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Positive curvature, macroscopic dimension,

spectral gaps and higher signatures.

M. Gromov

Our journey starts with a macroscopic view on Riemannian manifolds with positive
scalar curvature and terminates with a glimpse on the proof of the homotopy invariance of
some Nowikov’s higher signatures of non-simply connected manifolds. Our approach focuses
on the spectra of geometric differential operators on compact and non-compact manifolds
V where the link with the macroscopic geometry and topology is established with suitable
index theorems for our operators twisted with almost flat bundles over V. Our perspective
mainly comes from the asymptotic geometry of infinite groups and foliations.
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§1. Scalar curvature Sc(V).

Let V = (V,g) be a C*-smooth Riemannian manifold where ¢ denotes the Riemannian
metric tensor. Then the scalar curvature of V is a function Sc, on V built in a certain way
out of the first and second derivatives of ¢. In fact there is a unique, up tc scale, second

order differential operator, say S acting from metrics ¢ to functions V' — R, such that

(a) S is Diff-equivariant for the natural action of diffeomorphisms of V on metrics and
functions,

(b) S is linear in the second derivatives of g.

(The existence and uniqueness of S follows from the fact that the natural representation
of the orthogonal group O(n), for n = dimV, on the space of the curvature tensors R;jie
on R™ has a unique one-dimensional factor). Then one defines

Sco(V.g) = S(g)(v)
with the customary normalization condition
Sc(S? xR =2

for all n = dim V' > 2. where S* is the unit 2-sphere.

The infinitesimal (and microscopic) meaning of Sc, s revealed by the following easy
formula relating the voluries of the Riemannian e-ball at v € V and the unit Euclidean

ball B,
Vol B,(¢) = " (1 — c*ay Scy +o(g?)) Vol B

where a,, = (6n)”"' and o(c?) refers to ¢ — 0.
For example if Sc, > 0, then
Vol B,(V,¢) < " Vol B = Vol B(R", ¢)
for all sufficiently small positive ¢ < go(V,v) > 0. Conversely, if
Vol B,(¢) < ¢" Vol B®

for small € then Sc, > 0. In other words, positivity of the scalar curvature amounts to V
being volumewise sub-Euclidean on the microscopic level.
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1%. Exponential map exp, : T(V) — V and curvatures of products. This map is
defined by sending each straight ray 7 in T,,(V) = R" issuing from zero to the geodesic ray
r in V issuing from v in the direction of 7, such that the F-parametrization of r is (locally)
isometric. Thus the e-balls B(c) € T,(V') around zero go onto e-balls in V' around v and
so the above expansion formula for Vol B,(V, ) can be equivalently expressed in terms of
the Jacobian of the map exp, near zero as follows

et [ (Gncexp,(r) = 1) ds — =4, Se, )

e —0
B{¢)

for 3, = (6n) ' VolB and B = B(R",1).

Now take V = V; x V5 with the metric ¢ = ¢; 4 g2 and observe that geodesics in V' are
given by obviously pairing those in V; and V5. In other words the exponential map exp,
for V from T,(V) = T, (V1) x T,,(V2), where v = (vy,v2), to V is the Cartesian product
of the exponents exp, : T, (Vi) — Vi and exp,, : Ty, (V2) — Va. Therefore,

Jacexp, (r = (r1.22)) = (Jacexp, (x1))(Jacexp,,(22))
which leads (by an easy computation) to the additivity of the scalar curvature under the

Riemannian products

The scalar curvature of V = (V] x V) ¢y & g2) s

SeV = ScV] & Sc Vs,

Scy = Scy, + Sy, for all points v = (vy,ve) in V.

Homogeneous examples. It is not hard to compute with (+) that

(a) The unit sphere S" has constaut scalar curvature n(n —1) and the sphere of radius

R has Sc = R™%n(n — 1).
(b) In general, the scaled manifold RV = (V. R%¢) has Sc(RV') = R™2Sc V.

def

c) The hyperbolic space H" with the sectional curvature —1 has Sc = —n(n — 1).
yp p

(d) The Cartesian product of the round e-sphere S? by H™ has
Se(eS?* x H™) =272 —n(n — 1)

which is > 0 for € < {/2/n(n —1).

(e) Let G be a compact Lie group with a biinvariant metric. Then the scalar curvature
is constant > 0 and it is > 0 unless G is a torus. Furthermore, the corresponding metric
on each homogeneous space V = G/H also has Sc > 0 which is moreover > 0, unless

2



V is a torus. (All this easily follows from the fact that the Riemannian exp equals the
Lie-theoretic one for the biinvariant metrics on G.)

Conclusion. Every compact homogeneous space different from a tcrus admats an
invariant metric with Sc > 0. (This is also true for those non-compact homogeneous Rie-
mannian spaces where the implied isometry group admits a nontrivial compact semisimple
factor.)

(f) Every symmetric space V' of non-compact type has Sc <0 and Sc =0 implies that
V is Riemannian flat (i.e. locally 1sometric to R™).

(g) Every connected non-Abelian solvable Lie group G with a left invariant metric has
Sc < 0. (Abelian groups are Riemannian flat and have Sc = 0.)

1%. Collapse with Sc > 0. We shall eventually face the following

Basic Question. Does the sign of the scalar curvature have any visible macroscopic
effect on the geometry of V7

The ultimate “No” for Sc < 0 is asserted by the following dense h-principle,

(Lohkamp) Every Riemannian metric on V can be C?-approzimated by metrics with
Sc < —1, provided dimV > 3.

But what can be expected for Sc > 0?7 Recall that the stronger condition, Ricei > 0,
does propagate from micro to macro scale. Namely Ricci, > 0 amounts, microscopically
speaking, to the inequality

| Jacexp, z| < 1,

for all z in a sufficiently small e-ball in T,,(V) = R" around the origin. Remarkably, this
inequality, properly reformulated, integrates to the large-scale and implies the following

Bishop inequality. Every R-ball in a complete Riemannian manifold with Ricci > 0
has volume < volume (Euclidean R-ball).

Now, we want something similar for S¢ > 0 but we must be careful in view of our
earlier example (d) of the product metric on ¢S? x H" 2, say with ¢ = 1/n(n ~ 1), which
has Sc > 1 and yet the volume of the R-ball in this manifold is exponentially growing in
R and so the size of V' with Sc V > 0 cannot be limited merely in terms of the volume.
However this product example agrees with the following principle which will be made
precise later on.

The condition Sc(V) > =72 makes V look (n — 2)-dimensional on the macroscopic
scale > ¢ and as € — 0 the manifold V collapses to something of dvmension n — 2. Here
are some variations of the product example which illustrate this principle.



(i) Take a compact k-dimensional submanifold W, in a Riemannian manifold W of
dimension n + 1 and let W, C W be the e-neighbourhood of Wj. To grasp the geometry
of Wy and of its boundary V. = 9W. near a point wy € W, we scale W, by ¢!, i.e. look
at €W, at wg. As ¢ — 0, this blow-up by £~! straightens the pair (W, W), i.e. this

converges to the Euclidean pair (R nt! Two (W), RF =T, (Wy)) and so ¢ 7', metrically

converges to the product of the unit Euclidean ball B~ k+1l Ly R*. Hence the scalar
curvature of 71V, = d(e ' W) is about Sc(S"*) = (n — k)(n —k — 1) and Sc V, ~ &2
for n — k > 2 which agrees with our principle as 9V, collapses to Wy for ¢ — 0.

