (k, n)-Grassmann necklace.
Then the intersection of cyclically rotated Schubert matroids

MI = SI1,1 ∩ SI2,2 ∩ · · · ∩ SIn ,n (2.2)

is a positroid, and the map I �→ MI gives a bijection between (k, n)-Grassmann
necklaces and positroids of rank k on [n].

2.6. LetM be an arbitrarymatroid of rank k on [n] and a ∈ [n]. ThenM has aminimum
with respect to ≤a , which is denoted Ia(M).

Proposition 2.3. The n-tuple I(M)=(I1(M), I2(M), . . . , In(M)) is a (k, n)-
Grassmann necklace.

We call MI(M) the positroid envelope of M [Pos,KLS]. A matroid M equals its
positroid envelope if and only ifM is a positroid.

2.7. A (k, n)-bounded affine permutation is a bijection f : Z → Z satisfying the
conditions

(1) f (i + n) = f (i) + n for all i ∈ Z,
(2) i ≤ f (i) ≤ i + n for all i ∈ Z,
(3)

∑n
i=1( f (i) − i) = kn.

Given a (k, n)-Grassmann necklace I = (I1, I2, . . . , In), we define fI : Z → Z by

fI(a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a if a /∈ Ia
a + n if a ∈ Ia ∩ Ia+1
a′ if Ia+1 = Ia − {a} ∪ {a′} and a′ > a
a′ + n if Ia+1 = Ia − {a} ∪ {a′} and a′ < a

for a = 1, 2, . . . , n, and extending the domain to Z by setting f (i + n) = f (i) + n for
all i ∈ Z.

Proposition 2.4 [KLS]. For any (k, n)-Grassmann necklace I, the function fI is a
(k, n)-bounded affine permutation. The map I �→ fI gives a bijection between (k, n)-
Grassmann necklaces and (k, n)-bounded affine permutations.

Thus we have bijections between positroids of rank k on [n], and (k, n)-Grassmann
necklaces, and (k, n)-bounded affine permutations. We write fM := fI(M).
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2.8. A polytope P in {(x1, . . . , xn) | x1 + x2 + · · · + xn = k} ⊂ R
n is called alcoved

[LP] if it is given by the intersection of half spaces of the form

H = {(x1, . . . , xn) |
∑

i∈[a,b]
xi ≥ c}

where [a, b] ⊂ [n] is a cyclic interval. The following two results are a special case of
the theory of polypositroids [LP+], see also [ARW, Proposition 5.5 and Corollary 5.4].

Proposition 2.5 [LP+]. Let M be a matroid with matroid polytope PM. Then PM is
alcoved if and only ifM is a positroid.

Proof. The matroid polytope PSI,a of the rotated Schubert matroid SI is the intersection
of the hypersimplex �(k, n) with the inequalities

xa + xa+1 + · · · + xb ≥ #(I ∩ [a, b])
for i = 1, 2, . . . , n. By definition, this is an alcoved polytope, and so is the intersection
PSI1,1 ∩ PSI2,2 ∩ · · · ∩ PSIn ,n . Since every positroid is of the form (2.2), every positroid
polytope is alcoved.

Now let PM be the matroid polytope of an arbitrary matroid. Then the smallest
alcoved polytope P containing PM is the intersection of the rotated Schubert matroid
polytopes PSIa (M),a for a = 1, 2, . . . , n. Thus P is the matroid polytope of the positroid
envelope ofM. In particular, if M is itself a positroid then PM is alcoved. ��
Corollary 2.6. Every face of a positroid polytope is itself a positroid polytope.

Proof. Every face of a matroid polytope (resp. alcoved polytope) is a matroid polytope
(resp. alcoved polytope). ��

A noncrossing partition (S1, . . . , Sr ) of [n] is a partition of [n] into disjoint sets such
that there do not exist a < b < c < d such that a, c ∈ Si and b, d ∈ S j for i 
= j .

Proposition 2.7 [ARW, Theorem 7.6]. Let f = fM be the bounded affine permutation
associated to a positroidM. Suppose thatM = M1 ⊕M2 ⊕ · · · ⊕Mr , whereMi is
a positroid on the ground set Si ⊂ [n]. Then (S1, . . . , Sr ) form a noncrossing partition
of [n], and ( fM(Si ) mod n) = Si for i = 1, 2, . . . , r . In particular, the connected
components of the positroidM are themselves positroids.

Conversely, let (S1, . . . , Sr ) be a noncrossing partition of [n] andMi be a positroid
on the ground set Si . Then the direct sumM1 ⊕ M2 ⊕ · · · ⊕ Mr is a positroid.

3. Grassmannians and Configuration Spaces

3.1. Let Gr(k, n) denote the Grassmannian of k-planes in C
n . For V ∈ Gr(k, n) we

let �I (V ), for I ∈ ([n]
k

)
denote its Plücker coordinates. These Plücker coordinates

satisfy the Plücker relations and are defined up to a common scalar. We refer the reader
to [Lam] for further details. The most important relation for us will be the three-term
Plücker relation

�Sac�Sbd = �Sab�Scd + �Sad�Sbc (3.1)

where S ⊂ [n] is of size k − 2 and a < b < c < d are not contained in S.
It is convenient to also work with the affine cone Ĝr(k, n) over Gr(k, n). A point V in

Ĝr(k, n) is a collection of Plücker coordinates �I (V ) that satisfy the Plücker relations.
But now scaling Plücker coordinates give different points, and Ĝr(k, n) also contains a
distinguished cone point 0, where all Plücker coordinates vanish.
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3.2. The matroidM(V ) of V ∈ Gr(k, n) is defined as

M(V ) :=
{
I ∈

([n]
k

)
| �I (V ) 
= 0

}
.

Similarly, one can defineM(V ) for V ∈ Ĝr(k, n)\{0}. If V = 0 is the cone point, then
M(V ) is not defined. For a matroidM, define the matroid strata

GM := {V ∈ Gr(k, n) | M(V ) = M}
For the uniform matroid, we have

G̊r(k, n) := G([n]
k ) =

{
V ∈ Gr(k, n) | �I (V ) 
= 0 for all I ∈

([n]
k

)}
.

3.3. The torus (C×)n = {(t1, t2, . . . , tn) | ti ∈ C
×} acts on Gr(k, n) by scaling the i-th

column of a representing matrix by ti . For t ∈ C
×, the element (t, t, . . . , t) ∈ (C×)n

scales all Plücker coordinates by tk , and thus the action of (C×)n factors through the
torus

T := (C×)n/C
× � (C×)n−1.

An element (t1, . . . , tn) ∈ (C×)n acts on V ∈ Ĝr(k, n) by

�I ((t1, . . . , tn) · V ) =
∏

i∈I
ti �I (V ).

This action factors through the quotient torus

T̂ = (C×)n/(Z/kZ)

where Z/kZ = {(ζ, . . . , ζ ) | ζ k = 1} is a cyclic group of order k. The character lattices
X (T ) and X (T̂ ) of T and T̂ are naturally identified with sublattices of Z

n = X ((C×)n):

X (T ) = {(x1, . . . , xn) ∈ Z
n |

∑
xi = 0}

X (T̂ ) = {(x1, . . . , xn) ∈ Z
n | k divides

∑
xi }

. (3.2)

Lemma 3.1. The matroid M is connected if and only if the action of T on GM is free.

Proof. Suppose M is connected. We may find a vertex eI of PM and vertices
eJ1 , . . . , eJn−1 connected to eI via an edge of PM, so that the span of {eI , eJ1 , . . . , eJn−1}
is linearly independent. By Proposition 2.1, the edges of PM are roots, i.e., vectors of the
form ei − e j . A collection of linearly independent roots is easily seen to be unimodular,
i.e., their integral span is the lattice {(x1, . . . , xn) ∈ Z

n | ∑
i xi = 0}, which is the char-

acter lattice X (T ) of T . Points V ∈ GM can be gauge-fixed to satisfy�I (V ) = 1. Under
this gauge-fix, the torus T acts on the Plücker coordinates �J1 , . . . , �Jn−1 with weights
eJ1 −eI , . . . , eJn−1 −eI . We have just argued that these weights span the character lattice
X (T ), and thus T must act freely on GM.

The “if” direction is similar. ��
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3.4. The torus T acts freely on the complex manifold G̊r(k, n), and thus the quotient
G̊r(k, n)/T is a manifold of dimension k(n−k)−(n−1). The space G̊r(k, n)/T has the
following alternative description. Let Conf(k, n) be the space (Pk−1)n/GL(n) of GL(n)-
orbits ofn points in the projective spaceP

k−1.Aconfiguration p = (p1, . . . , pn) is called
generic if any r of the points, for r ≤ k, affinely span a subspace of P

k−1 of dimension
r − 1. We denote the space of generic configurations by ˚Conf(k, n) ⊂ Conf(k, n). We
have an isomorphism G̊r(k, n)/T � ˚Conf(k, n).

3.5. The totally nonnegative GrassmannianGr(k, n)≥0 is the subspace of Gr(k, n) con-
sisting of points V ∈ Gr(k, n)(R) all of whose Plücker coordinates are nonnegative. The
totally positive Grassmannian Gr(k, n)>0 consists of points all of whose Plücker coor-
dinates are positive. These spaces were defined by Lusztig [Lus] and Postnikov [Pos].
The totally nonnegative Grassmannian Gr(k, n)≥0 is homeomorphic to a closed ball
[GKLa].

Thematroid of a point V ∈ Gr(k, n)≥0 is called a positroid. Positroids can be indexed
by (k, n)-Grassmannnecklaces (Proposition 2.2) and (k, n)-bounded affine permutations
(Proposition 2.4). The matroid of V ∈ Gr(k, n)>0 is the uniform matroid, and thus
we have Gr(k, n)>0 ⊂ G̊r(k, n). Indeed, Gr(k, n)>0 is a connected component of the
manifold G̊r(k, n), and is diffeomorphic to an open ball of dimension k(n−k)−(n−1).
The image of Gr(k, n)>0 in G̊r(k, n)/T � ˚Conf(k, n) is called the positive component
of (generic) configuration space, and denoted Conf(k, n)>0.

3.6. For a positroidM, define the positroid cell

�M,>0 := {V ∈ Gr(k, n)≥0 | M(V ) = M}.

By [Pos], �M,>0 is homeomorphic to an open ball. We define dim(M) to be the
dimension of this ball. We have the disjoint union [Pos]

Gr(k, n)≥0 =
⊔

M
�M,>0 (3.3)

as M varies over positroids of rank k on [n]. The closure �M,≥0 := �M,>0 is a
union �M,≥0 = ⊔

M′⊆M �M′,>0 of positroid cells. The decomposition (3.3) gives
Gr(k, n)≥0 the structure of a regular CW complex [GKLb].

3.7. The group T>0 := R
n
>0/R>0 ⊂ (C×)n/(C×) = T acts on Gr(k, n)≥0, preserving

the positroid cells �M,>0. From Lemma 3.1, we have the following.

Lemma 3.2. Suppose thatM is a connected positroid. Then T>0 acts freely on�M,>0.

The quotient �M,>0/T>0 is a real manifold of dimension dim(M) − (n − 1). In
particular, if M is a connected positroid then dim(M) ≥ n − 1. If M is a connected
positroid and dim(M) = n − 1, then we call M a minimal connected positroid (see
Lemma 15.2). In this case, �M,>0/T>0 is a single point.
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3.8. For a positroid M, define the positroid variety �M to be the Zariski-closure of
�M,>0 insideGr(k, n). The variety�M is an irreducible, normal subvariety ofGr(k, n)

of dimension dim(M) [KLS]. Positroid varieties give a stratification of Gr(k, n). We
define the open positroid variety �̊M ⊂ �M so that �M = ⊔

M′⊆M �̊M′ . We have

Gr(k, n)≥0 ∩ �̊M′ = �M′,>0. We caution that �̊M is not equal to GM. Instead, �̊M
is the union of GM′ over all matroidsM′ such that the positroid envelope ofM′ is equal
toM.

3.9. We recall the bridge parametrizations of �M from [Lam], see also [Kar]. The
group GL(n) acts on Gr(k, n) by right multiplication. For i = 1, 2, . . . , n − 1, let
xi (t) ∈ GL(n) be the matrix that differs from the identity in a single entry equal to t in
the (i, i + 1)-th matrix entry. For i = n, we let xn(t) ∈ GL(n) be the matrix that differs
from the identity in a single entry equal to (−1)k−1t in the (n, 1)-th matrix entry. Thus
xi (t) acts on a k × n matrix V by adding the i-th column to the (i + 1)-th column (with
a sign if i = n). The action of xi (t) can be written in Plücker coordinates as (cf. [Lam,
Lemma 7.6])

�I (V · xi (t)) =
{

�I (V ) + t�I\{i+1}∪{i}(V ) if i + 1 ∈ I but i /∈ I
�I (V ) otherwise.

(3.4)

More generally, for γ = (i, j) let xγ (t) be the matrix that differs from the identity in
a single entry equal to ±t in the (i, j)-th matrix entry, taking the positive sign if i < j
and the sign (−1)k−1 if i > j .

The following result allows us to reduce totally nonnegative points recursively.

Proposition 3.3 [Lam]. Let V ∈ �M,>0 ⊂ Gr(k, n)≥0 where k > 0. Then at least one
of the following holds:

(1) For some i ∈ [n], we have fM(i) = i . Then V is in the image of the map κi :
Gr(k, n − 1)≥0 ↪→ Gr(k, n)≥0 obtained by adding an i-th column equal to 0.

(2) For some i ∈ [n], we have fM(i) = i + n. Then V is in the image of the map
ηi : Gr(k − 1, n − 1)≥0 ↪→ Gr(k, n)≥0 obtained by adding an extra first row and
an extra i-th column, placing 0-s in all the new entries except for a 1 in the (1, i)-th
entry, and finally multiplying the columns 1, 2, . . . , i − 1 by (−1)k−1.

(3) For some i ∈ [n], we have i +1 ≤ fM(i) < fM(i +1) ≤ i +n. Then V = V ′ · xi (a)

where V ′ ∈ �M′,>0 withM′ the positroid satisfying fM′ = fMsi (where si is the
simple transposition swapping i and i + 1), and

a = �Ii+1(V )

�Ii+1\{i+1}∪{i}(V )
> 0.

Proposition 3.3 allows us to reduce any V ∈ Gr(k, n)≥0 to a positroid stratum that has
dimension 0. The recursion can be chosen to only depend onM = M(V ), with the real
numbers in (3) taken to be parameters. Parametrizations ofR

dim(M)
>0 � �M,>0 obtained

in this way are called bridge parametrizations. Note that κi+1 ◦ xi (t) = xi,i+2(t) ◦ κi+1,
so in general we need to use the matrices xγ (t). Bridge parametrizations are of the form

R
d
>0 � (t1, t2, . . . , td) �−→ xγ1(t1) · · · xγd (td) · xI ∈ �M,>0 (3.5)

where d = dim(M) and xi1,...,ik = span(ei1 , . . . , eik ) ∈ Gr(k, n)T is a torus fixed point.
We caution that in general xγ (t) for t > 0 does not preserve total nonnegativity. They
do preserve total nonnegativity when used in a bridge parametrization.
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4. Clusters for Positroids

4.1. Let M be a positroid. Recall that �̊M ⊂ Gr(k, n) denotes the open positroid
variety. Let �̃M ⊂ Ĝr(k, n) denote the cone over �̊M. By [GL], the coordinate rings
C[�̊M] and C[�̃M] are isomorphic to cluster algebras.1

A cluster C for M is a subset of M that indexes a seed in the cluster structure of
C[�̃M]. If M = ([n]

k

)
is the uniform matroid, then we simply call C a cluster. Any

cluster C for M has cardinality |C| = dim(M) + 1. (We consider only clusters where
the cluster variables are Plücker coordinates coming from face labels of a plabic graph.)
Clusters for M can be described via weak separation [OhPS]. We say that two subsets
I, J ⊂ [n] are weakly-separated if we cannot find 1 ≤ a < b < c < d ≤ n such that
a, c ∈ I\J and b, d ∈ J\I (or with I and J swapped). The following result can be
taken to be the definition of a cluster.