(i) Let us generalize the above by taking a piecewise smooth polyhedron for Wy C
W. Now the boundary V. = W, has corners but these can be easily smoothed away
without loosing much positivity of Sc(V.) and so the smoothed manifolds V. collapse to
Wy with Sc V, blowing up as ¢ 2, provided codim Wy > 3. The first interesting case here
is that of a connected 1-polyhedron (graph) Wy in R* where the resulting manifolds V, are
homeomorphic to connected sums of several copies of 5% x S, see Fig. 1.

Fig. 1

1%. Surgery for Sc > 0. If we take a framed m-dimensional sphere in an n-dimensional
manifold V with positive scalar curvature and make surgery, then the resulting manifold
V' admits a rather natural metric with Sc > 0, provided n — m > 3. In fact, our handle
is §»~m=1 x Bm+! which can be made very thin, i.e. with S"~™~1 = SP=™~1 of small
radius ¢ which has scalar curvature about ¢~2 and the required metric on V' is obtained
out of this by smoothing at the corners, see Fig. 2 below.

It follows that the existence of a metric of positive scalar curvature is a spin cobordism
invariant for closed simply connected spin manifolds of dimension > 5 (but definitely not
for dimV = 4) and in the non-simply connected case it is spin bordism invariant of the
classifying map V' — BII for Il = m (V).

Notice, that after several surgeries the resulting manifold may turn out diffeomorphic
to the original V but with a quite differently looking metric with Sc > 0. In fact, the new
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metric may be sometimes non-homotopic to the original one in the space of metrics with

Se > 0.

corner smoothed corner

1—‘.}. List of closed manifolds with SC > 0. This starts with compact symmetric
and locally symmetric spaces, e.g. projective spaces over R,C and H and lens spaces and
also there are many non-symmetric homogeneous and locally homogeneous spaces with
Sc > 0. Furthermore, one may take fibered manifolds V' — B with the above (locally)
homogeneous fibers. If we scale the metric in the fibers by ¢, then the scalar curvature
in the fibers, and also in V. blows up roughly as e~? and, in particular, becomes positive
on V. One can slightly generalize by using foliations into compact locally homogeneous
leaves with Sc > 0, moreover, one may allow degeneration of leaves as it happens to orbits
of compact groups acting on V'; whenever the non-degenerate fibers (or orbits) of such a
degenerate foliation have metrics with Sc > 0 so does V.

Next one can perform codim > 3 surgeries thus freely moving V within its spin
(co)bordism class for dim V' > 5.

Finally, one can take smooth minimal hypersurfaces V' in manifolds with S¢ > 0 and
these V' (or rather V' x S') carry metrics with Sc > 0 as well.

Question. Are there metrics with Sc > 0 which are non-homotopic (even better,
non-cobordant) to the above in the category Sc > 0.

1. Foliations with Sc > 0. Here we deal with foliations endowed with smooth leafwise
Riemannian metrics and Sc > 0 refers to such a metric. It appears that many operations
on foliations are compatible with Sc > 0. For example, Reeb’s twist of a codimension one
foliation around a transversal curve can be made in the category Sc > 0 for dim(leaves)
> 3 and the same seems to be true for generalized (Thurston) Reeb’s twists for higher
codimension. So one might think that the existence of a foliation (of dimension > 5) with
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Sc > 0 is not significantly more restrictive than the existence of a metric with Sc¢ > 0 on
all of manifold. For example, a simply connected parallelizable manifold of dimension n
should (?) carry foliations of all dimensions (between 5 and n) with Sc¢ > 0. Conversely.
one may think that the existence of such a foliation leads in most cases to a metric with
Sc > 0 on the underlying manifold itself. (We shall indicate a proof of this for foliations
of codimension one later on.)

Metrics with Sc > 0 derived from foliations. Let F be a smooth foliation on V -with
metrics ¢ on T(F) and ¢' on T(V)/T(F). Choose a complementary (normal) bundle
T' Cc T(V) to T(F) C T(V). lift ¢’ to T' where it is still called ¢’ and let gx = A¢' @ 7on
T(V). Let us evaluate the curvature of g for large A — oco. We localize our attention at
a single leaf V C V and observe for A — oo that the metric §x converges to the canonical
metric on the bundle T}, — V with the flat connection coming from the F-monodromy.
Namely, the space T} locally equals V' x L for L being a linear space of dimension k=
codim F with metrics (Euclidean structures) ¢, on L, = v x L. These, together with
g|V, give us a metric on V x L. say 7, which is a generalized warped product metric. For
example if k = 1 (and L = R), one has § = ¢ + p*dt* (as ¢, = % (v)gy,) which is the
ordinary warped product. In particular, if ¢’ is invariant under the monodromy, i.e. (F, q")
is transversally Riemannian, then g locally is the product metric g& Euclidean.

Conclusion. If V is a compact transversally Riemannian foliation then every leafwise
metric ¢ with positive scalar curvature gives rise to a metric on V, namely g which has

Sc(ga) > O for large A.

In the general case, the scalar curvature of the metric g on Ty, (and hence of gx — 7),
is of the form Sc(g) = Sc § + D.(yg),) where D, is a combination of the first and second
derivatives of ¢/ with respect to the flat connection in T}. For example, in the codimension
1 case where § = ¢ 4 ©?dt?, one has Sc(g) = Sc(g) + 24,0/ for A, being the positive
(i.e. =Y i) Laplace operator on (V. ¢). In particular, if a codim 1 foliation F admits a

1
smooth harmonic transversal measure, then every leafwise metric with Sc > 0 gives rise to
such a metric on V as “harmonic” amounts to A ¢ = 0 in the above formula.

Connes’ bundle V* — V. This is the bundle associated to the vector bundle
T(V)/T(F) — V where the fiber at ¢ € V equals the space of Euclidean metrics in the
fiber T,(V)/T»(F). (Thus metrics ¢' in T(V)/T(F) are sections VY — V*).

Ezample. Let V = R foliated into points. Then V* is the principal R -bundle
associated to the tangent bundle T(R) (or. more precisely, to the symmetric square of the
cotangent bundle of R). Thus V* has a natural structure of a principal homogeneous space
of the group Aff(R) which admits an invariant Riemannian metric of constant negative
curvature. As this V* fibers over R, the fibers are geodesics while natural (horizontal)
sections R — V* (corresponding to translation invariant metrics on R) are horocycles.

In the general case of any &, the fiber of V* — V is the homogeneous space M =
GLiR/O(k) which admits an invariant metric.

Denote by F* the pull-back of the foliation F to V*. This has the same codimension
k as F and the bundle T(V*)/T(F*) is induced from T(V)/T(F). Next, using the flat
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(monodromy) connection in the bundle T(V)/T(F) along the leaves V. C V of F we Lift
these leaves to V* thus getting a foliation F of V* refining F*, where the leaves of F
project diffeomorphically to those of F. Now the bundle T(V*)/T(F*) has a canonical
metric, called g*, since every point v* € V is, by definition, a metric in the underlying
fiber of T(V)/(F) which is canonically isomorphic to the fiber Ty (V*)/T(F*). This metric
is not transversally invariant for F* (e.g. the natural metric on pa‘rallelNh()rocycles 1s not

invariant under the normal geodesic shift) but it is invariant under the F-raonodromy.

Now we want to construct some metric on V* starting from our g on tae leaves of F.
This g lifts to the bundle T = T(F) C T(V") where it is called §. We also have a metric h
on the vertical bundle TM of V* — V corresponding to some invariant metric on M serving
as the fiber of V* — V. What remains to do is to take some T* C T(V*) complementary
to T(F*)=TM & T with the metric ¢* borrowed from T(V*}/T(F*) (isomorphic to T*).
This is done with 7' C T(V) complementary to T(F) and some (Bott) G Li(R)-connection
in the Connes M-bundle V* — V compatible with the flat connection along F. Thus we
have T(V*) split into T* & T T with the metrics ¢*, h and § in these three bundles.