Proposition 4.1 [OhPS] A subset C ⊂ M is a cluster if it is pairwise weakly-separated,
has size dim(M) + 1, and contains the Grassmann necklace I of M. Any pairwise
weakly-separated subset of

([n]
k

)
can be extended to a cluster.

Every I ∈ ([n]
k

)
belongs to some cluster C ⊂ ([n]

k

)
, but this is not true with an arbitrary

positroid M replacing
([n]
k

)
.

4.2. Let S ⊂ [n] be of size k−2 and a < b < c < d numbers not contained in S. Let C ∈
M be a cluster. If Sac, Sab, Scd, Sad, Sbc ∈ C (resp. Sbd, Sab, Scd, Sad, Sbc ∈ C)
then we can mutate C at Sac (resp. Sbd) to produce another cluster C′ ⊂ M where Sac
has been replaced by Sbd (resp. Sbd has been replaced by Sac). The Plücker variables
of C and C′ are then related by (3.1).

Proposition 4.2 [OhPS]. Any two clusters C, C′ ⊂ M (as in Proposition 4.1) are related
by a sequence of mutations.

By a positive Laurent polynomial wemean a Laurent polynomial such that the coeffi-
cient of every monomial is nonnegative. The following result is a special case of general
positivity results of cluster algebras [LS].

Proposition 4.3. For J ∈ ([n]
k

)
, and a cluster C ⊂ ([n]

k

)
, the Plücker variable �J is a

positive Laurent polynomial in {�I | I ∈ C}.
For an arbitrary positroid M, we have the following weaker statement.

Proposition 4.4. For J ∈ M, and a cluster C ⊂ M, the Plücker variable �J is a
subtraction-free rational expression in {�I | I ∈ C}.
Proof. This result follows, for example, from the formulae in [MS]. It also follows
from the proof of Theorem 7.3 we give below. Namely, in that proof we show that
a formula for �J in terms of {�I | I ∈ C} can be obtained by iteratively applying
the three-term Plücker relation (3.1). In other words, we iteratively substitute �Sac =
(�Sab�Scd + �Sad�Sbc)/�Sbd , without ever dividing by 0. ��

1 In [GL], the ringC[�̊M] is considered. Working with C[�̃M] allows us to avoid gauge-fixing a Plücker
coordinate to equal to 1.
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The following conjecture is likely known to many experts. It does not immediately
follow from the identification [GL] of C[�̊M] with a cluster algebra because there are
Plücker variables �I , I ∈ M that are not cluster variables in any cluster.

Conjecture 4.5. For J ∈ M, and a cluster C ⊂ M, the Plücker variable �J is a
positive Laurent polynomial in {�I | I ∈ C}.

4.3. Let M be a positroid and set d = dim(M). Let (C×)d be a torus with coordi-
nate functions x1, . . . , xd , so that the coordinate ring is C[x±1

1 , . . . , x±1
d ]. A rational

map (C×)d → �M is called a positive parametrization of �M if it is birational,
the restriction to R

d
>0 is a homeomorphism onto Gr(k, n)>0, and every Plücker coor-

dinate is a subtraction-free rational expression �I (x) in x1, . . . , xm . Any choice of
cluster C gives a positive parametrization after setting one of the Plücker coordinates
to 1: the map T (C) = (C×)d → �M is simply the inclusion of the cluster torus
T (C) indexed by C into the positroid variety. This map comes from the inclusion
C[�̃M] ⊂ C[�±1

J | J ∈ C], called the Laurent phenomenon.

4.4. We now consider a simple-minded notion of “cluster" for �M/T . Let C be a
cluster for a connected positroid M. A gauge-fix G = {J1, . . . , Jn} ⊂ C is a subset
such that the integral span of eJ1 , . . . , eJn inside Z

n is the n-dimensional lattice X (T̂ ) =
{(x1, . . . , xn) ∈ Z

n | k divides
∑

xi }. We shall prove the following result in Sect. 15.3.

Lemma 4.6. Let M be a connected positroid. Then there exists a cluster C ⊂ M such
that a gauge-fix G ⊂ C exists.

If G is a gauge-fix then the action of T̂ can uniquely fix �J = 1 for all J ∈ G
(assuming that �J 
= 0 for all J ∈ G). We thus have a canonical identification

�M,>0/T>0 = {V ∈ �M,>0 | �J (V ) = 1 for all J ∈ G}. (4.1)

5. Nonnegative Configuration Space

The goal of this section is to construct a compactification of Conf(k, n)>0.

5.1. Let X ⊂ P
k−1 be an irreducible subvariety of dimension r −1. The degree deg(X)

of X is equal to the number #(L∩X) of intersection points of X with a generic hyperplane
L ⊂ P

k−1 of dimension (k−r−1). LetZ(X) ⊂ Gr(k−r, k) denote the subvariety of (k−
r − 1)-dimensional projective subspaces L ⊂ P

k−1 that intersect X . It is an irreducible
hypersurface of degree d in Gr(k − r, k) ([GKZ, Proposition 2.2]). Let Rd(k − r, k)
denote the degree d component of the coordinate ring of the Grassmannian. We define
the Chow form of X , denoted RX ∈ Rd(k − r, k), to be the unique up to scalar non-zero
element of Rd(k − r, k) that vanishes on Z(X). The variety X can be recovered from
RX .
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5.2. An (r−1)-dimensional algebraic cycle inP
k−1 is a formal finite linear combination

X = ∑
mi Xi , where mi are nonnegative integers and Xi ⊂ P

k−1 are irreducible closed
subvarieties of dimension (r − 1). We define deg(X) = ∑

mi deg(Xi ).
Let C(r, d, k) denote the set of all (r − 1)-dimensional algebraic cycles in P

k−1 of
degree d. Then C(r, 1, k) can naturally be identified with the Grassmannian Gr(r, k) of
r -planes in R

k . The set C(r, d, k) acquires the structure of an algebraic variety, called
the Chow variety, via the following result of Chow and van der Waerden.

Theorem 5.1. The map C(r, d, k) → P(Rd(k − r, k)) given by X �→ ∏
i R

mi
Xi

defines
an embedding of C(r, d, k) as closed subvariety of P(Rd(k − r, k)).

5.3. A special case of Theorem 5.1 is the statement that Gr(k, n) is a closed subvariety

of P([n]
k )−1. Let X = T · V ⊂ Gr(k, n) be a torus orbit closure in Gr(k, n), where

V ∈ G̊r(k, n). Since T · V � T , the variety X has dimension (n − 1). It is a toric
variety with moment polytope equal to the hypersimplex. It follows that the degree of

X inside Gr(k, n) and inside P([n]
k )−1 is equal to the volume Vol(�(k, n)), the Eulerian

number An,k . We thus have a natural injection ˚Conf(k, n) ↪→ C(n − 1, An,k,
(n
k

)
)

sending a point V ∈ ˚Conf(k, n) to the algebraic cycle T · V . The closure of ˚Conf(k, n)

in C(n − 1, An,k,
(n
k

)
) is called the Chow quotient of the Grassmannian, and denoted

Ch(k, n). It is a projective algebraic variety.
We define the totally nonnegative part of the Chow quotient of the Grassmannian or

nonnegative configuration space, denoted Ch(k, n)≥0, to be the closure of the image of
Conf(k, n)>0 in Ch(k, n). It is a compact Hausdorff topological space.

Remark 5.2. For a positroid M, we can also define Ch(M)≥0 as the closure of
�M,>0/T>0 inside an appropriate Chow variety.

6. Positive Chow Cells

A point X ∈ Ch(k, n) is an algebraic cycle in Gr(k, n) of dimension (n − 1) and degree
An,k . We have X = ∑s

i=1 mi Xi where Xi are toric varieties that are torus-orbit closures
for the same torus T , and we assumemi are positive. Let Pi denote the moment polytope
of Xi . By [Kap], we have the following constraints on X :

(1) we have mi = 1 for all i ,
(2) each Pi = PMi is a matroid polytope, and
(3) the polytopes P1, P2, . . . , Ps form a regular polyhedral subdivision of the hypersim-

plex �(k, n).

For X ∈ Ch(k, n)≥0, we strengthen this result as follows.

Proposition 6.1. Let X = ∑s
i=1 Xi ∈ Ch(k, n)≥0. Then Xi is a toric variety with

moment polytope equal to a positroid polytope Pi = PMi . The positroid polytopes
P1, . . . , Ps form a regular polyhedral subdivision of the hypersimplex �(k, n).

Proof. Let X = limt→0 X (t) where X (t) = T · V (t) ∈ Conf(k, n)>0. For each i =
1, 2, . . . , s, we have Xi = T · Vi for some Vi ∈ Gr(k, n). A generic point p ∈ T · Vi
is thus the limit of points p(t1), p(t2), . . . where p(t j ) ∈ T · V (t j ), where V (t j ) ∈
Gr(k, n)>0. Let (Z/2Z)n−1 := {+1,−1}n/{+1,−1} denote the group of components of
T . The 2n−1 points g · p are distinct for g ∈ (Z/2Z)n−1. For at least one of these points
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q = g · p ∈ Xi , the infinite sequence g · p(t1), g · p(t2), . . . contains a subsequence
q(t ′1), q(t ′2), . . . which all belong to Gr(k, n)>0. It follows that q ∈ Gr(k, n)≥0, and thus
the matroid of Xi is a positroid. ��

LetD(k, n) denote the set of regular polyhedral subdivisions of the hypersimplex into
positroid polytopes. For X ∈ Ch(k, n)≥0, let �̃(X) denote the positroid decomposition
from Proposition 6.1. We have a stratification

Ch(k, n)≥0 =
⊔

�̃∈D(k,n)

��̃,>0

��̃,>0 := {X ∈ Ch(k, n)≥0 | �̃(X) = �̃}.
Define��̃,≥0 to be closure��̃,>0 in the analytic topology. The spaces��̃,>0 and��̃,≥0
are analogues of the open and closed positroid cells �M,>0 and �M,≥0 respectively.
Define a partial order on D(k, n) by �̃′ ≤ �̃ if �̃′ is a refinement of �̃.

Theorem 6.2. There is a stratification-preserving homeomorphism between Ch(k, n)≥0
and a polytope P(k, n) of dimension r = k(n−k)− (n−1). Each stratum��̃,>0 (resp.
��̃,≥0) is non-empty and homeomorphic to an open ball (resp. closed ball) of dimension

dim(�̃), given by (10.1). The closed face ��̃,≥0 is the union of relatively open faces

��̃′,>0 as �̃′ varies over subdivisions that refine �̃.

The proof of Theorem 6.2 is delayed to Sect. 12.2. Theorem 6.2 generalizes various
results concerning the topology of positroid cells [Pos,GKLa,GKLb].

Finally, we define ��̃ to be the Zariski closure of ��̃,>0 inside Ch(k, n), and define

�̊�̃ to be the complement of {��̃′ | �̃′ < �̃} in ��̃. The varieties �̊�̃ and ��̃ are
analogues of the open and closed positroid varieties �̊M and �M.

7. Positive Tropical Plücker Vectors

7.1. Let p• = {pI | I ∈ ([n]
k

)} be a collection of “numbers" where pI ∈ R ∪ {∞}, and
not all pI are equal to infinity. We say that p• satisfies the tropical Plücker relations
[Spe] if for every S of size k − 2 and a < b < c < d not contained in S, the minimum
of the three quantities

{pSac + pSbd , pSab + pScd , pSad + pSbc}
is attained twice, and we call p• a tropical Plücker vector. We say that p• satisfies the
positive tropical Plücker relations if for every S and a < b < c < d not contained in
S, the equation (1.1) holds. We then call p• a positive tropical Plücker vector. It is clear
that every positive tropical Plücker vector is a tropical Plücker vector. A tropical Plücker
vector is called integral if pI ∈ Z ∪ {∞} and rational if pI ∈ Q ∪ {∞}.

7.2. Tropicalization takes a subtraction-free rational expression to a piecewise-linear
expression under the substitution

(+,×,÷) �−→ (min,+,−). (7.1)

For example, the rational function
x3 + y + 1

2xy + y2
tropicalizes to the piecewise-linear func-

tionmin(3X,Y )−min(X+Y, 2Y ). The equation (1.1) is obtained from (3.1) by applying
(7.1), and sending the variables �I to the variables pI .
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7.3. The support of p• is the collection Supp(p) = {I | pI < ∞} ⊂ ([n]
k

)
. For a

positroidM, letDr(M)>0 denote the set of positive tropical Plücker vectorswith support
M. Let Dr(M)>0(Z) (resp. Dr(M)>0(Q)) denote those vectors that are integral (resp.
rational).Wewrite Dr(k, n)>0 whenM is the uniformmatroid and call p• ∈ Dr(k, n)>0
a finite positive tropical Plücker vector.

In [HJJS], the set of tropical Plücker vectors is called the Dressian, and following
their terminology, we call Dr(k, n)>0 the positive Dressian.

7.4. The following result can be found in [Spe].

Proposition 7.1. If p• satisfies the tropical Plücker relations then M = Supp(p•) is a
matroid.

If p• satisfies the positive tropical Plücker relations, then in addition to (2.1), M =
Supp(p•) satisfies the following positive 3-term exchange relation:

(Sab, Scd ∈ M) or (Sad, Sbc ∈ M) �⇒ (Sac, Sbd ∈ M) (7.2)

for a < b < c < d not contained in S ⊂ [n].
Proposition 7.2. If M satisfies the positive 3-term exchange relation then it is a
positroid. Thus if p• satisfies the positive tropical Plücker relations thenM = Supp(p•)
is a positroid.

Proof. We establish this result by induction on n. Suppose that M is disconnected, so
M = M1 ⊕ M2 on disjoint ground sets S1 and S2, such that S1 ∪ S2 = [n]. If S1, S2
are cyclic intervals, thenMi satisfies positive 3-term exchange relation within Si . Thus
by induction M is the direct sum of two positroids on disjoint cyclic intervals, and is
thus a positroid by Proposition 2.7.

Otherwise, we can find direct summands M′,M′′ of M which are two connected
matroids on subsets A �C, B � D that are crossing, i.e. A, B,C, D are cyclic intervals
occurring in cyclic order. SinceM′ is connected, there are bases I1, I2 ofM′ such that
|I1 ∩ A| 
= |I2 ∩ A|. By repeated application of the basis exchange axiom, we see that
M′ contains two bases I ′, J ′ such that J ′ = I ′ ∪ {c} − {a} with a ∈ A and c ∈ C .
Similarly, we have bases I ′′, J ′′ of M′′ such that J ′′ = I ′′ ∪ {d} − {b} with b ∈ A
and d ∈ C . We can thus find bases Tab, T cd of M, while Tac, Tbd are not bases, a
contradiction.

We now assume that M is a connected matroid. If it is not a positroid, then by
Lemma2.5, itsmatroid polytope PM has a facet cut out by an equation H = {∑s∈S xs =
r}, where S = S1 � S2 is cyclically disconnected. LetM′ be the matroid whose matroid
polytope is PM′ = H ∩ PM. NowM′ = M1 ⊕ M2 whereM1 has ground set S and
M2 has ground set [n]\S. The assumption that dim(PM′) = dim(PM)−1 togetherwith
|S|, |[n]\S| ≥ 2 implies that both M1 and M2 are non-trivial. Since the ground sets S
and [n]\S are crossing, our earlier argument implies thatM′ cannot satisfy the positive
3-term exchange relation.After a cyclic relabelingwemay assume that Tab, T cd ∈ M′,
while at least one of Tac and Tbd is not inM′. However, both Tac, Tbd are inM, so
this is only possible if both eTac and eTbd do not lie on the hyperplane H . Indeed, the two
vertices eTac and eTbd lie on opposite sides of H , and this contradicts the assumption
that H is a facet. ��
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7.5. Whereas the space of tropical Plücker vectors has a very complicated polyhedral
structure [SS,HJJS], the situation is much simpler for positive tropical Plücker vectors.

Theorem 7.3. Let M be a positroid and C be a cluster for M. The maps

Dr(M)>0 −→ R
C, p• �−→ (pI | I ∈ C) (7.3)

Dr(M)>0(Z) −→ Z
C, p• �−→ (pI | I ∈ C) (7.4)

are bijections.

Proof. Fix a cluster C ⊂ M. We show that p• ∈ Dr(M)>0 is determined by the values
of pI , I ∈ C. Recall from Sect. 4.1 that I, J are weakly separated if there does not exist
cyclically ordered a < b < c < d such that a, c ∈ I\J and b, d ∈ J\I . Let (I1, . . . , In)
denote the Grassmann necklace of M. For each J ∈ M, define two integers w(J ) and
d(J ) by

w(J ) := #{a | (Ia, J ) are not weakly separated }

d(J ) :=
{
mina: (Ia ,J ) are not weakly separated(|Ia\J |) if w(J ) > 0
0 otherwise.

We show that pJ is determined by pI , I ∈ C by induction first onw(J ), then on d(J ). If
w(J ) = 0 then J is weakly separated with (I1, . . . , In) and by Proposition 4.1 J belongs
to some cluster C forM. By Proposition 4.2, all clusters are related by mutation, so we
can express pJ in terms of pI , I ∈ C by repeated application of the positive tropical
Plücker relations. Thus all J ∈ M satisfying w(J ) = 0 is determined by pI , I ∈ C.

Now supposew = w(J ) > 0. Thenwe have d = d(J ) ≥ 2.We suppose by induction
that the result has been proven for all J ′ with w(J ′) < w, or w(J ′) = w and d(J ′) < d.
Choose a ∈ [n] so that (Ia, J ) is not weakly separated and Ia\J = {i1, . . . , id} and
J\Ia = { j1, . . . , jd}. Since J ≥a Ia , there is a unique noncrossing matching on these
2d points, which after reindexing we assume to be {(i1, j1), (i2, j2), . . . , (id , jd)}where
ir <a jr for all r . Here, <a denotes the cyclic rotation of the total order where a is
minimal. Since (Ia, J ) is not weakly separated, we can find (i, j) and (i ′, j ′) in this
matching so that i <a j <a i ′ <a j ′ and there are no elements of (Ia\J ) ∪ (J\Ia) in
the open cyclic intervals (i, j) and (i ′, j ′). Let S = J\{ j, j ′}. Define

K0 = Sii ′ K1 = Si j K2 = Si ′ j ′ K3 = Si j ′ K4 = Sji ′

so that we have a positive tropical Plücker relation

pJ + pK0 = min(pK1 + pK2 , pK3 + pK4).

We make the following claims:

(1) if (Ib, J ) is weakly separated, then (Ib, Kt ) is weakly separated, for t = 0, 1, 2, 3, 4,
(2) K0, K3, K4 ∈ M, and
(3) for each t = 0, 1, 2, 3, 4, one of the following holds: Kt /∈ M, or w(J ) > w(Kt ),

or (w(J ) = w(Kt ) and d(Kt ) < d(J )).

Proof of (1). First note that if Ib ≤b L and (Ib, L) are weakly separated, then for some
c we have Ib \ L ⊂ [b, c−1] and L \ Ib ⊂ [c, b−1]. In particular, for L = Ia , we have

Ib \ Ia ⊂ [b, a − 1] and Ia \ Ib ⊂ [a, b − 1] (7.5)
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and for L = J , we have for some c,

Ib \ J ⊂ [b, c − 1] and J \ Ib ⊂ [c, b − 1] (7.6)

We say that (x, y) ∈ [n]2 crosses (u, v) ∈ [n]2 if all of x, y, u, v are distinct and
the two line segments xy and uv cross when 1, 2, . . . , n are arranged in order around a
circle. Suppose that (Ib, Kt ) is not weakly separated. Then we have x, y ∈ Ib \ Kt and
u, v ∈ Kt \ Ib such that (x, y) crosses (u, v).

Case (a): we have i, j, i ′, j ′ ∈ [b, a − 1]. Then i, i ′ ∈ Ib so neither u or v is equal to
i, i ′, and so the claim follows from (Ib, J ) being weakly separated.

Case (b): we have i ∈ [a, b−1] and j, i ′, j ′ ∈ [b, a−1]. We may assume that u = i
and since i ′ ∈ Ib, we have v ∈ J \ Ib. Neither x nor y lies in [i +1, b− 1] ⊂ (i, j) since
they would have to belong to Ia and thus also to J . Thus v ∈ [b, i − 1] and we have
({x, y} ∩ [v + 1, i − 1]) 
= ∅ which contradicts (7.6).

Case (c): we have i, j ∈ [a, b− 1] and i ′, j ′ ∈ [b, a− 1]. We may assume that u = i
and since i ′ ∈ Ib, we have v ∈ J \ Ib. Neither x nor y lies in (i, j) since they would have
to belong to Ia and thus also to J . But j ∈ J \ Ia and by (7.5), j /∈ Ib. If (x, y) crosses
(i, v) then it must also cross ( j, v), contradicting (Ib, J ) being weakly separated.

Case (d): we have i, j, i ′ ∈ [a, b−1] and j ′ ∈ [b, a−1]. If one of u, v is equal to i and
the other is in J \ Ib then the argument is the same as for Case (c). Also, if (x, y) crosses
(i, i ′) then (x, y) crosses ( j, i ′) as well since (7.5) implies that ({x, y}∩ (i, j)) = ∅. We
may thus assume that u = i ′ and v ∈ J \ Ib. Similarly, ({x, y} ∩ [i + 1, b − 1]) = ∅ so
v ∈ [b, i − 1] and we have ({x, y} ∩ [v + 1, i − 1]) 
= ∅ which contradicts (7.6).

Case (e): we have i, j, i ′, j ′ ∈ [a, b − 1]. By (7.5), we have ({x, y} ∩ (i, j)) = ∅ =
({x, y}∩(i ′, j ′)). At least one of u, v is equal to i, i ′. Replacing i by j or i ′ by j ′ does not
change whether (x, y) crosses (u, v). Thus (x, y) crosses something of the form ( j, r)
or ( j ′, r) where r ∈ J \ Ib. This contradicts (Ib, J ) being weakly separated.
Proof of (2). We use the description of M as an intersection of Schubert matroids
(Proposition 2.2). We prove that K3, K4 ∈ M (and this immediately implies K0 ∈ M).
Indeed, we show that swapping any i <a j where the open interval (i, j) contains
nothing in (Ia \ J ) ∪ (J \ Ia) works. So let J ′ be the result of such a swap. We need to
show that J ′ ≥b Ib for all b, and it suffices to show this for b ∈ J ′. Let L = (i, j)∩ Ia =
(i, j) ∩ J = (i, j) ∩ Ia ∩ J .

Case (a): Suppose b ≤a i . The claim follows from J ≥b Ib togetherwith {i}∪L ⊂ Ib,
which holds since {i} ∪ L ⊂ Ia , using (7.5).

Case (b): Suppose b >a j >a i . We have that Ib is the disjoint union of sets A, B,C
such that A ≤b J ∩ [b, i) and B ≤b L ∪ { j} and C ≤b J ∩ ( j, b − 1]. We claim that
B ≤b L ∪ {i}. This follows from j /∈ Ia �⇒ j /∈ Ib �⇒ j /∈ B.

Case (c): Suppose b >a i but b ≤a j . The claim follows from J ′ ≥b J ≥b Ib.
Proof of (3). Suppose that Kt ∈ M. Then from (1) we have w(Kt ) ≤ w(J ), and
equality can only happen if (Ia, Kt ) is not weakly separated. But by construction we
have |Ia \ Kt | > |Ia \ J |, so if w(Kt ) = w(J ) we have d(Kt ) < d(J ).

We have proved all the claims (1),(2),(3). By induction, all of the pKt are determined
by pI , I ∈ C. The formula pJ = min(pK1 + pK2 , pK3 + pK4) − pK0 shows that pJ
is also determined by pI , I ∈ C. By induction, p• ∈ Dr(M)>0 is determined by pI ,
I ∈ C. Furthermore, it is clear that if pI ∈ Z for I ∈ C then p• ∈ Dr(M)>0(Z). The
theorem is proven. ��

Another proof of Theorem 7.3 is given after Theorem 9.3.
Let X∨(T̂ ) ⊂ R

n denote the lattice generatedbyZ
n and thevector (1/k, 1/k, . . ., 1/k)

∈ R
n . The lattice X∨(T̂ ) is dual to the lattice X (T̂ ) ⊂ Z

n of (3.2). Restricting the action
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(8.1) of R
n on Dr(M)>0, we obtain an action of X∨(T̂ ) on Dr(M)>0(Z). The orbits

of this action are denoted Dr(M)>0/∼ and Dr(M)>0(Z)/∼ respectively. Let us now
parametrize Dr(M)>0/∼ and Dr(M)>0(Z)/∼. Recall from Sect. 4.4 the notion of a
gauge-fix G ⊂ C.

Corollary 7.4. Let M be a connected positroid, C be a cluster for M and G ⊂ C be a
gauge-fix. The maps

Dr(M)>0/∼ −→ R
C\G, p• �−→ (p′

I | I ∈ C \ G)

Dr(M)>0(Z)/∼ −→ Z
C\G, p• �−→ (p′

I | I ∈ C \ G)

are bijections, where p′• ∼ p• is the unique vector in the equivalence class of p•
satisfying p′

J = 0 for J ∈ G.

Proof. We prove the Z case. The statement follows from Theorem 7.3 and the following
claim: given p• ∈ Dr(M)>0(Z) and integers (cJ | J ∈ G) ∈ Z

G , there is a unique
p′• ∼ p• such that p′

J = cJ for all J ∈ G. This claim follows from the following
statement: for any (cJ | J ∈ G) ∈ Z

G , there exists a ∈ X∨(T̂ ) such that a · eJ = cJ for
all J ∈ G, which in turn follows from the definition of gauge-fix in Sect. 4.4. ��

8. Subdivisions of the Hypersimplex

8.1. Let P be a polytope. A subdivision of P is a collection P̃ = {Q} of polytopes Q
(called faces of P̃) such that

(1) each face of Q ∈ P̃ is in P̃ ,
(2) the intersection Q ∩ Q′ for Q, Q′ ∈ P̃ is a face of both Q and Q′,
(3) the union of all Q ∈ P̃ is equal to P .

We typically give a subdivision by only listing the polytopes Q of maximal dimension.

8.2. Given any p• ∈ R(nk) we obtain a subdivision of the hypersimplex as follows. We
lift each vertex eI ∈ �(k, n) to the point e′

I = (eI , pI ) in one higher dimension. Then
we project the lower faces of the convex hull Conv(e′

I ) back into �(k, n). These faces
will give us a polyhedral subdivision of �(k, n) denoted �̃(p•), and these subdivisions
are called regular. More generally, for p• ∈ (R∪{∞})(nk) (not all equal to∞), we obtain
a regular subdivision �̃(p•) of the polytope PSupp(p•) := Conv(eI | I ∈ Supp(p•)). By
lifting some vertices eI to ∞, the resulting convex hull Conf(e′

I ) becomes a polyhedron
withmany “vertical" faces. The projection of the lower faces of Conv(e′

I )will only cover
PSupp(p•).

Let us describe the faces of �̃(p•) more explicitly. Faces F of �̃(p•) are convex
polytopes whose vertices are a subset of the vectors {eI | I ∈ ([n]

k

)}. Abusing notation,

we will also consider F as a subset of
([n]
k

)
. We call p• and p′• equivalent, and write

p• ∼ p′• if there exists a vector a = (a1, . . . , an) ∈ R
n such that for all I ∈ ([n]

k

)
,

p′
I = pI +

∑

i∈I
ai . (8.1)
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We write p′• = a · p•. If p• ∼ p′•, then we have �̃(p•) = �̃(p′•). The faces of �̃(p•)
are the bottom faces

F = F(p′•) := {I | p′
I = min(p′•)} ⊆

([n]
k

)
(8.2)

for p′• ∼ p•. Here, min(p′•) ∈ R is the minimum value in the vector p′•. By (8.1), we
can always assume that p′• ≥ 0 and min(p′•) = 0. Note that if p′• is chosen generically,
we expect F(p′•) to be a single vertex of the hypersimplex.

Lemma 8.1. Suppose that F is a full-dimensional face of �̃(p•). Then there is a unique
p′• ∼ p• such that p′

I = 0 for I ∈ F. This p′• satisfies p′
J > 0 for J /∈ F.

Proof. If F is full-dimensional, then the vectors {eI | I ∈ F} span R
n . Thus at most

one p′• equivalent to p• satisfies the condition p′
I = 0 for I ∈ F . The existence and the

last conclusion follows from the assumption that F is a face of �̃(p•). ��
The following result is immediate.

Lemma 8.2. The condition that p• is a tropical Plücker vector (resp. positive tropical
Plücker vector) is a property of the equivalence class of p•.

8.3. Suppose that p• is a tropical Plücker vector. Then by Proposition 7.1, �̃(p•) is
a regular subdivision of the matroid polytope PSupp(p•). Suppose that p• is a positive
tropical Plücker vector. Then by Proposition 7.2, �̃(p•) is a regular subdivision of the
positroid polytope PSupp(p•).

Proposition 8.3. .
p• satisfies the tropical Plücker relations if and only if each face of the regular
subdivision �̃(p•) is a matroid polytope.

(1)(2) p• satisfies the positive tropical Plücker relations if and only if each face of the
regular subdivision �̃(p•) is a positroid polytope.

Proof. We prove (2) (the proof of (1) [Spe] is similar).
Suppose that �̃(p•) is a positroid subdivision. Let us fix S ⊂ [n] of size k−2 and a <

b < c < d not contained in S. The intersection of �(k, n) with the hyperplanes {xi =
0 | i /∈ Sabcd} and {xi = 1 | i ∈ S} is a face F = F(S; abcd) of �(k, n). This face F
is an octahedron with six vertices eSab, eSac, eSad , eSbc, eSbd , eScd . The intersection of
the positroid subdivision �̃(p•) with F gives a subdivision of F̃ (or a subpolytope of
F̃), which must be a positroid subdivision. Thus it suffices to observe that the positive
tropical Plücker (1.1) holds for the six “numbers" pSab, pSac, pSad , pSbc, pSbd , pScd
if they induce a positroid subdivision of a subpositroid of F̃ . This is a straightforward
case-by-case analysis.

Suppose that p• satisfies the positive tropical Plücker relation. Let F be a face of the
subdivision �̃(p•). Then we can find p′• ∼ p• satisfying p′• ≥ 0 and min(p′•) = 0 so
that F = {I | p′

I = 0}. Let q• be defined by

qI =
{
0 if p′

I = 0
∞ if p′

I > 0.
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By Proposition 7.2, to show that F is a positroid, it suffices to show that q• is a positive
tropical Plücker vector. Consider any S and a < b < c < d as in (1.1). If both sides of
(1.1) are equal to 0 (resp. positive) for p′•, then both sides of (1.1) are equal to 0 (resp.
equal to ∞) for q•. Thus (1.1) holds for q• if it holds for p′•. ��

9. Positive Tropical Grassmannian

9.1. Let R = ⋃∞
n=1 R((t1/n)) denote the field of Puiseux series over R. We define

val : R → R∪{∞} by val(0) = ∞ and val(x(t)) = r if the lowest term of x(t) is equal
to αtr where α ∈ R

×. We define R>0 ⊂ R to be the semifield consisting of Puiseux
series x(t) that are non-zero and such that coefficient of the lowest term is a positive real
number. We let R≥0 := R>0 ∪ {0}.