To see better what happens, let us temporarily forget about T.i.c. assume the foliation

F is zero dimensional. Then we take % = Ag¢* & h on V* fibered over V with the
fibers M,, v € V, and observe that for A — oc the space (V*,§3}) converges over each
v € V to the corresponding M-bundle over R¥ = T,(V) that is the homogeneous space

M, = Aff(R*)/ maxcomp = R* x M where this (natural) splitting is invariant under
Aff R* the affine automorphism group of R¥. Notice that this convergence may be (for
k > 2) non-uniform in m € M albeit M is homogeneous. In fact, if & > 2 the metric
g% for each A may easily have unbounded curvature on a fiber M,. To see this, observe
that each fiber M, is totally geodesic for §3 since the holonomy of our (Bott) connection
is isometric in the fibers. But (for & > 2) the embedding M, — V* may be very far
from isometric in terms of the distance function because the isometries (typically) have
unbounded displacements on M as the group GLiR is non-Abelian for & > 2. Therefore,
an (isometric) monodromy of A, around a (short) loop in V may move points m € M,
arbitrarily far in M,. On the other hand the lift of the loop to a horizontal path from m,
say to m' € M,, may be short and so the distance in V* small. It would be quite obvious
if the metric ¢* on the horizontal subbundle T* were constant along the fibers, 1.e. coming
from V. In our case. ¢* may be quite large in certain directions. Yet, as M = M’ x R
for M° = SLiR/SO(k), we always can move in the direction —oc in R which makes g*
small but does not change the displacement (or the length of the Killing fields) in the
MO direction. If £ > 2, this can be achieved in M° without the help of the R-factor but
the case of pure MY for k = 2 is unclear to me. Here we have a surface V with a given area
element and take V§ consisting of the metrics of unit area, so that Vg fibers over V with
the fiber hyperbolic plane SL,R/SO(2). Every SLy(R) (e.g. a Levi Civita) connection on
V gives a metric to V*, geometry of which needs clarification (at least in the mind of the
author).

Now we return to F and look at the metric 5, = A?¢* @ he & § where h, = e 2h
for a small ¢ > 0. As A — oc the metric §} _ approaches, over each point v € V, the
product metric AF & gy on M, x V. where h} is the limit of the above ¢} = A*¢* @ h, for
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A — oo and V denotes the leaf of F through v € V. When ¢ is small, so are the (absolute
values of ) the curvatures of k. and h¥ and so the sign of the scalar curvature of hE & gy
is determined by that of gy .

Summing up, let the metric ¢ on F have Sc > 62 > 0. If ¢ > 0 is sufficiently srnall,
then for each compact subset U* C V* there exists A(U*), such that the metric g3 . has
Sc(gx,e) 2 62/2 on U* for A > A(U*). Moreover, the geometry of 3 . at each point v* € U~
is close to the sums h} @ gy, where V is the leaf of F through the point v € V under v™.

In particular, the local geometry of §5 , is bounded on U* for A > A(U™) (with the implied
bound independent of U*). ‘

Remarks (a) The group R} naturally acts on V* as metrics are multiplied by u € R}
It is clear that the metrics g} , have bounded geometry along p-orbits for 4 — oo (but not
for 4 — 0) and the above “convergence” of §y . to the product metric is uniform on the

[1, 00)-orbit of U*.

(b) Here as everywhere throughout this discussion “limit” means “limit of Riemannian
manifolds”. For example, given a metric ¢ on V| the mamfolds (V, A¢,v) converge, for
A — oo, to RF = T,,(V), while the metrics A%g on a fized V would diverge; the convergence
is achieved by adjusting the coordinate gauge in V.

Ezample. Let codim F = 1 and let us look at V* over a small coordinate neighbour-
hood in V* locally split as V'*[0, 1] for some leaf V' in this neighbourhood. Then all metrics
g% . over such a neighbourhood are bi-Lipschitz to V' x H' where H' is the region in the
hyberbolic plane between two asymptotic geodesics. Furthermore, the space V* globally is
obtained, up to bi-Lipschitz equivalence, from the product metric on V x R by modifying
it in the T*-direction by the conformal factor expt (where we assumed F coorientable).

Notice that the metrics g3 . have in this case locally bounded geometries (provided
V is compact) and one may take 4* = V*. The reason is the commutativity of the group

GLR = R*.



§2. Macroscopic (asymptotic) dimension dim..

A metric space V has the macroscopic dimension on the scale > ¢ at most k if, by
definition, there exists a k-dimensional polyhedron P and a continuous map p : V. — P,
such that the fibers o ~'(p) C V are all ¢-small, in the sense that Diam ¢~ '(p) < ¢ for all
p € P. This is expressed in writing by

dim. V <k
and then dim. V is defined as the supremum of the integers k for which -his inequality

holds.

The macroscopic dimension can be made ¢-free in the following somewhat opposite
(mutually dual) cases.

I. The space V is infinite, i.e. has DiamV = oo and dim. V < k for some, possibly
large, € < oo.

II. Instead of a single space we are given a family V;, t — oo, such that dimg, Vi <k
for () .2 0 .

— 00
In the first case we say that the asymptotic (or macroscopic with unspecified scale)

dimension < k. The second case can be thought of as a collapse of Vi to something
k-dimensional for t — oc.

Ezample. Let V' = 1§ X R* where V, is bounded, 1.e. DiamVy = é < 0. Then.,
clearly, the asymptotic dimension of V is < k. In fact, dim. V' < k for all ¢ > 6. Further-
more, the classical dimension theory (compare (B') below) implies that the asymptotic
dimension of R¥ is > k. i.e. every continuous map  : R¥ — P with dim P < k has

sup Diam ¢~ !(p) = oc.
peP

Thus the asymptotic (or macroscopic) dimension of Vg x R* is exactly k.

2%. Uniform contractibility. A metric space V is called wuniformly contractible if
every ball B,(R) in V' is contractible inside some concentric ball B.(p), p > R, where
p = p(R) does not depend on x (but may depend on V). For instance, the Euclidean
space is uniformly contractible with p(R) = R. Furthermore, every contractible space V
which admits a proper (e.g. discrete) action of an isometry group with compact quotient 1s
(obviously) uniformly contractible. On the other hand the (contractible) surface in Fig. 3
below is not uniformly contractible.

Fig. 3

9



Proposition-Ezample. Let V be a complete uniformly contractible Riemannian
manifold of dimension k. Then the asymptotic dimension of V equals k. (Observe that the
asymptotic dimension of the surface in Fig. § equals one.)

Proof. Let v : V — P be a map with Diamp~'(p) < R < oo for all p € P
and let C, D V be the cylinder of this map (i.e. the space obtained by attaching the
cylinder V x [0,1] to P via v x 1 +— p(v) € P for all v € V). We assume at this point
without loss of generality that the image of ¢ equals all of P and then retract C,onV
by appealing to the uniform contractibility of V' and an elementary obstruction theory.
This retraction, say ¢ : C, — V', will move each point by a bounded amount, something
like pr = p(p(...p(R) ...) and the composition go ¢ : V — V (recall that ¢ maps V

k+1
to P and P sits inside C,) is a proper map within bounded distance from the identity.
It follows, again from the uniform contractibility of V, that g o ¢ is properly homotopic
to Id : V — V and therefore, having degree 1, cannot be factored through a map to a
polyhedron of dimension < dim V. Thus dim,V = dimV for all positive ¢ < oo.

Product example. Let V) be a compact Riemannian manifold and V, =171V x Vs,

where, recall, t7'V; = (Vl,t"le). Then for each ¢ > 0
e

dim, V, = dimVy for t > t(e),

as V; collapses to V; for t — oc.