A point V (t) in the Grassmannian Gr(k, n)(R) is, as usual, determined by its Plücker
coordinates�I (V ) ∈ R, which satisfy the Plücker relations and are defined up to a com-
mon scalar.We letGr(k, n)(R≥0) ⊂ Gr(k, n)(R) (resp.Gr(k, n)(R>0) ⊂ Gr(k, n)(R))
denote the subset of points V (t)whose Plücker coordinates lie inR≥0 (resp.R>0). Sim-
ilarly, we define Ĝr(k, n)(R), Ĝr(k, n)(R≥0), and Ĝr(k, n)(R>0). The following result
follows easily from the three-term Plücker relations (3.1).

Lemma 9.1. For V (t) ∈ Ĝr(k, n)(R≥0), the vector pI = val(�I (V (t))) satisfies the
positive tropical Plücker relations.

For a positroid M, we also define

�M(R>0) := {V (t) ∈ Gr(k, n)(R≥0) | �I (V (t)) ∈ R>0 if and only if I ∈ M}.
By Proposition 7.2 and Lemma 9.1, we have the disjoint union

Gr(k, n)(R≥0) =
⊔

M
�M(R>0) (9.1)

as M varies over positroids of rank k on [n], an analogue of (3.3).

9.2. We now connect Gr(k, n)(R>0) to the nonnegative part Ch(k, n)≥0 of the Chow
quotient. Let γ (t) be a curve in Gr(k, n) that is analytic near t = 0. Thus each Plücker
coordinate �I (γ (t)) has a Taylor expansion gI (t) ∈ R[[t]] that converges near t = 0.
Suppose that for some s > 0, we have that γ ((0, s)) ∈ Gr(k, n)>0. Then for every I ,
we have that gI (t) 
= 0 and the coefficient of the lowest term of gI (t) must be positive.
In particular, γ (t) “agrees" with a point V (t) ∈ Gr(k, n)(R>0).

Furthermore, γ ((0, s)) determines a curve in Conf(k, n)>0 = Gr(k, n)>0/T>0, and
thus limt→0 γ (t) is a point in X = ∑

i Xi ∈ Ch(k, n)≥0. The hypersimplex decom-
position �̃(X) is given by �̃(X) = �̃(val(V (t))). Let d(a) = diag(ta1, . . . , tan ) ∈
GL(n)(R) be an R-valued point in the torus acting on Gr(k, n). Then p• = val(V )

and p′• = val(V · d(a)) are related by (8.1). Let V ′(t) = V (t) · d(a), and suppose that
p′• = val(V ′(t)) ≥ 0 and at least one pI is equal to 0. Then V0 = limt→0 V ′(t) lies
in �M,>0 for some positroid M. The point V0 belongs to (at least) one of the toric
varieties Xi = T · Vi , and the positroid polytope PM is one of the faces of �̃(X). To
obtain the maximal faces, one has to pick the vector a carefully, just as (8.2) typically
gives lower-dimensional faces.

We refer the reader to [KT] for further details from this perspective.
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9.3. Following [SW], we define the positive tropical Grassmannian

Trop>0Gr(k, n) := val(Ĝr(k, n)(R>0)) ⊂ Dr(k, n)>0

as the closure of val on Ĝr(k, n)(R>0), and the nonnegative tropical Grassmannian

Trop≥0Gr(k, n) := val(Ĝr(k, n)(R≥0) \ {0}) ⊂ Dr(k, n)≥0

where {0} denotes the cone point of Ĝr(k, n)(R) (by convention, this cone point
does not lie in Ĝr(k, n)(R>0)). For a positroid M, we also define Trop>0�M :=
val(�̂M(R>0)). By (9.1), we have

Trop≥0Gr(k, n) =
⊔

M
Trop>0�M. (9.2)

9.4. We call a positive tropical Plücker vector p• realizable if it arises as val(�I (V ))

for some V ∈ Gr(k, n)(R≥0). It is not immediately clear that every p• ∈ Dr(k, n)≥0
is realizable because a priori val(�I (V )) satisfies relations beyond (1.1): for example
such a relation exists for any (not necessarily three-term) Plücker relation for Gr(k, n).

Theorem 9.2. Every rational positive tropical Plücker vector is realizable. Thus

Trop≥0Gr(k, n)=Dr(k, n)≥0, Trop>0Gr(k, n)=Dr(k, n)>0, Trop>0�M = Dr(M)>0.

Proof. Let M be a positroid, C ⊂ M be a cluster, and d = dim(M). By Sect. 4.3, we
have a positive parametrization T (C) = (C×)d ↪→ �M. This map induces a map ιC :
Rd

>0 → �M(R) where if f = ( f I (t) | I ∈ C) ∈ Rd
>0, we have �I (ιC(( f )) = f I (t).

By Proposition 4.4, the image of ιC lies in�M(R>0). Let νC : Dr(M)>0 → R
C denote

the projection p• �→ (pI | I ∈ C) of Theorem 7.3. Then the composition νC ◦ val ◦ ιC
sends Rd

>0 surjectively onto Q
d . By Theorem 7.3 we have νC : Dr(M)>0(Q) → Q

d is
an isomorphism, we see that every rational positive tropical Plücker vector is realizable.
Taking the closure in R

d , we obtain Trop>0�M = Dr(M)>0. ��

9.5. We give another proof of Theorem 9.2 using bridge decompositions, which we
believe is of independent interest. Recall from (3.5) the notion of bridge parametrizations
of �M,>0. In Sect. 14, we define tropical bridges Ti (a), a ∈ Z (and more generally
Tγ (t) for γ = (i, j)) acting on the space of positive tropical Plücker vectors, with the
following property: for a(t) ∈ R>0 and V (t) ∈ Gr(k, n)(R≥0)

val(V (t) · xi (a(t))) = Ti (val(a(t))) · val(V (t)).

In particular, if p• is representable, it follows immediately that Ti (a) · p• is representable
for any a ∈ Q.

Theorem 9.3. For any bridge parametrization (3.5) of �M(R>0), we have a tropical
bridge parametrization of Dr(M)>0, given by

R
d+1 � Dr(M)>0, (z0, z1, z2, . . . , zd) �−→ Tγ (z) · p(I, z0)•

:= Tγ1(z1) · · · Tγd (zd) · p(I, z0)•
where d = dim(M) and p(I )• ∈ Dr({I })>0 is defined by p(I, z0)I = z0 and
p(I, z0)J = ∞ for J 
= I . The tropical bridge parametrization maps Z

d+1 (resp.
Q

d+1) isomorphically onto Dr(M)>0(Z) (resp. Dr(M)>0(Q)).
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The proof of Theorem 9.3 is given in Sect. 14. Theorem 9.2 follows immediately
from Theorem 9.3. We give another proof of Theorem 7.3.

Second proof of Theorem 7.3. Any two bridge parametrizations of �M,>0 are related
by an invertible rational transformation that is subtraction-free in both directions, see
[Pos]. For particular choices of bridge parametrizations and cluster parametrizations,
[MS] gives explicit invertible subtraction-free rational expressions between them; for one
direction we have [MS, Theorem 3.3] and for the other combine [MS, Theorem 7.1] with
[MS, Proposition 7.10]. Tropicalizing these subtraction-free rational transformations
(using (7.1)), we conclude that z ∈ R

d and (pI | I ∈ C) ∈ R
C are related by an invertible

piece-wise linear transformation, and this holds even integrally. Thus the bijections of
(7.3) follow from Theorem 9.3. ��

10. Fan Structure

10.1. A (polyhedral) fan F = {C} in a vector space R
d is a finite collection of closed

polyhedral cones C ⊂ R
d satisfying the conditions:

(1) If C,C ′ ∈ F then C ∩ C ′ ∈ F .
(2) For C ∈ F , every face C ′ ⊂ C is in F .

We say that F is complete if the union of the cones in F is equal to R
d . In the case

that F is complete, or if F is pure of some dimension d ′ (i.e., all maximal cones have
dimension d ′), we call the maximal cones chambers.

10.2. The spaces Dr(M)>0 and Dr(k, n)>0 have a number of different fan structures
that we now define. All of these fan structures are compatible with equivalence: if
p• ∼ p′• then they belong to the same cone. Thus we can also think of these as complete
fan structures on the vector spaces Dr(M)>0/∼ and Dr(k, n)>0/∼.

If we consider Dr(M)>0 as a subset ofR([n]
k ), then these fan structures are collections

of cones of dimension less than or equal to dim(M)+1 = |C|. Ifwe considerDr(M)>0 �
R
C as a vector space (using Theorem 7.3), then we have complete fan structures on R

C .

10.3. Webegin by defining the secondary fan structure. Two vectors p•, q• ∈ Dr(M)>0
belong to the same (relatively open) cone of the secondary fan structure if and only if they
induce the same positroid polytope subdivision �̃ of PM i.e. if �̃(p•) = �̃(q•). For a
regular subdivision �̃ of PM into positroid polytopes, we denote byC(�̃) ⊂ Dr(M)>0

the corresponding (closed) cone. The faces of a C(�̃) ⊂ Dr(M)>0 are the cones C(�̃′)
as �̃′ varies over all subdivisions that refine �̃.

We define an integer dim(�̃) for a regular polyhedral subdivision �̃ of PM into
positroid polytopes:

dim(�̃) := dim(M) + 1 − dim(C(�̃)). (10.1)

Thus if �̃0 is the trivial subdivision of �(k, n), then dim(�̃0) = k(n − k) − (n − 1).
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10.4. For every S ⊂ [n] and a < b < c < d not contained in S, we have the three term
Plücker fan whose two chambers are given by

pSac + pSbd = pSab + pScd ≤ pSad + pSbc
pSac + pSbd = pSad + pSbc ≤ pSab + pScd

This fan has exactly three cones: the two chambers above and a third cone where pSac +
pSbd = pSad + pSbc = pSab + pScd , the intersection of the two chambers. The Plücker
fan structure onDr(M)>0 is the common refinement of all the three termPlücker fans. In
other words, two vectors p• and q• belong to the same relatively open cone of the Plücker
fan structure if exactly which of the three quantities pSac+ pSbd , pSad+ pSbc, pSab+ pScd
is minimal is the same for p• and for q•.

10.5. The positive fan structure is the fan whose cones are the images of the domains
of linearity for a positive parametrization by a cluster. To be precise, pick a cluster C for
M. By Theorem 7.3 we identify p• ∈ Dr(M)>0 with a point in R

C . For each J ∈ M,
the function pJ is a piecewise-linear function on R

C . The common domains of linearity
(see Sect. 11.1 for further discussion) for all the functions pJ , J ∈ M is the positive
fan structure of Dr(M)>0 with respect to the cluster C.
Proposition 10.1. The positive fan structures on Dr(M)>0 induced by two different
clusters C and C′ are naturally identified via the isomorphisms of Theorem 7.3.

Proof. In each chamber A of the positive fan structure on R
C , all the functions pJ ,

J ∈ M are linear. The composition and inverse of linear functions is linear, so under the
piecewise-linear isomorphism R

C → R
C′
the cone A will be sent inside some chamber

A′ of the positive fan structure on R
C′
, and reversing the roles of C and C′ we see that A

and A′ are isomorphic. ��
We may thus speak of the positive fan structure on Dr(M)>0.

10.6. We shall show that the secondary fan structure, the Plücker fan structure, and the
positive fan structure coincide.

Proposition 10.2. With any of the three fan structures, Dr(M)>0 is a polyhedral fan
pure of dimension dim(M) + 1.

Proof. Any complete finite fan structure on R
C is pure of dimension |C|, i.e., R

C is the
union of the closed cones of dimension exactly |C|. By Theorem 7.3, the set Dr(M)>0 is
the imageofRC under a continuous piecewise-linearmap.ThusDr(M)>0 is a polyhedral
fan pure of dimension dim(M) + 1. ��

The secondary fan structure and the Plücker fan structure are shown to coincide in
[OlPS].

Theorem 10.3. The three fan structures on Dr(M)>0 coincide.

Proof. We show that the Plücker fan and the positive fan agree. By Proposition 10.2,
it suffices to compare cones of maximal dimension dim(�M). Let A ⊂ R

C be such a
cone in the positive fan structure for a cluster C for M. Then all the functions pJ are
linear functions on A: we have pJ = ∑

I αA
J,I pI , where αA

J,I ∈ Z. Substituting these
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expressions into (pSac + pSbd) − (pSab + pScd) or (pSac + pSbd) − (pSad + pSbc) we
obtain two linear functions. For each point of A, at least one of these linear functions
vanishes. Since A has maximal dimension, one of the two linear functions is identically
0 on A; it follows that A is completely contained in some chamber of the Plücker fan.
We have shown that the positive fan structure is a refinement of the Plücker fan structure.

Next let A′ be a chamber of the Plücker fan structure. The proof of Theorem 7.3 shows
that each pJ can be written as a piecewise-linear function of pI , I ∈ C, by iteratively
applying the equality (1.1). Within the chamber A′, the RHS of (1.1) is a linear function
instead of a piecewise-linear function. It follows that the restriction of pJ to A′ is a linear
function. We have shown that the Plücker fan structure is a refinement of the positive
fan structure. ��
Remark 10.4. In [SW] a particular fan structure on Trop>0Gr(k, n) is studied. The pos-
itive parametrization in [SW] is related by an invertible monomial transformation to a
gauge-fix of the cluster parametrization for the cluster

C = {{1, 2 . . . , i − 1} ∪ {i + j − k, . . . , j} | (i, j) ∈ [1, k] × [k + 1, n]}.
The tropicalization of a monomial transformation is a linear map, so the fan structure of
[SW] agrees with the one in Theorem 10.3.

Remark 10.5. The twist map ηM [MS] is a subtraction-free birational map that induces
a birational isomorphism ηM : �M � �M. It also induces a piecewise-linear isomor-
phism Trop(ηM) : Dr(M)>0 � Dr(M)>0. It is likely that this map preserves the fan
structure i.e. Trop(ηM) restricts to a linear map on each cone of the fan Dr(M)>0.

10.7. Theorem 10.3 allows us to parametrize D(k, n) with collections of planar
trees, see also [HJJS, Section 4] and [BC,CGUZ]. For a subset S ⊂ [n], let HS=1 denote
the subspace given by intersecting {xs = 1} for s ∈ S. Note that the face HS=1∩�(k, n)

is isomorphic to �(k − |S|, n − |S|).
Let �̃ ∈ D(k, n). Intersecting �̃with the face HS=1 for |S| = k−2gives a subdivision

of �(2, [n] \ S), i.e. an element �̃S ∈ D(2, [n] \ S). It is well known, and explained in
Sect. 13, thatD(2, [n] \ S) is in bijection with the set of planar trees {T[n]\S} with leaves
labeled cyclically by [n] \ S. We obtain a map

�̃ �−→ T = {T[n]\S | S ∈
( [n]
k − 2

)
} (10.2)

sending a hypersimplex subdivision to a collection of planar trees.

Corollary 10.6. The map (10.2) is injective.

Proof. Suppose �̃ = �̃(p•)where p• ∈ Dr(k, n)>0. To determine �̃, by Theorem 10.3
we need to know which cone of the Plücker fan structure p• lies in. Thus for every
S ⊂ [n] and a < b < c < d not contained in S, we need to know which of the following
situations we are in:

pSac + pSbd = pSab + pScd < pSad + pSbc
pSac + pSbd = pSab + pScd = pSad + pSbc
pSac + pSbd = pSad + pSbc < pSab + pScd .

Again, by Theorem 10.3, this is determined by �̃S ∈ D(2, [n] \ S) which in turn is
determined by TS . ��

Note however that not every collection {T[n]\S | S ∈ ( [n]
k−2

)} of planar trees are in the
image of (10.2).
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11. Nearly Convergent Functions

For more details on the material of this section we refer the reader to [AHLa].