Now we can state a specific conjecture relating macroscopic dimension to the scalar
curvature.

Conjecture. Let V be a complete Riemannian manifold with Sc(V') > €% > 0. Then
the asymptotic dimension of V' is at most dim V' —2. In fact one expects dims V < dimV -2
for all § > c,& where one may try to guess the value of ¢, by looking at V' = ST

This conjecture looks hard at the present moment (it is proven only for dimV = 3)
but still it is not strong enough to capture the full idea of (n — 2)-dimensionality on the
e-scale for n-manifolds with S¢ > ¢~2. Namely, the pull-backs ¢~ '(p) C V of suitable
maps ¢ : V — P, for known V with Sc > £=2. have small (about £?) areas as well as
diameters and can be e-small in an even stronger sense. On the other hand the known
(n — 2)-dimensionality bounds on V' with Sc(V') 2 ¢~2 (see §5) do not imply (at least not
directly) any geometric closeness of V' to an actual (n — 2)-dimensional space.

2%. Degression to foliations, recurrent dimension and ends of groups. Let V
be a foliated space. It is called non-recurrent if each leaf V in V is a closed subset in V
and there is a neighbourhood ¢ of V in V such that the restriction of our foliation to U 1s
HausdorfT, i.e. the space of leaves is Hausdorft.

Basic example. The foliation into the connected components of the fibres of a
submersion is non-recurrent.
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Next define recdim V as the minimal number & such that V can be covered by k + 1
open subsets where the restriction of the foliation to each subset is non-recurrent. Thus,
non-recurrent foliations have recdim = 0 according to this definition.

Proposition. If V is foliated into n-dimensional manifolds then recdimV < n.

Here one should make some mild assumptions on V such as paracompa:tness and the
simplest case is where V is a smooth foliated manifold. Then one may take a sufficiently
fine smooth generic triangulation Tr of V and observe that for a small neighbourhood U

of the (m — n)-skeleton of Tr for m = dim V, the induced foliation on Uy is non-recurrent.
n

Next one takes some open subsets U;, ¢ = 1,...,n, such that U U; =V, where each U;
1=0

for 1 > 1 is a union of small disjoint subsets (corresponding to (m — ¢ + 1)-dimensional
simplices in Tr) where the foliation is (obviously) non-recurrent. Q.E.D.
Now let V be compact with a leafwise Riemannian metric. Then, clearly, each leaf V
has
dim, V < recdimV,

for all sufficiently large <.

Problem. Suppose all leaves have dim, < k for some ¢ > 0. Is then recdimV < k as
well?

A similar problem can be formulated for (e.g. universal) coverings V of compact
manifolds V as follows.

Define dlm(V / V) as the minimal number k, such that V can be covered by k+1 open
subsets U;, 1 = 0, ..., k, where each connected lift of U; to Vis relatively compact. (If V 1s

non-compact one requires V be * ‘almost_trivial” over each U; meaning that the connected
components of the pull-backs of U; to V are mapped back to V finite-to-one.) Now one
observes that this dim V /V bounds the macroscopic dimension of V (at least for Galois
coverings where “finite-to-one” has “finite” < const) and one asks oneself if the opposite is

true. Here one has the famous Stallings’ theorem about ends of groups which refines the
implications

dimgf/ <1l= di1n\~/'/V <1

as follows.

Stallings’ decomposition theorem. Let p : V — V be the universal covering of
a closed manifold V. Then there is a closed (possibly disconnected) hypersurface H C 'V,
such that

(1) H admits a compact lift to Vi

(2) the closure of each conmnected component of the complement V- p Y (H) has at

most one end (where the compact (!) boundary components of V — p~Y(H) corresponding
to lifts of H are not counted for ends).

Notice that if dlmel < 1 for some ¢ > 0, then “the one end” condition makes
the above components of V- p~U(H) relatively compact and the decomposition V' =
U(H)U(V — H) makes dim V/V < 1, where Ue(...) denotes the e-neighbourhood of ... .

11



The above manifold version of Stallings’ theorem was suggested by Matthew Brin who
also indicated the following proof using minimal surfaces (which he has never published
and which I had a pleasure to discover by myself). If V has more than one end, take a
volume minimizing hypersurfa‘cewffl n f/; separating some of the ends. The idea is that
each deck (Galois) transform of Hy, say H!, either coincides with Hy or does not meet H;
at all, because out of a pair of intersecting hypersurfaces one could easily concoct a tiaird
one_with volume < Vol H; and still separating some ends. Then we take all transfcrms
of H; and if the complement contains a component with more than one end we take the
second minimal separating hypersurface, say H, inside this component. The transforms of
H, miss H, and we continue until the process stops at some H,,, such that all components
of the complement of the Galois transforms of the H, are one-ended. Then the projections

~ m
of these H, to V make our H = |J H;.
1=1

End decomposition of foliations. Let V be a compact space foliated into smooth
manifolds. Then there ezists a compact subset H C V such that

1. Intersection of H with each leaf V in V consists of a disjoint union of compact
subset in V.

9. Each connected component of V. — H has at most one end for all leaves V (where
the boundary components of V. — H are not counted for the ends).

Sketch of the proof. Fix a leafwise Riemannian metric in V and take a hypersurface
H, in a leaf which is volume minimizing among all end separating hypersurfaces in the
leaves or in the monodromy coverings of these. Then take the second such hypersurface
(in the complement V — Hj), say H,. and continue by transfinite induction thus arriving

at a closed set Ho = C¢ {J H; C V with the following properties.
el
1. If V — H, for some leaf V has a component with more than one end, then the
closure of this component contains some H; C Ho. Or, equivalently, a slightly moved H;
separates ends in this components.

2. If H; and H; have mutually e-close points then H; is Hausdorff é-close to H; for
some § = §(¢) — 0, for ¢ — 0.

It follows that for the monodromy covering of each leaf py V — V, all connected com-
ponents of the pull-back ;1.‘71(7-{0) are compact and the connected components of the com-
plement V — uy,' (He) C V are (at most) one-ended where H, denotes an e-neighbourhood

of Hy for ¢ > 0. It follows that H = H. for a small ¢ > 0 satisfies our requirements.
Q.E.D.

Corollary. If the monodromy covering V of each leaf V has dim, V < 1 for some
e > 0, independent of V, then recdimV < 1.

Ezample. One knows that every complete simply connected 3-manifold with Sc¢ >
62 > 0 has dim, < 1 for ¢ > 127é. Hence, a compact foliation into such manifolds has
recdim < 1.

12



Remark and questions. The geometric (e.g.) smooth nature of the leaves is not
relevant in the decomposition theorem and, as in the group theoretic case, one can probably
state and prove everything in terms of the corresponding groupoid of the foliation.

It is unclear what should be a higher dimensional version of the decomposition theorem
but the above corollary probably generalizes to a similar implication

dim, 1% < k for all leaves V = recdimV < k

under suitable restrictions on V. For example, if the universal covering V of a compact
manifold V has dim. V < k, then one may expect the classifying map V — BIl for Il =
71 (V) to be contractible to the k-skeleton of BII provided II has no torsion. In particular,
if dim. V < n = dim V, then the image of the fundamental class (V] in Hn(BIIL; Q) must
be (?) trivial torsion or no torsion. It also appears in many examples that dim, V<n=
dimV = dim, V < n — 2, ie. the macroscopic (asymptotic) dimension of the universal
covering V avoids being equal to dim V' — 1. (On the homotopy theoretic level this would
say that, whenever [V] goes to zero in H,(BII), V contracts to the (n — 2)-skeleton in BII
rather than to the (n — 1)-skeleton as the first level obstruction theory predicts. In fact,
this may be true, at least for dim V' > 4, if the torsion is properly taken into account.)