11.1. Let f (x) = p(x)/q(x) ∈ R(x) := R(x1, . . . , xr ) be a subtraction-free ratio-
nal function i.e., both p(x) and q(x) are polynomials with positive coefficients. The
piecewise-linear function Trop( f ) on R

r is obtained by the substitution (7.1).
Suppose now that f (x) ∈ R≥0[x±1

1 , . . . , x±1
r ] is a positive Laurent polynomial. Let

N[ f (x)] denote the Newton polytope of f (x) insideR
r . This is the lattice polytope given

by the convex hull of v ∈ Z
r , as v varies over lattice points such that αxv is a monomial

appearing in f (x). The following result is well-known.

Lemma 11.1. For a positive Laurent polynomial f (x), the domains of linearity of
Trop( f ) consist of the chambers of a complete fan F , and F is equal to the inner
normal fan of the polytope N[ f (x)].

The normal fan of the Minkowski sum of two polytopes is the common refinement of
the two normal fans. Thus if f1(x), f2(x), . . . , fa(x) are positive Laurent polynomials,
then the common domains of linearity give a complete fan that is equal to the inner
normal fan of the Minkowski sum N[ f1(x)] + · · · + N[ fa(x)].

11.2. A subtraction-free rational function f (x) ∈ R(x) is called nearly convergent if
the function Trop( f (x)) takes nonnegative values on the whole of R

r .

Lemma 11.2. A subtraction-free rational function f (x) = p(x)/q(x) is nearly conver-
gent if and only if N[p(x)] ⊂ N[q(x)].
Proof. Write p(x) = ∑

v αvxv. Then

Trop( f (x)) = Trop(
∑

v

αvxv/q(x)) = min
v

(Trop(xv/q(x)).

Thus Trop( f (x)) is nonnegative if and only if Trop(xv/q(x)) is nonnegative for all v
such that a monomial αvxv occurs in p(x). Thus it suffices to establish the claim for the
case f (x) = xv/q(x), i.e., Trop( f (x)) is nonnegative if and only if v ∈ N[q(x)]. This
follows from the following observation: a point v ∈ Z

r is outside a polytope P if and
only if there exists a vector a ∈ R

r such that a · v < min(a · u | u a vertex of P). ��

11.3. Set d = k(n−k) and r = d−(n−1). Fix C ⊂ ([n]
k

)
a cluster andG ⊂ C a gauge-fix

as in Sect. 4.4. Let C \G = {J1, J2, . . . , Jr } and denote xi := �Ji . Let T (C,G) � (C×)r

be the subtorus of T (C) := Spec(C[�I | I ∈ C]) satisfying �J = 1 for all J ∈ G.
Let Gr(k, n)G ⊂ Gr(k, n) be the subspace where �J = 1 for all J ∈ G. We have
a rational map πC,G : T (C,G) → Gr(k, n)G induced by the positive parametrization
T (C) → Ĝr(k, n) in Sect. 4.3. We identify Gr(k, n)G birationally with Conf(k, n). The
following result follows from (4.1) and Proposition 4.3.

Proposition 11.3. The map πC,G is birational, the restriction to R
d−(n−1)
>0 is a homeo-

morphism onto Conf(k, n)>0, and every Plücker coordinate �I pulls back under πC,G
to a positive Laurent polynomial �I (x) in x1, . . . , xr .
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11.4. A Laurent monomial

M =
∏

I∈([n]
k )

�
aI
I , aI ∈ Z (11.1)

in the Plücker coordinates is T -invariant if it has weight 0, i.e.,
∑

I aI eI = 0. For
fixed (C,G), each Laurent monomial M (11.1) pulls back to a subtraction-free rational
function M(x) by Proposition 11.3. We say that M is nearly convergent with respect to
(C,G) if M(x) is nearly converegent.

Lemma 11.4. Let M be a T -invariant monomial and let (C,G) and (C′,G′) be two
choices of cluster and gauge-fix. Then M is nearly convergent with respect to (C,G) if
and only if it is nearly convergent with respect to (C′,G′).
Proof. Pulling M back to T (C) we have the notion of M being nearly convergent with
respect to C. The T -invariance of M implies that M is nearly convergent with respect
to C if and only if it is nearly convergent with respect to some (C,G). The positive
parametrizations of twoclustersC andC′ are relatedby invertible subtraction-free rational
transformations, and this implies that the notion of nearly convergent does not depend
on cluster. ��

11.5. Let P(x) = P(x1, . . . , xr ) = ∏
I �I (x1, . . . , xr ) denote the product of all the

Plücker variables, considered as a Laurent polynomial in x1, . . . , xr . Let P(k, n) =
N[P(x)] ⊂ R

r be the Newton polytope of P(x). Thus P(k, n) is the Minkowski sum
of the Newton polytopes N[�I (x)]. By Theorem 10.3 (specifically, the equivalence of
the secondary fan structure and the positive fan structure) and Lemma 11.1, we have the
following.

Proposition 11.5. There is a bijection F �→ �̃(F) between the set of faces {F ⊂
P(k, n)} of P(k, n) and the setD(k, n) of regular subdivisions of the hypersimplex into
positroid polytopes.

11.6. Let

� = {M | M is T − invariant and nearly convergent}
denote the (finitely-generated) monoid of nearly convergent, T -invariant, Laurent mono-
mials in �I . Let C[�] ⊂ C(Gr(k, n))T be the subring of T -invariant rational functions
on the Grassmannian generated by M ∈ �. We will also identify C[�] with the subring
C[M(x) | M ∈ �] ⊂ C(x) of rational functions on the torus T (C,G).

The following result follows from Lemma 11.2 and the fact that each variable xi is
the image in C(x) of some T -invariant monomial M . See also [AHLa, Section 10].

Lemma 11.6. The ring C[�] ⊂ C(x) is spanned by the rational functions xv/P(x)� for
an integer � ≥ 1 and v ∈ � P(k, n) ∩ Z

r .

Lemma 11.7. Let f ∈ C[�]. Then there exists a constant D ∈ R such that | f (x)| ≤ D
for all x ∈ R

r
>0.

Proof. By Lemma 11.6, it is enough to show that xv/P(x)� is bounded above on R
r
>0,

where v is a lattice point in the polytope �P(k, n). We may write cv = ∑
i civi where

vi are the vertices of � P(k, n) and c, ci are nonnegative integers satisfying c > 0 and
c = ∑

i ci . Then xcv = ∏
i (x

vi )ci ≤ (
∑

i x
vi )c and it follows that xv/P(x)� ≤ 1 on

R
r
>0. ��
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11.7. For a lattice polytope P ⊂ R
r , one has a proper normal toric variety XP which

depends only on the normal fan of P [Ful]. The toric variety XP contains a dense torus
T = (C×)r ⊂ XP . The subspace XP,>0 := R

r
>0 ⊂ XP (R) is called the positive part

of XP and its closure XP,≥0 is called the nonnegative part of XP . The torus orbits of T
on XP stratify XP and XP,≥0, and the strata are in bijection with faces of P . We have
a stratification-preserving homeomorphism between XP,≥0 and the polytope P with its
face stratification. For a face F ⊂ P , let XF denote the corresponding closed stratum,
which is itself isomorphic to the toric variety for the polytope F . Thus the closed (resp.
relatively open) faces of XP,≥0 are exactly the XF,≥0 (resp. XF,>0) as F varies over
faces of P .

Proposition 11.8 (see [AHLa]).

(1) The variety Spec(C[�]) is isomorphic to an affine open subset X ′
P(k,n) of the pro-

jective (and normal) toric variety XP(k,n) associated to the normal fan of P(k, n).
(2) The affine open subset X ′

P(k,n) contains the nonnegative part XP(k,n),≥0.

(3) Let v ∈ � P(k, n) ∩ Z
r and F ⊂ P(k, n) be a face. The function xv/P(x)� ∈ C[�]

vanishes identically on XF,≥0 if and only if v /∈ �F. The subspace XF,≥0 is cut out
of X ′

P(k,n) by the vanishing of such functions.

Proof. (1) is proven in [AHLa, Section 10]; we sketch the main idea. Recall that a
full-dimensional lattice polytope Q is called very ample if for sufficiently large integers
s > 0, every lattice point in r Q is a sum of s (not necessarily distinct) lattice points
in Q. Given Q, it is known that some dilate �Q of Q is very ample. We then have a
projective embedding of XQ given by the closure of the image of the map

x �→ [xv0 : xv1 : · · · : xvm ] ∈ P
m (11.2)

where �Q ∩ Z
r = {v0, v1, . . . , vm} and x ∈ (C×)r .

We apply this construction to XP(k,n), supposing that �P(k, n) is very ample. Let
P(x)� = ∑m

i=0 cix
vm , where �P(k, n)∩Z

r = {v0, . . . , vm}. Consider the linear section
H = {c0y0 + · · ·+ cm ym = 0} ⊂ P

m , where yi are the homogeneous coordinates on P
m .

The complement X ′
P(k,n) := XP(k,n) \ H is an open subset of XP(k,n) that is an affine

variety. The coordinate ring C[X ′
P(k,n)] is generated by the images of yi/(c0y0 + · · · +

cm ym), that is, xvi /P(x)�. By Lemma 11.6, this gives the isomorphism Spec(C[�]) �
X ′
P(k,n), establishing (1).
Since all the coefficients of P(x) are positive, the linear section does not intersect

XP(k,n),≥0, giving (2).
The torus orbit closure XF is cut out from XP by the vanishing of the homogeneous

coordinates {xv | v /∈ F ∩ Z
r } in the embedding (11.2). This gives (3). ��

12. Topology of Nonnegative Configuration Space

12.1. We continue the notation of Sect. 11.3. In particular, a cluster C ⊂ ([n]
k

)
and a

gauge-fix G ⊂ C are fixed. Since Conf(k, n) � G̊r(k, n)/T , each T -invariant monomial
extends to a rational function on Ch(k, n). Let C̃h(k, n) ⊂ Ch(k, n) denote the locus
where all nearly convergent monomials are regular i.e. where the polar locus of each
M ∈ � has been removed. Then we have a natural morphism

ϕ : C̃h(k, n) −→ Spec(C[�]) = X ′
P(k,n). (12.1)
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It follows from Lemma 11.7 that Ch(k, n)≥0 ⊂ C̃h(k, n). Recall the bijection F �→
�̃(F) in Proposition 11.5.

Proposition 12.1. Let F ⊂ P(k, n) be a face. If X ∈ ��̃(F)(k, n), then ϕ(X) ∈
XF,>0 ⊂ X ′

P(k,n).

Proof. Identify Dr(k, n)>0/ ∼ with a complete fan on R
r . Via Proposition 11.5, the

cones C(F) = C(�̃(F)) are indexed by either faces F of P(k, n) or by �̃(F) ∈
D(k, n). Let γ (t) be an (analytic) curve in Gr(k, n)>0/T>0 such that limt→0 γ (t) =
X ∈ ��̃(F)(k, n). Then γ (t) gives rise to a formal curve, and thus a Puiseux curve
V (t) ∈ Gr(k, n)(R>0). The positive tropical Plücker vector val(V (t)) lies in the cone
C(�̃(F)).

Now let v ∈ (�P(k, n) ∩ Z
r ) \ (�F ∩ Z

r ). Let f (x) = xv/P(x)�. The func-
tion Trop(xv/P(x)�) is nonnegative on R

r and strictly positive on the cone C(F) in
the fan Dr(k, n)>0. Considering f (x) as a T -invariant rational function on Gr(k, n),
we conclude that val( f (V (t))) > 0. Thus f (x) vanishes at X and by Proposi-
tion 11.8(3), ϕ(X) ∈ XF,≥0. The same argument shows that we must actually have
ϕ(X) ∈ XF,>0. ��

12.2. We can now prove Theorem 6.2.

Theorem 12.2. There is a stratification-preserving homeomorphism Ch(k, n)≥0 �
P(k, n). In particular, each stratum ��̃,≥0 (resp. ��̃,>0) is homeomorphic to a closed

ball (resp. open ball) of dimension dim(�̃).

We shall show that the map ϕ restricts to a stratified bijection ϕ : Ch(k, n)≥0 →
XP(k,n),≥0. Since Ch(k, n)≥0 is compact and XP(k,n),≥0 is Hausdorff, this claim would
establish Theorem 12.2. Proposition 12.1 shows that ϕ is stratification-preserving. It is
easy to see that ϕ : Conf≥0 → XP(k,n),≥0 is surjective. If p ∈ XP(k,n),≥0 then p =
limt→0 p(t) where p(t) ∈ XP(k,n),>0 for t > 0. The curve p(t) can be lifted to a curve
X (t) ∈ Conf(k, n)>0, such that ϕ(X (t)) = p(t) for t > 0. Then ϕ(limt→0 X (t)) = p.

It remains to argue that the map ϕ is injective. A point X = ∑r
i=1 Xi ∈ Ch(k, n)≥0

is determined by the torus orbit closures Xi = T · Vi where Vi ∈ �Mi ,>0/T and
PM1 , . . . , PMr are positroid polytopes that form a regular polyhedral subdivision
of the hypersimplex. The point X is uniquely determined by the collection of points
{V1, . . . , Vr }. Thus, the injectivity of ϕ follows from the following proposition which
completes the proof of Theorem 12.2.

Proposition 12.3. Let X ∈ ∑r
i=1 Xi��̃,≥0 with Xi = T · Vi where Vi ∈ �Mi ,>0/T>0.

Then V1, . . . , Vr is determined by the values f (Vi ) for varying f ∈ C[�].
Proof. Note that for f ∈ C[�], we have f (Vi ) = f (Vj ) whenever f makes sense on
both Vi and Vj . Let us first consider the special case where M = ([n]

k

)
, and suppose

V ∈ Gr(k, n)>0/T>0. By Lemma 11.6, the function xv/P(x)� is nearly convergent
when v ∈ �P(k, n). For sufficiently large �, we can find lattice points v and v + ei
inside �P(k, n), and the ratio of xv

P(x)�
and xv+ei

P(x)�
is equal to xi , so the value of xi (V ) is

determined by f (V ), for f ∈ �. (Note that the ratios xv

P(x)�
are always positive because

all Plücker variables are positive on V .) By Proposition 11.3, V ∈ Gr(k, n)>0/T>0 is
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determined by the positive parameters x1, . . . , xr ∈ R>0, and thus we have recovered
the point V .

Now suppose that V ∈ �M,>0/T>0 where M is an arbitrary connected positroid.
Applying Lemma 4.6 we find a cluster C′ ⊂ M and a gauge-fix G ⊂ C′. By Proposi-
tion 4.1, we can find a cluster C of

([n]
k

)
that contains C′. We use (C,G) as our positive

parametrization of Conf(k, n)>0, and we suppose that x1, . . . , xb belong to C′ \G while
xb+1, . . . , xr belong to C \ C′. Here, b = dim(M) − (n − 1). To determine V , we
need to determine x1(V ), . . . , xb(V ). The same argument as in the previous paragraph
applies, except we need to ensure that the ratios xv

P(x)�
and xv+ei

P(x)�
used do not vanish on

�M,>0/T>0. As in the proof of Proposition 12.1, the function xv/P(x)� vanishes on
��̃ exactly when v does not belong to the face �F of �P(k, n).

We claim that for each i = 1, 2, . . . , b, the face �F contains lattice points v and
v + ei for some v. In other words, if y = (y1, . . . , yr ) ∈ R

r is a vector in the normal
cone C(F) to F then yi = 0 for i = 1, 2, . . . , b. Let p• be a positive tropical Plücker
vector such that �̃(p•) = �̃. By Lemma 4.6, there is a unique p′• equivalent to p• such
that p′

I = 0 for all I ∈ G, and by Lemma 8.1, it must be the case that p′
J = 0 for all

J ∈ M, since PM is one of the full-dimensional pieces in �̃. By Corollary 7.4, setting
yi = p′

Ii
for Ii ∈ C gives a vector in C(F), and any vector in the relative interior of

C(F) is obtained in this way. All these vectors satisfy y1 = y2 = · · · = yb = 0 since
p′
J = 0 for all J ∈ M. ��
Let us illustrate the proof of Proposition 12.3 with an example for (k, n) = (3, 6).

Take the positive parametrization

(z1, z2, z3, z4) ∈ (C×)4

�→
⎡

⎣
0 0 −1 −1 −1 −1
0 1 0 −1 −1 − z1 −1 − z1z2 − z2
1 0 0 1 1 + z1 + z3 1 + z1 + z2 + z4 +

z3z3
z1

+ z4
z1

⎤

⎦ (12.2)

This is the positive parametrization associated to the gauge-fix and cluster

G := {123, 124, 125, 126, 134, 234} and
C := G ∪ {z1 = 145, z2 = 156, z3 = 345, z4 = 456}.

Consider the two-piece hypersimplex decomposition �̃ (see Sect.A.1) that slices�(3, 6)
with the hyperplane x4 + x5 + x6 = 2. On one side we have the positroid polytope for
M = ([6]

3

) \ {4, 5, 6}, which has a cluster

C ⊃ C′ := {123, 124, 125, 126, 134, 234, 145, 156, 345} ⊃ G.

Now, the normal cone C(F) = C(�̃) is a ray and it is generated by the vector y =
r ′
6 = (0, 0, 0, 1). (This r ′

6 is the image of r6 in Sect. A.1 under the linear transformation
that tropicalizes the monomial transformation (x1, x2, x3, x4) → (z1, z3/z1, z2/z1, z4/
(z2z3)).) Agreeing with the proof of Proposition 12.3, we have y1 = y2 = y3 = 0.

12.3. We end this section with the following question.

Question 12.4. Is the morphism ϕ of (12.1) an isomorphism of algebraic varieties?

We note that Spec(C[�]) is a normal variety, while the Chow quotient Ch(k, n) has
rather complicated geometry (c.f [KT,Laf]).
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13. M0,n and the Case k=2

13.1. It is well-known [Kap] that we have Conf(2, n) = ˚Conf(2, n) = M0,n and
Ch(2, n) = M0,n , the moduli space of n points on P

1 and its Deligne–Knudsen–
Mumford compactification respectively. The space M0,n(R) consists of n points
z1, . . . , zn on a circle S1. It is a smooth open manifold with (n−1)!/2 connected com-
ponents, each of which is diffeomorphic to an open ball of dimension n−3. Each con-
nected component is given as the subspace where the n points are in a fixed dihedral
ordering. Fixing such an ordering z1 < z2 < · · · < zn (up to dihedral symmetries)
we obtain the positive component (M0,n)>0 ⊂ M0,n(R). It is well-known that the
closure Conf(2, n)≥0 = (M0,n)≥0 of (M0,n)>0 in M0,n(R) is homeomorphic as a
stratified space to the associahedronAn , agreeing with Theorem 12.2. The affine variety
M̃0,n := C̃h(2, n) sits in between M0,n and M0,n . It can be obtained from M0,n by
removing all boundary divisors ofM0,n that do not intersect (M0,n)≥0 in codimension
one, see [Bro].

13.2. Let us now spell out our combinatorial constructions in this case. A positroidM
of rank 2 on [n] is given by a collection of conditions of the following form:

(1) For some i ∈ [n], we have i ∈ I for all I ∈ M.
(2) For some j ∈ [n], we have j /∈ I for all I ∈ M.
(3) For some cyclic interval [a, b], we have |[a, b] ∩ I | ≤ 1 for all I ∈ M.

ForM to be connected we must have none of the conditions of the form (1) or (2). Such
a connected positroidM is then determined by a decomposition [n] = ⊔r

i=1[ai , bi ] of[n] into at least three cyclic intervals such thatM is given by

M([ai , bi ]) =
{
I ∈

([n]
2

)
| |I ∩ [ai , bi ]| ≤ 1 for i = 1, 2, . . . , r

}
.

We have the formula dim(M) = n + r − 4. For example, if M is the uniform matroid
then r = n and dim(M) = 2n − 4 = 2(n − 2). If r = 3 then dim(M) = n − 1 andM
is a minimal connected positroid.

For a connected positroid M = M([ai , bi ]), it is not difficult to see that there is a
canonical isomorphism �̊M/T � M0,r that sends �M,>0/T>0 to (M0,r )>0, where r
is the number of cyclic intervals. If r = 3, then M0,3 is a point, as expected.

13.3. The faces of the associahedronAn are labeled by planar trees T with n cyclically
ordered leaves 1, 2, . . . , n, with internal vertices having degree at least 3. Some such
trees for n = 5 are drawn below:

3

2
1

5
4

3

2
1

5
4

3

2
1

5
4
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Let Vert(T ) denote the set of internal vertices of T . Let T be such a planar tree and
v ∈ Vert(T ) be an internal vertex of degree r ≥ 3. Removing v from T we obtain a forest
with r components, and this decomposes [n] into r cyclic intervals [a1, b1], . . . , [ar , br ],
giving a positroidM(v). Thus I = {i, j} is a basis of the positroidM(v) if and only if
the unique path from i to j in T passes through v.

Proposition 13.1 [Kap]. The map

T �−→ �̃T := {PM(v) | v ∈ Vert(T )}
gives a bijection between planar trees with n leaves and regular subdivisions of the
hypersimplex �(2, n) into positroid polytopes.

These hypersimplex decompositions can be obtained by intersecting�(k, n)with the
hyperplanes He := {xa + xa+1 + · · · + xb = 1}, one for each each internal e of T , where
for an internal edge e, we set [a, b] to be the cyclic interval of leaves on one side of e.
The positroid polytope PM(v) has as interior facets the He where v is incident to e. If T
is the star with a single internal vertex v and no edges then �̃T = {PM(v) = �(2, n)}
is the trivial decomposition.

13.4. Now let p• ∈ Dr(2, n)>0 be a (finite) positive tropical Plücker vector. We assign
a planar tree T (p•) to p• as follows. For 1 ≤ a < b < c < d ≤ n, we consider which
of the following three possibilities holds:

(1) pac + pbd = pab + pcd < pad + pbc,
(2) pac + pbd = pad + pbc < pab + pcd ,
(3) pac + pbd = pab + pcd = pad + pbc.

The tree T (p•) has the property that

(1) the shortest path from leaf a to leaf d does not intersect the shortest path from leaf
b to leaf c,

(2) the shortest path from leaf a to leaf b does not intersect the shortest path from leaf
c to leaf d,

(3) there is an internal vertex v such that any shortest path between two of the vertices
a, b, c, d passes through v,

respectively.

Proposition 13.2. The map p• �→ T (p•) defines a fan structure onDr(2, n) that agrees
with the ones in Sect. 10.

13.5. Let T be a planar tree and �̃T be the corresponding hypersimplex subdivision.
Suppose that �̃T = {PM(v)}. We have a homeomorphism

��̃T ,>0 �
∏

v∈Vert(T )

�M(v),>0/T>0 (13.1)

and dim(�̃T ) = dim(��̃T ,>0) = n−2−|Vert(T )|. This agrees with �M(v),>0/T>0 �
R
deg(v)−3, since

∑
v∈Vert(T )(deg(v)−3) = n−2−|Vert(T )|. For k > 2, we do not know

an easy estimate for dim(�̃), nor does the “factorization" in (13.1) hold. We will study
of the geometry of ��̃,>0 in future work [ALS+].
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13.6. We shall use the following positive parametrization of Conf(2, n):
[
0 1 1 1 1 · · · 1

−1 0 1 1 + x1 1 + x1 + x1x2 · · · 1 + x1 + x1x2 + · · · + x1x2 · · · xn−3

]
(13.2)

In this positive parametrization, the Plücker coordinates for 12, 13, . . . , 1n and 23 have
been gauge-fixed to 1, while the positive parameters (x1, . . . , xn−3) are given by xi =
�i+2,i+3/�i+1,i+2. Thus, our positive parameterization is related to the one for

(C,G) = ({12, 13, . . . , 1n, 23, 34, . . . , (n − 1)n}, {12, 13, . . . , 1n, 23})
by a monomial transformation. Our reasons for choosing this parametrization will be
explained in [ALS+]. An explicit description of the fan structure in these positive coor-
dinates is given in [SW].

Let us take n = 5. Then the non-monomial Plücker variables are �24 = 1 + x1,
�25 = 1 + x1 + x1x2, and �35 = x1 + x1x2. The common domains of linearity of
Trop(�24) = min(0, X1), Trop(�25) = min(0, X1, X1 + X2) and Trop(�35) = X1 +
min(0, X2) give the following fan:

As an example, let us consider the integer vector (1,−1) lying on the southeast pointing
ray, and substitute (x1, x2) = (t, 1/t) into (13.2) to obtain

V (t) =
[
0 1 1 1 1

−1 0 1 1 + t 2 + t

]

The tropical Plücker vector p• = val(�•(V (t))) is given by p34 = 1 and pJ = 0 for
J 
= 34. Taking a = (1/2, 1/2,−1/2,−1/2, 1/2) in (8.1), we see that p• ∼ p′•, where
p′
12 = p′

15 = p′
25 = 1 while pJ = 0 for J /∈ {12, 15, 25}. Thus the corresponding

hypersimplex subdivision �̃(p•) consists of two positroid polytopes PM1 and PM2
where

M1 =
([5]

2

)
\ {34} and M2 = {13, 14, 23, 24, 34, 35, 45}

separated by the hyperplane x3 + x4 = 1. The planar tree is

T (p•) = 3

2
1

5
4
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13.7. Let us fix a clusterC ⊂ ([n]
2

)
. In the case k = 2, the polytope P(2, n) has the special

feature that it is simple, and thus every cone of the normal fan F is a simplicial cone.
Let us denote the (first integer point on the) rays of F by ri j , corresponding to the tree
with a single interior edge separating leaves i + 1, . . . , j from j + 1, . . . , i − 1, i , where
(i, j) varies over the diagonals of a polygon with vertices 1, 2, . . . , n. Also write pi j• for
the tropical Plücker vector that maps to ri j under Theorem 7.3. As explained in [AHLa],
a consequence of the simplicial-ness of F is that the ring C[�] has some particularly
nice generators. For (i, j) a diagonal of the polygon with vertices 1, 2, . . . , n, define the
rational function

ui j = �i, j+1�i+1, j

�i j�i+1, j+1
= (zi − z j+1)(zi+1 − z j )

(zi − z j )(zi+1 − z j+1)

onConf(2, n), which can be interpreted as a cross ratio of the four points zi , zi+1, z j , z j+1
on P

1. The functions ui j have the following special property.

Proposition 13.3 [AHLa,AHLb].The ringC[�] of Sect. 11 is the subring ofC(Gr(k, n))

generated by the ui j . For two diagonals (i, j) and (i ′, j ′), we have

Trop(ui j )(ri ′ j ′) = Trop(ui j )(p
i ′ j ′• ) = δi j,i ′ j ′ .

Note that Trop(ui j ) = pi, j+1 + pi+1, j − pi j − pi+1, j+1, so it is easy to see that it takes
nonnegative values on any tropical Plücker vector p•, and thus ui j is nearly convergent.
It is not hard to see that all the inequalities from (1.1) are positive linear combinations
of Trop(ui j ) for various i, j .

Let G ⊂ C be a gauge-fix. Setting�I = 1 for I ∈ G, it is not difficult to see that there
is an invertible monomial transformation between the n(n−3)/2 functions ui j and the
functions �J with J /∈ C \ G. The fan structure on Dr(2, n)>0 is given by intersecting
the cones Trop(ui j ) = 0 and Trop(ui j ) > 0 as i, j vary.

For n = 5 and the parametrization (13.2), the ui j functions are

u13 = 1

1 + x1
, u14 = 1 + x1

1 + x1 + x1x2
, u24 = x1(1 + x1 + x1x2)

(1 + x1)(x1 + x1x2)

u25 = x1 + x1x2
1 + x1 + x1x2

, u35 = x1x2
x1 + x1x2

which are easily seen to belong to � using Lemma 11.2.

14. Tropical Bridge Reduction

We will frequently use the following easy result without mention.

Lemma 14.1. We have I ≤ J if and only if (I \ J ) ≤ (J \ I ).

14.1. Let q• be a positive tropical Plücker vector. Pick a ∈ Z and i 
= j ∈ [n]. We

define the tropical bridge Tγ (a) = Ti, j (a) acting on R([n]
k ) by q ′• = Tγ (a) · q• where

q ′
I =

{
min(qI , qI\{ j}∪{i} + a) if j ∈ I but i /∈ I
qI otherwise.

This formula is the tropicalization of (3.4). When j = i +1, we write Ti (a) := Ti,i+1(a).
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Proposition 14.2. If q• ∈ Dr(k, n)≥0 then Ti (a) · q• ∈ Dr(k, n)≥0.

Proof. By Theorem 9.2, every q• ∈ Dr(k, n)≥0 is representable by V ∈ Gr(k, n)(R≥0).
The claim then follows immediately from (3.4). ��
Remark 14.3. Our proof below gives proofs of Theorem 9.2 and of Proposition 14.2 that
are independent of our earlier proof of Theorem 9.2.Wewill only apply Proposition 14.2
to q• ∈ Dr(k, n)≥0 that we separately know to be representable. And once Theorem 9.2
is established, Proposition 14.2 follows for arbitrary q• ∈ Dr(k, n)≥0.

14.2. We shall show that bridge reduction (Proposition 3.3) holds for positive tropical
Plücker vectors.

Proposition 14.4. Let p• ∈ Dr(M)>0 whereM is a rank k > 0 positroid on [n]. Then
we show that at least one of the following holds:

(1) For some i ∈ [n], we have fM(i) = i . Define εi : [n − 1] → [n] by εi (a) = a
if a < i and εi (a) = a + 1 if a ≥ i . Then p• is in the image of the map εi :
Dr(k, n − 1)≥0 ↪→ Dr(k, n)≥0 given by

εi (q•)I =
{

∞ if i ∈ I
qJ if I = εi (J ).

(2) For some i ∈ [n], we have fM(i) = i + n. Define εi : [n − 1] → [n] by εi (a) = a
if a < i and εi (a) = a + 1 if a ≥ i . Then p• is in the image of the map εi :
Dr(k − 1, n − 1)≥0 ↪→ Dr(k, n)≥0 given by

εi (q•)I =
{

∞ if i /∈ I
qJ if I = εi (J ) ∪ {i}.

(3) For some i ∈ [n], we have i +1 ≤ fM(i) < fM(i +1) ≤ i +n. Then p• = Ti (a) ·q•
where q• ∈ Dr(M′)>0 withM′ the positroid satisfying fM′ = fMsi , and

a = pIi+1 − pIi+1\{i+1}∪{i}.

It is easy to see that fM satisfies at least one of the three stated conditions in Propo-
sition 14.4. In Case (1), if fM(i) = i then I /∈ M for all I containing i . Thus pI = ∞
whenever i ∈ I . It is clear that p• is in the image of εi , and that the image of εi lies
inside Dr(k, n)≥0. Case (2) is similar.

14.3. We now consider Case (3) of Proposition 14.4. Let f = fM. We suppose that
i ∈ [n] satisifies i + 1 ≤ fM(i) < fM(i + 1) ≤ i + n. To simplify the notation, we
assume that i = 1 so we have 2 ≤ f (1) < f (2) ≤ 1 + n.

First consider the case f (1) = 2. Define q• by

qI =
{

∞ if 2 ∈ I
pI if 2 /∈ I

which clearly satisfies the positive tropical Plücker relations.
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Lemma 14.5. We have p• = Ti (a) · q• where a = pI2 − pI2\{2}∪{1}.