Uncdim and brdim. One can modify the definition of recdim by declearing a fo-
liation F simple on U C V if it is non-recurrent and the universal covering of each leaf
essentially trivializes on U, i.e. the inclusions of the leaves of F|U to those of F have
finite (and uniformly bounded) 7,-images. Then uncdim is defined with decompositions

V= U U; where F|U; is simple for all 2.

Next, for foliations on non-compact spaces V, one may use Y C V on which the leaves
are non-recurrent and bounded with respect to a given leafwise metric and define brdim
accordingly (where “br” stands for bounded recurrency).

Subadditivity of dimension. All these dimensions (and also the asymptotic dimen-
sion) are (obviously) subadditive, if V is covered by Vi, 1 =1,...,m, then

“dim”V < ( “dim”Vz) +m— 1.

1=1

Monotonicity of dimension. Let V be given two foliations, F and F' refining F,
i.e. the leaves of F' are contained in those of F. Then

dim F — recdim F > dim F' — recdim F', (%)
where “dim” refers to the dimension of the leaves.

Proof. Let V = U U! be the covering with m = recdim F' where F' is non-recurrent
1=0

on each U!, and consider the continuous map ¢; : V — A™ C R™*! corresponding to (a

13



partition of unity associated to) this covering. We approximate @ by a generic smooth
map ' : V — A™ and consider the partition P' of V refining F' into the connected
components of o' restricted to the leaves of F'. Then we take the quotient space K = V/P
with ¢ : F — K denoting the quotient map and look at the image ¢(F) of F under ¢.
This is a (rather singular) foliation of the (compact) space K (with dimK = m + dim .F —
dim F') of leaf dimension dim F — dim F ' + m and (*) follows from the (easy) inequal.ties

recdim ¢(F) < dim ¢(F) and recdim F < recdim ¢(F).

Notice that a similar monotonicity is satisfied by uncdim and brdim as well as by
asympdim. For example, no closed aspherical manifold admits a foliation with uncdin <
dim. In particular, it admits no m-dimensional foliation with m > 2 where the universal

coverings of the leaves have dim. < 1 for some ¢ > 0. (Probably this is true for all
dim, < m.)

Corollary. A closed aspherical manifold supports no 3-dimensional foliation with
Sc > 0. (This is unknown for foliations of dimension > 4, not even of codimension zero.)
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§3. Remarks and References on positivity of curvature.

(a) Hierarchy of curvatures. The curvature tensor can be viewed as a quadratic
form Q on A*T(V') and the positive definiteness of this Q is one of the strongest curvature
positivity conditions studied by geometers. For example, all compact symmetric spaces
have Q > 0 while @ > 0 distinguishes the spheres (and real projective spaces). The restric-
tion of Q to bivectors in A*T (V') gives us the sectional curvature IL(V) (and. conversely, ()
can be defined as the unique quadratic extension of X from the Grassmannian Gre T(V),
or the set of bivectors in A2T(V), to all of A2T(V)). This K(V') is the only known curva-
ture whose positivity has an adequate macroscopic description, which allows in particular,
a comprehensive theory of singular spaces with I > 0 (see [B-G-P] and [Per]). The sec-
tional curvature K, viewed as a function on the Grassmann bundle Grp, T(V'), extends to a
function, denoted Ii¢c, on the complex Grassmann bundle Gry CT(V) as follows. First Q
extends by complex multilinearity to CT(V') and then K¢(7) for 7 € Gry CT(V) is defined
by

Ke(r) = Ke(aAB) = QahB.arp)

where a et 3 are two vectors in 7 which are orthonormal for the Hermitian extension
of the Riemannian metric ¢ of V to CT(V). Clearly, positivity of K¢ mediates between
@ > 0 and K > 0. Next, following Micallef and Moore, one restricts K¢ to the subspace
Grs°" CT(V) € Gry CT(V) which consists of those 7 on which the C-linear extension of
g to (a C-quadratic form on) CT(V) vanishes. This restricted curvature is denoted Kisow
and the condition KE°" > 0 is significantly weaker than K¢ > 0. Here is the diagram
summarizing our curvature positivity conditions.

Y

A geometric exposition of these curvatures is given in [Grolsig, where the reader finds
further references.
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(b) On K" > 0. This condition is vacuous for n = dimV < 3 where Grsot is
empty but for n > 4 it implies, according to Micallef and Moore, that V' has zero homotopy
groups m(V) ... mm(V) for m = n/2 if n is even and m = (n — 1)/2 if m is odd. On
the constructive side, manifolds with K'°"" > 0 admit 1-dimensional surgery (which was
pointed out to me by Mario Micallef) and so the boundaries of e-neighbourhoods of graphs
(i.e. 1-complexes) in W can be smoothed with K > 0. More generally, connected sums
of spherical spaceforms (with K = 1) and copies of S"~! x §' can be given metrics with
Kise > 0 and, topologically speaking, no other manifold with KE°' > 0 is anywhere in
sight. Here is the corresponding geometric conjecture :

If Kigot(V) > ¢7% and dimV > 4 then V is macroscopically 1-dimensional on the
scale > e. In particular, the fundamental group w1 (V) contains a free subgroup of finite
indez.

This conjecture would follow (compare (c) below) if one could prove, by extending the
method of Micallef-Moore, that every stable minimal disk D in V satisfies dist(v,0D) <
const, € for all v € D.

(c) If Sc V > ¢ % and dim V' = 3, then every closed curve 4 in V/ homologous to zero
has FillRady < 27, that is 4 bounds within its 2re-neighbourhood. This is proven in
[G-L]psc by looking at the minimal surface in V filling-in v. (The role of minimal varieties
for Sc > 0 was revealed by the earlier work of Schoen and Yau.) Finally, with the bound
on Fill Rad 7 one can conclude that

dimg V" <1 for 6§ = 127=.

(See §10 in [G-L]psc, Appendix 1 in [Gro]; and [Katz].)

(d) A dream of dim. < k and curvature. We want to have. for given n and
k < n, some curvature expression, say I ‘*), with the usual scaling property, such that

(1) the Cartesian products

V =R!x S" . for € < k, have K'*(V) > 0,

(i) the inequality K®(V) > —¢? implies dim. V' < k for all complete n-dimensional
Riemannian manifolds (where one should be ready to modify the definition of dim,, e.g.
in the spirit of the K-area, if the geometry calls for it).

(iii) The open cone in the space R, of the curvature tensors on R™ defined by the
inequality K(¥) > 0 should be convex or at least connected. (We tacitly assume this cone
is O(n)-invariant to have our curvature condition meaningful.)

Question. For which n and k does such L®) (or, equivalently, the corresponding
open O(n)-invariant cone in R, ) exist? (One is also interested in metrics with |[K(F)] < &2
for K® coming from suitable models similar to R* x Sn—*. these were recently studied
by Christophe Margerin using the heat flow in the space of metrics.)

Our optimism is warmed up by the geometry of Euclidean hypersurfaces where dim, <
k is linked to an appropriate k-convexity (which we shall explain somewhere else).
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(e) Curvature h-principles. Curvature inequalities can be looked upon as partic-
ular partial differential relations and these cannot be integrated to macroscopically visible
geometric properties unless a corresponding h-principle fails (see [Grolppr). Recently,
Lohkamp proved (using surgery) several powerful h-principles for S¢ < § and Ricci < 0
thus distroying all (7) hope for a macroscopic geometry for negative scalar and Ricci curva-
tures. We refer to his papers [Loh|cLp, [Loh]gLc, [Loh]anr where he presents and develops
his ideas, giving, in particular, the h-principle view on the micro = macro correspondence
in Riemannian geometry.

(f) On asymptotic dimensions. There are several non-equivalent notions of the
asymptotic dimension (see, e.g. §4 in [Gro|]rrg and [Gro]a1) but here we emphasized the
one directly linked to the Uryson’s width (see [Gro]wia). A quite different notion comes
from the idea of the asymptotic cone of V, which is an ultralimit of eV for e — 0. (The idea
of ultralimits was injected into geometric context by Van Den Dries and Wilkie, see [VDD-
Wi, which I neglected to indicate in [Gro]ar where this idea is systematically exploited.)
For example, the hyperbolic space H™ has, according to our present definition, asymptotic
dimension n. Yet eH™, ¢ — 0, converges to an R-tree which is a 1-dimensional space.

(g) Surgery for Sc > 0 provides a non-trivial link between Riemannian geometry and
the bordism theory, as exposed in the ICM-talk by Stephen Stolz (see [Sto] and [Ro-St]).
Also notice that some surgery is possible for stronger positivity conditions indicated in (d).
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§4. K-Area of a manifold.

We want to introduce a certain Riemannian invariant, called I-area of V reminiscent
of the ordinary area of surfaces with “I” referring to I\-theory as well as to the curvature.
This K-area is defined by looking at the curvatures of Hermitian vector bundles X -» V
endowed with Hermitian connections. Recall that the curvature of X, denoted R(X), 1s
an EndX-valued 2-form on V. We equip EndX with the operator norm, i.e.

llend|| = sup |[jx — endz||x.
[Jzli=1

and accordingly, define ||R|| as sup||R{a A 3)|| over all orthonormal bivectors a A 3 in V.
A relevant feature of this choice of norm is the following strong subadditivity relation, for
Whitney sums,

IRCX & ¥)) = max(JR(X)], ROV,
which will become crucially important later on.

Now we define the I -area for closed oriented 2m-dimensional Riemannian manifolds
V by maximizing ||R(X)|| ™' over the unitary bundles X — V for which (at least) one
characteristic (Chern) number of X does not vanish. This means that the classifying map
of V into the classifying space, say Cly : V — BU is not homologous to zero, i.e. cannot
be contracted to the (2m — 1)-skeleton of BU. Thus

- 7o : a -1
K-areal’ = (inf [ R(X)]))

where the infimum is taken over by the above “homologically significant” bundles X with
unitary connections and so this K-area is large, say 2 ¢!, if and only if V admits a
“homologically significant” bundle X with small curvature IR(X)|| <.

The definition of the K -area generalizes to open manifolds by sticking to bundles X —
V trivialized at infinity and using the characteristic numbers coming from the cohomology
with compact supports. Next one takes care of odd dimensional manifolds by stabilizing

I -areaq,V = sup K -Area(V X R*),
k

where one takes those k > 0 for which dim V + is even. Finally, observe that the definition
of the K -area extends the homology classes h € H,(V;R) by minimizing IR(X)|| over those

X for which the (classifying) homomorphism (Clx )« : H.(V) — H,(BU) does not vanish
at h (where we may use homology with infinite supports for non-compact manifolds V).

Let us point out at this stage that the \-area 1s strictly positive as every V of dimen-
sion 2m admits a bundle X with non-zero (top) Chern class ¢n(X) € H*™(V). In fact,
one can induce such a bundle over V from a standard bundle over S2™ by amap V — S*™
of degree one. Also notice that the \-area scales as the ordinary area,

K-area(AV) = A (K-area V).
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Furthermore, if V| > AV, 1e. V Lipschitz-A~! dominates V3 in the sense that there exists
a proper A~ !-Lipschitz map f : V; — V; (where A~ 1-Lipschitz amounts to ||D f]| < A H
of non-zero degree, then

K-areaVy > \*(K-areaVy). (%)

Conversely, if Vi admits a (locally) A-expanding equidimensional embedding (not a mere
immersion!) into V, (i.e. an embedding f with [|[D7' f|| > }) then

K-area V) < /\_Z(K—area Va). (%)
In particular every open subset U C V has (for the induced metric)
K-arealU < K-areaV.

It follows from (%) that every hyper-Euclidean manifold V, i.e. satisfying V > R", has
K-area = co.

4%. K-area for 7; = 0. Every compact simply connected manifold V without boundary
has K-area g < 0.

Proof. We recall the following bound on the monodromy M of a umtary connection
along the boundary of a disk D,

1
|M —1]| < 2sin (;]IRH -areaD) (0

where ||R|| is the sup-norm of the curvature of our fibration X = (X,V) over D (and
where the disk D comes along with some Riemannian metric). In fact, the validity of
(O) for infinitesimal squares in D (where 2sine/2 ~ ¢) follows from the very definition of
the curvature and the global inequality (O) is obtained by the (multiplicative) integration
of the infinitesimal one. (The role of “sin” is to compare two metrics on the unitary
group U(N), where the first one is induced from the metric |4 — B|| on matrices and the
second is the corresponding intrinsic length metric on U(N). For example, if N =1 and
U(1) = S* C R?, the first metric is the Euclidean one of R? restricted to S! and the second
one is given by the arc-length on S'.)

Now we return to X — V. fix a point vy € V, join vg with every other point v € V
by a minimal geodesic segment v and transport the fibre X,, to X, along 7. If there
are two such segments, say v and 4’ between v and v, we obtain two unitary (holonomy
or transport) operators, say M,, M, : X,, — X,, where the norm |M, — M,|| can be
estimated according to ((J) by the area of the minimal disk D filling in the loop yo CRNE
as follows

Iy~ M) < 25in (GIR - wxeaD ) @)
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for R = R(X) (see Fig. 4 below).

M, (xp) M \: (xq)

X0

Vo

Fig. 4

Next let o denote the supremum of the areas of the above minimal disks over allv € V
and all pairs of minimal segments between vg and v and suppose that

IR|| < ma™'/3 andso |M,- M| <6<1

for all v, v and 4. Then, for every v, the convex combinations of the operators My, M,,
M!" ... corresponding to different segments are all non-singular which allows us to smooth
the multivalued correspondence v — {M,,M,,...} to a continuous field of non-singular
operators, say M, : X,, » X, for v running over V. Thus every e-flat bundle with
e < ma~!/3 is trivial and so

K-areaV < 3a/m.

Furthermore, every e-flat bundle over V' x W with arbitrary W can be induced by the
above argument from a bundle over W which implies the desired bound

K-areag V < 3a/m < co. (D)
Remark. The above argument also works if V has non-empty connected boundary.
Yet the unit segment [0, 1] has infinite stable K-area. (We suggest to the reader to figure

out what happens for dim V' > 1.)

4%. K-Area under homotopies. The relations K-area V = oo and K-areagV = oo are
homotopy invariants of V' for all (possibly non-simply connected) compact manifolds V.
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(Compact manifolds with infinite X-area do exist as indicated in (iii) below.) This is also

true (and obvious) for (possibly infinite) coverings V of V. For example if V) and V; are
homotopy equivalent compact manifolds then their universal coverings satisty

L -areaV] = oo <= K-areaV, = oco.

4-;—. K-Area in examples. (i) Every connected surface of genus zero (i.e. embeddable
into S%) has

IV -area ¢ — const - area,
3 e o = ar
where const < == by (A) since a = area/2 for the 2-spheres.

Ezercise (suggested to me by Richard Montgomery). Show that, in fact, const = ==,

2m
In particular, no bundle X over 5? with ¢;(X) # 0 has curvature smaller than the Hopf

bundle. (It would be nice to find a sharp bound on K-areas, V for all (simply connected)
V in terms of areas of suitable surfaces in V.)