Proof. By induction on M, we may assume that q• is representable and thus p′• :=
Ti (a) · q• ∈ Dr(M)>0 by Proposition 14.2. The assumption f (1) = 2 implies that
I /∈ M for any I containing {1, 2}. It suffices to show that p′

I = pI for 2 ∈ I and
I ∈ M. Let I2 = 2J := J � {2} where J ⊂ [3, n]. We claim that

p2K = p1K + a. (14.1)

for K ⊂ [3, n] such that 2K ∈ M. To show this we proceed by (downward) induction
on |K ∩ J |, the case |K ∩ J | = k − 1 being tautological. If |K ∩ J | < k − 1 then by the
exchange relation there exists K ′ with 2K ′ ∈ M such that |K ′ ∩ J | = |K ∩ J | + 1 and
K ′ = K \ {a} ∪ {b}. Setting L = K \ {a}, we have by (1.1) the equality

p1La + p2Lb = min(p12L + pLab, p1Lb + p2La) = p1Lb + p2La

if a < b, using p12L = ∞. The same equality p1La + p2Lb = p1Lb + p2La holds if
a > b. Thus by induction we have p2K − p1K = p2K ′ − p1K ′ = a, establishing (14.1).

By definition p′
2K = min(q2K , q1K + a) = p1K + a. We conclude that p• = p′•. ��

14.4. For the remainder of the proof we assume that f (1) = j > 2, and we set
f (2) = � > j . (It is possible for � to equal 1 + n.) Let the Grassmann necklace of M
be (I1, I2, . . . , In). Then I1 = 12I , I2 = 2I j , I3 = I j�. Define M′ to be the positroid
with bounded affine permutation given by f ′(1) = � and f ′(2) = j and f ′(a) = f (a)

for a ∈ [3, n]. We define q• by

qJ =
{
recursion given below if 1 /∈ J and 2 ∈ J
pJ otherwise.

It follows immediately that instances of (1.1) for q• immediately hold whenever all
subsets involved either contain 1 or do not contain 2.

We now give the formula for qK2, K ⊂ [3, n] recursively. At every step, we will
check that instances of (1.1) of the form

qL2a + qL1b = min(qL12 + qLba, qL1a + qL2b) (14.2)

hold, where 3 ≤ b < a ≤ n and K = La ⊂ [3, n]. We say that (14.2) is associated to
the pair {L2a, L1b} of subsets, which uniquely determines (14.2).
(a) If K2 /∈ M, for example if K < I j in dominance order, then we already have
pK2 = ∞. We then set qK2 = ∞ as well. (14.2) will hold since both sides were already
equal to ∞ for p• (and thus also for q•).
(b) If K = I j , then we set qI2 j = ∞. The equation (14.2) holds because the LHS is
already ∞ for p•. To see this, observe that for the pair {I2 j, I1b} with b < j , we have
that I1b 
≥3 I j� = I3; for the pair {I2 j = L ′2aj, L ′1bj} where b < a, either b < j
and L ′1bj 
≥3 L ′ajk = I3, or b > j and L ′1bj 
≥1 L ′12a = I1. In both cases I1b
(resp. L ′1bj) does not belong toM.
(c) If K2 ∈ M and K1 /∈ M, then we set qK2 = pK2. We call the subset K2 of parallel
type. Setting K = La, we see that (14.2) holds because

pL2a + pL1b = min(pL12 + pLab, pL1a + pL2b) = pL12 + pLab
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and all the terms on both sides are unchanged in q•.
(d) Suppose finally that K2, K1 ∈ M, and K2 
= I2 j . We call such minors general
type. We inductively assume that the value of qK ′2 has been defined for all K ′2 < K2.
Suppose that we have found 2 < b < a ≤ n such that

K = La and L1b ∈ M. (14.3)

(The existence of such a pair (a, b) follows from an exchange relation argument similar
to the proof of Lemma 14.5, see [Lam, Lemma 7.11].) We then define

qK2 = qL2a := min(qL12 + qLba, qL1a + qL2b) − qL1b. (14.4)

Since L2b < L2a, we may assume that qL2b has already been defined.

Lemma 14.6. Equation (14.4) well-defines the value of qK2, regardless of the choice of
a and b.

Proof. Suppose we have two pairs (b < a) and (b′ < a′) such that (14.3) holds.
Case 1: If a = a′, we assume that b′ < b, and compute as follows.

qL2a + qL1b + qL1b′

= min(qL12 + qLba + qL1b′ , qL1a + qL2b + qL1b′) using (14.4) for (b < a)

= min(qL12 + qLba + qL1b′ , qL1a + qL12 + qLb′b, qL1a + qL1b + qL2b′)

= min(qL12 + qLb′a + qL1b, qL1a + qL2b′ + qL1b)

Noting that qL1b + qL1b′ < ∞, we conclude that (14.4) gives the same result using
(b < a) and (b′ < a).

Case 2: We have b = b′. Similar to Case 1.
Case 3: The four numbers a, b, a′, b′ are distinct. Set K = Maa′, so by assump-

tion M1ab′, M1ba′ ∈ M. Let us assume that b < a < a′. If b < b′ < a, then
M1ba, M1b′a′ ∈ M as well by (1.1), and we can reduce to Case 1. In the other cases,
we may conclude from (1.1) that M1bb′, M1aa′ ∈ M.

We now assume that M1bb′, M1aa′ ∈ M and first consider the case b < a < b′ <

a′. To simplify notation, we omit M , and suppose that (b, a, b′, a′) = (3, 4, 5, 6). So
145, 136, 135, 146 ∈ M. In the following, we underline the terms where (1.1) has been
applied. Using (14.4) for the pair (246, 145) we have

q246 + q145 + q136

= min(q124 + q456 + q136, q146 + q245 + q136)

= min(q123 + q456 + q146, q456 + q126 + q134, q146 + q245 + q136)

Using (14.4) for the pair (246, 136) we have

q246 + q145 + q136

= min(q126 + q346 + q145, q146 + q236 + q145)

= min(q126 + q134 + q456, q126 + q146 + q345, q146 + q236 + q145).

The quantity q126 + q134 + q456 appears in both minima, so it suffices to show that

min(q123 + q456, q245 + q136) = min(q126 + q345, q236 + q145).
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Adding q135 (which is < ∞), we compute

min(q123 + q456 + q135, q245 + q136 + q135)

= min(q123 + q456 + q135, q125 + q345 + q136, q145 + q235 + q136)

= min(q123 + q456 + q135, q345 + q123 + q156, q345 + q126 + q135, q145 + q235 + q136)

and

min(q126 + q345 + q135, q236 + q145 + q135)

= min(q126 + q345 + q135, q145 + q123 + q356, q145 + q136 + q235)

= min(q126 + q345 + q135, q123 + q135 + q456, q123 + q156 + q345, q145 + q136 + q235).

This shows that (14.4) for the pair (246, 145) gives the same result as for the pair
(246, 136). Note that we have used (14.4) for K2 = 245 and K2 = 236, which may
assume to hold since they are both less than 246 in dominance order.

The other case b′ < b < a < a′ is similar. ��
We have now completely defined the vector q•.

Lemma 14.7. We have q• ∈ Dr(M′)>0.

We first show that q• has the correct support.

Lemma 14.8. We have Supp(q•) = M′.

Proof. We have Supp(p•) = M. Let J ∈ M\M′ be such that pJ < ∞. Wemust show
that qJ = ∞. Note that J = K2 must be of general type. Apply (14.4). If qJ < ∞,
then by induction at least one of the two pairs {L12, Lba} and {L1a, L2b} must be
contained in M′, while J = K2 is not. This contradicts the fact that M′ satisfies the
3-term positive exchange relation. A similar argument shows that for J ∈ M′ we have
qJ < ∞. ��

By Lemma 14.8, to prove Lemma 14.7 only need to check relations where the LHS
of (1.1) is finite i.e. both terms on the LHS are indexed by elements inM′.

Lemma 14.9. Suppose that J, K ∈ M′ appear on the LHS of (1.1), and both J and K
are not of general type. Then all four subsets on the RHS of (1.1) are also not of general
type.

Proof. Let X be any point in �M,>0 and a > 0 be the unique value such that X ′ =
xi (−a) · X ∈ �M′,>0 as in [Lam]. We have �J (X) = �J (X ′) and �K (X) = �K (X ′).
But we also have�I (X ′) ≤ �I (X) for all I . It follows that on the RHS of the three-term
Plücker relation for thematrix X , all subsets S that appearmust satisfy�S(X) = �S(X ′).
In particular, all subsets S that appear in the relation are not of general type. ��

Thus (1.1) holds whenever the LHS involves qT 2 where T 2 is not of general type. It
thus suffices to consider instances of (1.1) involving qT 2 where T 2 is of general type.
(a) We have already verified all relations of the form (14.2).
(b) Let us verify relations of the form

qS2b + qSac = min(qS2a + qSbc, qS2c + qSab) (14.5)
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where 2 < a < b < c ≤ n and S2b is of general type. Thus S1b ∈ M and we add
qS1b < ∞ to both sides. The LHS becomes

min(qS2b + qS1a + qSbc, qS2b + qS1c + qSab)

= min(qS12 + qSab + qSbc, qS1b + qS2a + qSbc, qS2b + qS1c + qSab)

which is equal to (RHS of (14.5) +qS1b), using only instances of (1.1) for q• that we
know must hold.
(c) Let us verify relations of the form

qS2ac + qS12b = min(qS12a + qS2bc, qS12c + qS2ab)

where 2 < a < b < c ≤ n and S2ac is of general type. Thus S1ac ∈ M and we add
qS1ac < ∞ to both sides. The calculation is similar to (b).
(d) Let us verify relations of the form

qS2ac + qS2bd = min(qS2ab + qS2cd , qS2ad + qS2bc) (14.6)

where 2 < a < b < c < d ≤ n are disjoint from S2 and both S2ac, S2bd are of general
type. By assumption, S1ac, S1bd ∈ M, so it follows that either both S1ad, S1bc ∈ M
or S1ab, S1cd ∈ M.

In the former case, add qS1ad + qS1ac < ∞ to both sides. Apply previously estab-
lished instances of (1.1) successively to the pairs (2bd, 1ad), (abd, 1ac), (1ab, 2ac),
(1ac, 1bd), (1ab, 2ad), (2ac, abd) on the LHS, and (1ad, 2cd), (1ac, 2bc), (12c, 2ad),
(1ac, 2ad) on the RHS. The resulting formulae are the same, proving (14.6).

In the latter case, add qS1ab + qS1bd < ∞ to both sides. Apply previously estab-
lished instances of (1.1) successively to the pairs (2ac, 1ab), (1ac, 1bd), (1bc, 2bd),
(12b, 1ad) on the LHS, and (1ab, 2ad), (2cd, 1bd), (2bc, abd) on the RHS. The result-
ing formulae are the same, proving (14.6).
(e) Let us verify the relation (14.6) where one of S2ac, S2bd is of general type, and the
other one is of parallel type. By an argument similar to the proof of Lemma 14.9, at least
one of S2ab, S2cd, S2bc, S2ad is of general type.

We have S2bd, S2ac ∈ M. If one of S1ad, S1cd, or S1bc is inM then (7.2) implies
that S1ac ∈ M. So if S2ac is of parallel type, we may assume that S1bd ∈ M. Thus
qS1ab + qS1bd < ∞ and the argument reduces to that in Case (d).

Otherwise, we have S2ac of general type. If S1cd ∈ M then (7.2) implies that
S1bd ∈ M, a contradiction. If S1ad ∈ M then again the argument reduces to that
in Case (d). The remaining cases are very similar, and can be simplified by using the
assumption that qS1bd , qS1ad , qS1cd are equal to ∞.

We have now completed the proof of Lemma 14.7. Finally, let us check that indeed
p• → q• is a tropical bridge reduction.

Lemma 14.10. Let a = pI2 j − pI1 j . Then p• = Ti (a) · q•.

Proof. Let p′• = Ti (a)·q•. By induction onM, wemay suppose that q• is representable,
so Proposition 14.2 applies and p′• is a positive tropical Plücker vector. We have that
Supp(p′•) = M and p′

J = pJ except when J = K2 > I2 is of general type. But the
recursion we used to define qK2 can also be applied to p′• (resp. p•), so we conclude
that the rest of the values of p• and p′• agree. ��

This completes the proof of Proposition 14.4.
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14.5. Proof of Theorem 9.3. Since Dr(M)>0 has the structure of a rational polyhedral
complex, the statement over Z implies the other statements. If M = {I } is a singleton,
then Dr({I })>0(Z) consists of the vectors p(I, z)•, z ∈ Z given by

p(I, z)J =
{
z if I = J,
∞ otherwise.

Thus the result holds for M = {I }. Otherwise, by using the bridge reduction moves,
we have fM = fM′(i, j) for dim(M′) = dim(M) − 1 and some transposition
γ = (i, j). The effect of using the embeddings εa : Dr(k, n − 1)≥0 ↪→ Dr(k, n)≥0
and εa : Dr(k − 1, n − 1)≥0 ↪→ Dr(k, n)≥0 is that (i, i + 1) is changed to (i, j)
(extra numbers are inserted in between i and i + 1). We have shown that each
p• ∈ Dr(M)>0(Z) is equal to Tγ (a) · q• for a uniquely specified q• ∈ Dr(M′)>0(Z)

and a ∈ Z. Conversely, by induction every point q• ∈ Dr(M′)>0(Z) is representable so
Tγ (a) · q• ∈ Dr(M)>0(Z) by Proposition 14.2. We conclude that we have a bijection
Z×Dr(M′)>0(Z) � Dr(M)>0(Z). The stated tropical bridge parametrization follows.

15. Connected Positroids

15.1. We collect some facts concerning connected positroids here.

Lemma 15.1. Let M be a connected positroid with bounded affine permutation f =
fM. Then at least one of the following holds:

(1) f (i) ∈ {i, i + 1, i + n − 1, i + n} for some i ∈ [n];
(2) there exists i ∈ [n] so that i < f (i) < f (i + 1) < i + n such that f ′ = f si is a

bounded affine permutation of a connected positroid.

Proof. Suppose that f = fM is a counterexample. Since no i ∈ [n] satisfies (1), we
must have some i ∈ [n] such that i < f (i) < f (i +1) < i +n. We have f ′( j) = f ( j) if
j 
= i, i +1 and f ′(i) = f (i +1) and f ′(i +1) = f (i). LetM′ satisfy fM′ = f ′. Write
π, π ′ : [n] → [n] for the permutations that are reductions of f, f ′ modulo n. Since
(2) fails, M′ is not connected. Then by Lemma 2.7, we must have a decomposition
[n] = A ∪ B into disjoint cyclic intervals A = A[i], B = B[i] so that

π ′(A) = A and π ′(B) = B.

ButM is connected so after renaming A and B wemust have i, π(i +1) ∈ A = [ j +1, i]
and i + 1, π(i) ∈ B = [i + 1, j] where we assume that j has been chosen so that |B| is
minimal.

We now assume that out of all i ∈ [n] satisfying i < f (i) < f (i + 1) < i + n
we have chosen i so that |B[i]| is minimal. Suppose that f (r) < f (r + 1) for some
r, r +1 ∈ [i +2, j]. Since π(r), π(r +1) ∈ B, the minimality assumption on |B| implies
that π(r +1), r, r +1, π(r) are in order within (the totally ordered cyclic interval) B. Set
f ′′ = f sr and let π ′′ be the reduction of f ′′ modulo n. Now let B[r ] = [r + 1, j ′], so
that π ′′(B[r ]) = B[r ]. Since |B[r ]| ≥ |B| by assumption, we must have B[r ] ∩ A 
= ∅.
If π(i + 1) ∈ (B[r ] ∩ A), we would contradict π ′′(B[r ]) = B[r ], since i + 1 /∈ B[r ].
Thus i /∈ B[r ], and we must have π ′′(A ∩ B[r ]) ⊂ A as well, so that π ′′(A ∩ B[r ]) =
(A ∩ B[r ]). This contradicts our assumption that B[r ] = [r + 1, j ′] is chosen so that
|B[r ]| is minimal.