(ii) The rectangular solid V = [0,€,] x [0,€3] x ... x [0,£5], where {; < l, <...< U,
has

const €10y < K-areaV < const’ {10,.

Thus the inequality /¥-area V < £? makes V' “area-wise” e-close to the (n —2)-dimensional
space [0,€3] x ... x [0,4,].

Our next example is more surprising.
(iii) Ewvery connected surface V of positive genus has K -area = oo. To see this we

first observe the following

4%. Push-forward inequality and K-area™. Let f : V — V be a finitely sheeted cover-
ing which is trivial at infinity (and at the boundary) of V', i.e. the sheets are disconnected
at infinity. Then N

K-areaV > K-area V. (%)

Proof. A bundle XV goes down to the bundle X over V with the fibre

X, = X;
:

where the sum is taken over all o € f~1(v). If X has a non-zero Chern number then so

does X and, clearly, |R(X)|| = ||’R(“:')H while the implied trivialization of X at infinity
gives us such a trivialization on V. Q.E.D.

Remarks. (a) One can also lift bundles from V' to V which gives us the opposite
inequality, and hence, the equality

K-areaV = K-area V. (%)
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(b) It is quite useful to have (x) and a suitable version of (++) for infinite coverings as
we shall see later on.

In fact our present definition of the IN-area is provisional. Ultimately one should
work with wvirtual bundles (K°-classes) x = [X;] — [X2] where the bundles X, and X,
are joined by a homomorphism F : X; — X3 which is a unitary connection preserving
isomorphism outside a compact subset in V' and where, furthermore, one should allow
infinite dimensional X, and X, with Fredholm F (see 9%). Alternatively, one can refine
the notion of K-area by minimizing ||R{X)|| over smaller classes of bundles X, eg. by
requiring non-vanishing of a specific Chern number, (say, ¢,,(X)[V]) and/or himitirg the
rank of X (but the latter makes the N-area finite for all V' of finite volume as indicated

below).

Now we can prove (iil) by considering finite (connected) coverings V oof 1 with ar-
bitrarily large area (and, hence, -area) satisfying triviality assumption at infinity. (If V/
has genus zero then every covering V" — 1 trivial at infinity has disconnected sheets all
over V.)

Remark on rank X. It is crucial here that we do not limit rank X in the definition
of K-area as the K-area with a priori bounded rank X is finite for all compact (possibly
non-simply connected) V. In fact, if

(VOl W) R(X )™ < C Hmr)

for 2m = dimV, r = rank X and some (universal) constant C' > 0 (polynomial in m and
r), then (by Chern-Gauss-Bonnet) all Chern numbers of X vanish.

K-area™. If we follow the above suggestion and define the K-area with virtual bundles
k = [X1]—[X2], where X and X, are (actual) unitary bundles isomorphic at infinity, where
x has a non-zero Chern number and where we minimize max (||R(X,)]|, ||R(X2)|). the
result, denoted K-area™’, may be significantly greater than the I -area for open manifolds
V. For example, every surface V with infinite fundamental group has K -area (V) = oc.
In fact, the K-area™ satisfies the push-forward inequality

K-area®™V > K-area v (*1)

for all finite coverings VoV

But there is a.price to pay, the \-arca* is not monotone for equidimensional embed-
dings. For example, K-area ¥ (S%) = K-area(S?) < oo while non-simply connected open
subsets U C S? have K-areatU = oo according to the above.

Ezamples (continued). (iv) Let ¥} be S? minus three disks and V5 be the torus
minus a disk. Then V; x R is (almost obviously) diffeomorphic to V5 x R but 1t 1s infinitely
smaller than Vo, x R “K-area-wise”. This is very much similar to the behaviour of the
stable symplectic area (sometimes called “width” or “capacity”) and, in fact, our K-area
can be brought into the symplectic ambience as we shall see later on.
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(v) The n-torus T™ has

KN-areaT" = oo.

In fact the selfmapping (endomorphism) t +— 2t provides a (2"-sheeted) covering of T" by
2T™ (i.e. T™ with the doubled metric) which implies by (%) that

K-areaT" > N-area2T™ = 4(K-areaT").
Hence, K-areaT" = oo as 1t 1s > 0.

(v'). Let V' be a closed manifold with non-positive sectional curvature. If the fun-
damental group 7 (V') is residually finite (which 1s known to be the case iof V s locally
symmetric, for ezample) then K-areaV = oco.

Proof. The residual finiteness of V' implies that for each R > 0 there exists a finite
covering V. — V where every loop of length < 2R at some point © € V is contractible.
Then the exponential map at o gives us an expanding embedding of the Euclidean R-ball
B(R) = RB(1) into V and so K-areaV > K-areaV > R(I-areaB(1l)) which makes

K-areaV = oo for R — .

About K-area™. The above also applies to complete non-compact manifolds V' and
shows that K-areatV = oo (while the l-area may be finite, e.g. for surfaces of genus
zZero).

(v") Remark. It is likely that “most” (even among compact) manifolds V' with
negative curvature admit no non-trivial finite covering V. But the above can be generalized

to infinite (e.g. universal) coverings with a suitable class of infinite dimensional (virtual)
bundles mentioned earlier.

(vi) Questions. It is unclear if our currently used N-area appealing to finite di-
mensional bundles X is infinite for all V' with K (V) < 0. Moreover, there is no known
example of a closed aspherical manifold of finite K-area. In fact one would like to have
K-areaV = oo for the universal coverings V of closed aspherical manifolds V and also for
more general my-essential V' for which the classifying map V — BII, II = m;(V), sends
the fundamental class [V] to a non-zero element in H,(BIL;Q), n = dim V. One can even
aspire to prove that a (suitable) N-areaV = oo whenever some (e.g. universal) covering
V of V has dim. V > dimV — 1 for all sufficiently large ¢. No counterexample has been
found so far.

(vii). Distinguishing strict (K < 0) and non-strict (K < 0) negativity of the
sectional curvature by the K-area. Take the R-ball B = B(R) in a complete simply
connected manifold V' with K (V) < 0. Such a ball admits a proper R™!-Lipschitz map
onto S™ of degree one (where “proper” means constant on 0B and where 5™ is normalized
to have the interior diameter 1) and so

K -area B > const, R?, (+)

provided n = dim V is even (since S™ supports a bundle X with ¢, (X) # 0, m = n/2).
Now we claim that (+) can be substantially improved for K(V) < —1. Namely, for R > 2
we have

I{-area B > const, exp K. (x)
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In fact the (R — 1)-sphere in such a V' is exponentially large and admits a Lipschitz-
exp —R map to the unit S"~! of degree one. The suspension of such a map gives us a
proper ezponentially area coniracting map B = B(R) — S". Q.E.D.

An exponential inequality similar to (X) remains valid whenever K'(V) < —~ <0 as
is seen with the scaling V — «V" but if (V') vanishes somewhere the situation radically
changes. For example,

Let V be a symmetric space of R-rank > 2 (which amounts for symmetric spaces not
to have ' < 0). Then
K -arca B < const R%. {—)

Proof. We may scale the ball B to R = 1 and then, for R-rank > 2. B can be “swept
over” by unit flat 2-disks which give us a universal bound on the K-area. Q.E.D.

Remark. If R-rank V = r, there is a proper 1-Lipschitz map B = B(R) — §" of
degree one which exponentially (in R) contracts the volumes of all (r + 1)-dimensional
submanifolds in B. But the volume contraction on r-submanifolds cannot be stronger

than R™" as B(R) can be “swept over” by flat R-balls.