Thus we must have f (i + 2) > f (i + 3) > · · · > f ( j), and all these values lie inside
B modulo n. It is easy to see that this is impossible (since (1) is never satisfied) and we
have arrived at a contradiction.��
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15.2. Let C ⊂ M be a cluster for a positroid M. The plabic graph construction [Pos,
OhPS] implies that there exists a bipartite graph G(C) embedded into the disk, whose
faces are in bijection with C (write F(J ) for the face indexed by J ∈ C). The graph
G(C) is essentially unique if we assume that interior vertices have degree> 2, except for
vertices connected to the boundary vertices. (To fix conventions, let us use “target-labels"
for the faces, in agreement with [OhPS].) The graph G(C) has the following properties:

(1) every connected component ofG(C) is connected to the boundary, and the connected
components of G(C) are naturally in bijection with the connected components of
M;

(2) for each interior face F(J ), we have eJ1 + eJ3 + · · · + eJ2r−1 = eJ2 + eJ4 + · · · + eJ2r ,
where F(J1), F(J2), . . . , F(J2r ) are the faces edge adjacent to F(J ) arranged in
cyclic order.

Lemma 15.2. A connected positroid M is minimal if and only if G(C) is a tree, for
some cluster C of M. In this case, M has a unique cluster C ⊂ M and we denote by
TM := G(C) this tree.

The positroid polytope PM of a minimal connected positroidM can be described as
follows. We assume that TM is chosen so that it is a bipartite tree all of whose vertices
have degree > 2. Then the facets of PM are in bijection with the edges of TM. There
are n edges of TM that connect to boundary points. These correspond to external facets:
these are facets of PM that are supported on the same hyperplane {xi = 0} or {xi = 1} as
a facet of the hypersimplex (the color of the internal vertex determines which of {xi = 0}
or {xi = 1} occurs). Interior edges e of TM correspond to internal facets of PM. The
edge e divides TM into two components, and thus [n] = [a, b − 1] ∪ [b, a − 1] into
two cyclic intervals. The internal facet of PM is supported on a hyperplane of the form∑

i∈[a,b−1] xi = c for some c.

15.3. Proof of Lemma4.6. Wefirst argue that spanZ{eJ | J ∈ C} = X (T̂ ) for any cluster
C. SinceM is connected, Lemma 3.1 says that the action of T on �̊M is faithful and thus
the action of T̂ on �̃M is faithful. On the other hand, if the integral span of {eJ | J ∈ C}
is strictly smaller than X (T̂ ), then there is a nontrivial subtorus {1} � S ⊂ T̂ that acts
on the rational function field C(�J | J ∈ C) as the identity. But we have an inclusion
C[�̃M] ⊂ C(�J | J ∈ C) coming from the cluster structure on �̃M, and thus S must
act trivially on �̃M, a contradiction.

Suppose that M is a connected positroid. Then i < fM(i) < i + n for all i . By
Lemma 15.1, we must be in one of the following situations:

(1) for some i , we have fM(i) = i + 1 or fM(i) = i + n − 1;
(2) for some i , we have i < fM(i) < fM(i + 1) < i + n and f si = fM′ whereM′ is

connected.

Suppose (1) holds.We assume fM(i) = i+n−1; the other case is similar. For any cluster
C ⊂ M the graph G(C) the vertices i − 1, i are connected to the same white interior
vertex. Thus there is J ∈ C such that i − 1 ∈ J but i − 1 /∈ J ′ for all J ′ ∈ C′ := C \ {J }.
The set C′ is a cluster for some connected positroidM′ on [n] \ {i − 1} (not depending
on C) of the same rank asM and all clusters C′ forM′ occur in this way. By induction,
there exists a gauge-fix and cluster G′ ⊂ C′ forM′ i.e. |G′| = n − 1 and

spanZ{eJ | J ∈ C′} = {(x1, . . . , xn) ∈ Z
n | xi−1 = 0 and k divides

∑
xi }.
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It follows that G := (G′ ∪ {J }) ⊂ C := (C′ ∪ {J }) is a gauge-fix.
Suppose (2) holds. Let G′ ⊂ C′ ⊂ M′ be a gauge-fix and a cluster for M′. It is

possible to add an edge to the planar bipartite graph G(C′) to obtain the planar bipartite
graph G(C) for some cluster C of M, see [Lam, Section 7.4]. We have C = C′ ∪ {J }
where J is the face label of the new face in G(C). Thus G′ ⊂ C is a gauge-fix.
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A. The Cases (3, 6), (3, 7), and (3, 8)

For a positroid subdivision of the hypersimplex �̃ = {PM1 , . . . , PMs }, we define a
“naive dimension":

ndim(�̃) =
s∑

i=1

dim(�Mi ,>0/T>0) =
s∑

i=1

(dim(Mi ) − (n − 1)).

The naive dimension ndim(�̃) is always greater than or equal to dim(�̃). In the case
k = 2, we have dim(�̃) = ndim(�̃), but for k > 2 this no longer holds. We would have
ndim(�̃) = dim(�̃) if the positive Chow cell ��̃,>0 were isomorphic to the product∏

i �Mi ,>0/T>0. A less naive dimension estimate would take into account dim(M) for
lower-dimensional faces of �̃.
Our positive parametrizations essentially agree with those of [SW].

A.1. (k, n) = (3, 6). We use the following positive parametrization of Gr(3, 6)/T ,
which is related to (12.2) by a monomial transformation

⎡

⎣
0 0 −1 −1 −1 −1
0 1 0 −1 −1 − x1 −1 − x1 − x1x3
1 0 0 1 1 + x1 + x1x2 1 + x1 + x1x2 + x1x2x3 + x1x3 + x1x2x3x4

⎤

⎦

The polytope P(3, 6) (see Proposition 11.5) has f -vector (1, 48, 98, 66, 16, 1). We list
the sixteen rays of the inner normal fan F of the polytope P(3, 6):

r1 = (−1, 0, 0, 0) r2 = (−1, 0, 0, 1) r3 = (0,−1, 0, 0) r4 = (0, 0,−1, 0)

r5 = (0, 0, 0,−1) r6 = (0, 0, 0, 1) r7 = (0, 0, 1,−1) r8 = (0, 0, 1, 0)

r9 = (0, 1, 0,−1) r10 = (0, 1, 0, 0) r11 = (0, 1, 1,−1) r12 = (1,−1,−1, 0)

http://creativecommons.org/licenses/by/4.0/
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r13 = (1,−1, 0, 0) r14 = (1, 0,−1, 0) r15 = (1, 0, 0,−1) r16 = (1, 0, 0, 0)

A comparison of this fan with the cluster fan of D4 was given in [BCL]. Let p
(i)• be the

positive tropical Plücker vector associated to ri via Theorem 7.3. Let �̃i = �(p(i)• ).
These positroid subdivisions form four families under the action of the cyclic group, and
we explicitly describe one in each family:

(1) (Rays 1, 5, 8, 10, 13, 14) The two-piece decomposition obtained by slicing �(3, 6)
with the hyperplane x1 + x2 = 1. The dimensions dim(M) of the participating
positroids are {7, 7}. Thus ndim(�̃) = 4 but dim(�̃) = 3.

(2) (Rays 3, 4, 6, 7, 9, 16) The two-piece decomposition obtained by slicing �(3, 6)
with the hyperplane x1 + x2 + x3 = 1. The dimensions dim(M) of the participating
positroids are {5, 8}. Thus ndim(�̃) = 3 = dim(�̃).

(3) (Rays 2, 15) The three-piece decomposition obtained as follows. Consider the pro-
jection π : R

6 → R
3 given by (x1, x2, x3, x4, x5, x6) �→ (x1+x2, x3+x4, x5+x6) =

(y1, y2, y3). The imageπ(�(3, 6)) can be divided into three pieces {y1 ≤ 1, y1+y2 ≤
2}, {y2 ≤ 1, y2 + y3 ≤ 2}, {y3 ≤ 1, y1+ y3 ≤ 2}. The three pieces of �̃ are the preim-
ages under π . The dimensions dim(M) of the participating positroids are {6, 6, 6}.
Thus ndim(�̃) = 3 = dim(�̃).

(4) (Rays 11,12) The three-piece decomposition that are the preimages under π of {y2 ≤
1, y1 + y2 ≤ 2}, {y3 ≤ 1, y2 + y3 ≤ 2}, {y1 ≤ 1, y1 + y3 ≤ 2}. The dimensions
dim(M) of the participating positroids are {6, 6, 6}. Thus ndim(�̃) = 3 = dim(�̃).

A.2. (k, n) = (3, 7). We use the following positive parametrization of Gr(3, 7)/T :
⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0 0 1
0 1 0

−1 0 0
−1 −1 1
−1 −1 − x1 1 + x1 + x1x2
−1 −1 − x1 − x1x3 1 + x1 + x1x2 + x1x3 + x1x2x3 + x1x2x3x4
−1 −1−x1−x1x3−x1x3x5 1+x1+x1x2+x1x3+x1x2x3+x1x2x3x4+x1x3x5

+x1x2x3x5+x1x2x3x4x5+x1x2x3x4x5x6

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

The polytope P(3, 7) has f -vector (1, 693, 2163, 2583, 1463, 392, 42, 1). We list the
42 rays of the inner normal fan F of the polytope P(3, 7):

r1 = (−1, 0, 0, 0, 0, 0) r2 = (−1, 0, 0, 1, 0,−1) r3 = (−1, 0, 0, 1, 0, 0)

r4 = (−1, 0, 0, 1, 1,−1) r5 = (0,−1, 0, 0, 0, 0) r6 = (0, 0,−1, 0, 0, 0)

r7 = (0, 0,−1, 0, 0, 1) r8 = (0, 0,−1, 1, 0, 0) r9 = (0, 0, 0,−1, 0, 0)

r10 = (0, 0, 0, 0,−1, 0) r11 = (0, 0, 0, 0, 0,−1) r12 = (0, 0, 0, 0, 0, 1)

r13 = (0, 0, 0, 0, 1,−1) r14 = (0, 0, 0, 0, 1, 0) r15 = (0, 0, 0, 1, 0,−1)

r16 = (0, 0, 0, 1, 0, 0) r17 = (0, 0, 0, 1, 1,−1) r18 = (0, 0, 1,−1,−1, 0)

r19 = (0, 0, 1,−1, 0, 0) r20 = (0, 0, 1, 0,−1, 0) r21 = (0, 0, 1, 0, 0,−1)

r22 = (0, 0, 1, 0, 0, 0) r23 = (0, 1, 0,−1, 0, 0) r24 = (0, 1, 0, 0, 0,−1)

r25 = (0, 1, 0, 0, 0, 0) r26 = (0, 1, 0, 0, 1,−1) r27 = (0, 1, 1,−1,−1, 0)

r28 = (0, 1, 1,−1, 0,−1) r29 = (0, 1, 1,−1, 0, 0) r30 = (0, 1, 1, 0, 0,−1)
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r31 = (1,−1,−1, 0, 0, 0) r32 = (1,−1,−1, 0, 0, 1) r33 = (1,−1, 0, 0,−1, 0)

r34 = (1,−1, 0, 0, 0, 0) r35 = (1, 0,−1, 0, 0, 0) r36 = (1, 0,−1, 0, 0, 1)

r37 = (1, 0, 0,−1,−1, 0) r38 = (1, 0, 0,−1, 0, 0) r39 = (1, 0, 0, 0,−1, 0)

r40 = (1, 0, 0, 0, 0,−1) r41 = (1, 0, 0, 0, 0, 0) r42 = (1, 0, 1,−1,−1, 0)

These rays and their corresponding positroid subdivisions form six families under the
action of the cyclic group, and we explicitly describe one in each family:

(1) (Rays 1, 11, 14, 20, 25, 34, 35) The two-piece decomposition obtained by slicing
�(3, 7)with the hyperplane x1+x2 = 1.Thedimensions dim(M)of the participating
positroids are {9, 10}. Thus ndim(�̃) = 7 but dim(�̃) = 5.

(2) (Rays 6, 9, 16, 19, 22, 24, 39) The two-piece decomposition obtained by slicing
�(3, 7) with the hyperplane x1 + x2 + x3 = 1. The dimensions dim(M) of the
participating positroids are {8, 10}. Thus ndim(�̃) = 6 but dim(�̃) = 5.

(3) (Rays 5, 10, 12, 13, 15, 23, 41) The two-piece decomposition obtained by slicing
�(3, 7) with the hyperplane x1 + x2 + x3 + x4 = 1. The dimensions dim(M) of the
participating positroids are {6, 11}. Thus ndim(�̃) = 5 = dim(�̃).

(4) (Rays 2, 3, 7, 21, 36, 38, 40) The three-piece decomposition obtained as follows.
Consider the projection π : R

7 → R
3 given by (x1, x2, x3, x4, x5, x6, x7) �→ (x1 +

x2 + x3, x4 + x5, x6 + x7) = (y1, y2, y3). The image π(�(3, 7)) can be divided into
three pieces {y1 ≤ 1, y1 + y2 ≤ 2}, {y2 ≤ 1, y2 + y3 ≤ 2}, {y3 ≤ 1, y1 + y3 ≤ 2}.
The three pieces of �̃ are the preimages under π . The dimensions dim(M) of the
participating positroids are {7, 8, 9}. Thus ndim(�̃) = 6 but dim(�̃) = 5.

(5) (Rays 17, 18, 26, 27, 29, 31, 33)The three-piece decomposition that are the preimages
under π of {y2 ≤ 1, y1 + y2 ≤ 2}, {y3 ≤ 1, y2 + y3 ≤ 2}, {y1 ≤ 1, y1 + y3 ≤ 2}. The
dimensions dim(M) of the participating positroids are {7, 8, 9}. Thus ndim(�̃) = 6
but dim(�̃) = 5.

(6) (Rays 4, 8, 28, 30, 32, 37, 42) The four-piece decomposition obtained as follows.
Consider the projection κ : R

7 → R
4 given by

(x1, . . . , x7) �→ (x1 + x2, x3 + x4, x5 + x6, x7) = (y1, y2, y3, y4).

The image κ(�(3, 7)) is contained inside the tetrahedron Q given by yi ≥ 0 and∑
i yi = 3. We cut Q into four pieces {y1 + y4 ≤ 1, y3 ≥ 1}, {y3 + y4 ≤ 1, y1 ≥

1}, {y1 ≤ 1, y3 ≤ 1, y2 ≥ 1}, {y1 + y4 ≥ 1, y3 + y4 ≥ 1, y2 ≤ 1}. The four pieces of
�̃ are the preimages under κ . The dimensions dim(M) of the participating positroids
are {7, 7, 7, 8}. Thus ndim(�̃) = 5 = dim(�̃).

A.3. (k, n) = (3, 8). The polytope P(3, 8) has f -vector

(1, 13612, 57768, 100852, 93104, 48544, 14088, 2072, 120, 1).

There are thus 120 regular subdivisions of the hypersimplex into positroid polytopes,
satisfying dim(�̃) = 7. These hypersimplex subdivisions come in 15 cyclic families,
each of size 8. Let us report on the dimensions of the positroids (for maximal faces)
involved.



Positive Configuration Space 953

Number of maximal faces Dimensions of positroids ndim(�̃)

2 {7, 14} 7
2 {9, 13} 8
2 {11, 12} 9
2 {11, 13} 10
3 {8, 10, 12} 9
3 {8, 10, 12} 9
3 {9, 10, 11} 9
3 {9, 10, 11} 9
4 {8, 8, 9, 11} 8
4 {8, 8, 10, 10} 8
4 {8, 8, 10, 10} 8
4 {9, 9, 9, 10} 9
5 {8, 8, 9, 9, 9} 8
5 {8, 8, 9, 9, 9} 8
6 {8, 8, 8, 8, 8, 9} 7
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