42 R-norm on K°. Our definition of the I-arca should have been, logically speaking,
preceded by the notion of the R-norm (R for curvature) on the even - the(ny which assigns
to each x € K°(V) the minimal (infimal) number R, such that x can be represented as
a (formal) difference of two bundles with unitary connections, say x = [X] — [Y], where
max (||R(X)], IR(Y)|) < R. This assignment, denoted » — ||R(~ )|, defines a positive
function K°(V) — Ry encoding significantly more geometric information about V' than
the K-area. Part of this information is homotopy invariant, namely the subgroup K§ C K°
consisting of x with ||R(x)|| = 0, clearly is a homotopy invariant for compact manifolds V.
Moreover, the equivalence class of the set of subgroups K¢ = {« | |R(x)|| < e} fore — 01s
also a homotopy invariant, where two subsets (of subgloups in K°) are declared equivalent
if they differ only by finitely many members. (These I§ and {} depend. as we know,
only on the image of K°(classifying space of I = m;(V')) in K°(V") but little is known
about K¢ and K¢ for general groups II. I do not even see an immediate example where
the set {K2}.>o is infinite and, hence. is not equivalent to {/g}. The most optimistic
individual would equate IN$(V) (at least in N° @ Q) with the above image of L°(BII)
in K°(V). T would not take this seriously for general non-residually finite groups but the
residually finite case (especially, where BII is a finite complex) leaves room for hope.)

Next one is tempted to use a suitable L,-norm of R(.X) and thus distinguishing L,-
bundles over non-compact Riemannian manifolds V where, by definition, this norm is
finite. If we have such an L,-bundle over V" x [0, 1] then the restrictions to V' = V" x 0 and
V = V x1 should be declared L,-equivalent which leads us to a definition of a (nonreduced)
group L,Ko(V). This group carries a norm coming from our L,-norm on R(X) and one
can reduce it by dividing by the subgroup consisting of » with ||«||z, = 0. Furthermore,
one may tensor with R thus getting a Banach space which is Hilbert for p = 2. The first
question arising here is the comparison with the L -cohomology. For example, when a
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given L,-cohomology class of degree 2d can be represented as Chern of an L,-bundle with
p = qd? (This is easy for degree 2 as cvery exact 2-form serves as the curvature of some
unitary line bundle.) The most interesting manifolds where we want to know L,Ky(V)
are those with cocompact isometry groups and especially contractible ones (e.g. of non-
positive curvature) but the easiest (and yet interesting) examples are provided by disjoint
unions of compact manifolds.

Exzamples. (a) Let V be an even dimensional hyperbolic space, say H*™ and ¢ :
H?™ — S?™ be an injective conformal map. Then the pull-back X of every bundle ¥
over $*™ has || X||L, = ||Y |, < oo for p = m, by the obvious conformal invariance of the
L,-norm on d-forms for ¢ = d/2m. Now we may take a bundle Y over $?™ for which the
m — th Chern form has non-zero integral over o(H?™) C S™ which clearly makes our X
non-trivial in the reduced L,, K°(H?™). (But I am afraid these elements in L,, K° can be
generated by line bundles which would make them less interesting.)

(b) Let V = R®*™ and p = m. Then, by the conformal invariance, every bundle
over S*™ with non-zero top Chern class gives us a non-zero element s in the reduced
L,K°(R*™). This k definitely does not come from line bundles as the reduced L,,-
cohomology of R?*™ vanishes (by an elementary and well known argument, see [Gro]as
for instance). But x« can be made with a compact support on R?™ which is somewhat
disappointing as, in fact, every orientable 2m-dimensional V obviously admits a « with
compact support (and hence in L, for all p) which is non-zero in the reduced L,Ii° for all
p < m having non-trivial top Chern class in H* with compact supports.

4 3. K-area of symplectic manifolds. Let w be a non-singular 2-form on V.
A Riemannian metric g is called adapted to w if at each point v € V there is a g-orthonormal
m
coframe, say z;,y; € T;(V), i = 1,...,m, for 2m = dimV, such that w, = 3 2; A y;.
=1
Equivalently, g is adapted if the operator 4, defined by (A.x,y), = w(z,y) has all eigen-
values of the absolute values one.

Now we set
Ii-arvea (V,w) =sup N-area(V,g)
9

over all metrics ¢ adapted to w.

If dw = 0 (and thus w is symplectic) and the cohomology class [w] is integral, then
w serves as the curvature of a complex line bundle ¢ (we disregard here the usual 27i-
coefficient) and if V is a closed manifold we have non-zero Chern number c*[V] = Jyw™.
Thus we see that K-area(V,w) > 1 in this case. What is less obvious is the opposite
inequality,
K-area(V,w) < const < oo,
for certain symplectic manifolds (V,w) which is non-trivial even for the “smallest” manifold
m
of all, the unit ball in (R*™,w = " da; A dy;). In fact, the K-area is finite for those V
=1
which can be “swept over” by rational pseudoholomorphic curves and, consequently, for
open subsets in such V. Here is the simplest example.
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Let V = CP™ with the standard symplectic form w. Then

L-area (V,w) < consty < oo.

Proof. If g is an adapted metric, then one defines a rational pseudo-holomorphic
curve in V as a g-harmonic map f : S — V whose g-area equals w-area

f*(w) = g-area f(SQ). (*)
52

One knows (see [Grolpuc) that (at least for generic g) there exists a smooth (m — 2)-
dimensional family of these curves, i.e. a smooth map F: P x §* — CP™, where P is a
closed manifold, such that deg F' # 0 and all (pseudo-holomorphic) spheres Fj, : 5?2 »cpm
are homotopic to the projective line and thus have by (*) unit g-areas. Now every bundle
X — CP™ with small curvature lifts to a bundle X over Px $? with small curvatures on the
S2_fibres which makes X inducible from some bundle over P since these fibres are simply
connected and have unit area. As dim P < 2m, the classifying map P xS 2 — BU contracts
to the (2m — 2)-skeleton which implies that the bundles X and X are “homologically
insignificant”. Q.E.D.

Conjecture. The K-area is finite for all split symplectic manifolds V' = V{ x S2.

This follows from [Gro]pnc for many Vy and the general case 1s feasible in view of

[La-McD].



§5. Scalar curvature and K-area.

Let us explain how to bound the K -area in terms of the scalar curvature, under the
following assumption on our Riemannian manifold V.

V i3 oriented and spin. Recall that the special orthogonal group SO(n) for n > 2 has
a unique non-trivial (i.e. connected) double cover called Spin(n) — SO(n). Consider the
oriented frame bundle of V', say Fr where each fiber equals SO(n), and recall that a spin
structure on V is a double cover Fr — Fr which restricts to a non-trivial (i.e. connected)
cover over each fiber of Fr — V. Then V is called spin if it admits a sp'n structure. A
necessary and sufficient condition for this is the vanishing of the second Stiefel- Whitney
class wy € H%(V;Z/2Z). One knows that wy = 0 if and only if the restriction of the
tangent bundle T'(V') to an arbitrary (immersed) surface S in V is trivial (where we assume
dimV > 3 as every oriented surface is spin anyway). In particular, every parallelizable
manifold V (i.e. with (V') trivial) is spin. For example, the n-torus is spin. More generally,
stably parallelizable manifolds (which means parallelizability of V xR) are spin. Thus every
(immersed) oriented hypersurface in R"*! (e.g. S™)is spin. On the other hand the complex
projective space CP™ is spin if and only if m is odd. Finally observe that every V contains
a submanifold ¥ C V of codimension two (representing the Poincaré dual of w, ), such that
V — ¥ is spin.

Now comes one of the central statements of this paper slightly reformulating our old
result with Blaine Lawson.

5;11-. K-area inequality. Every complete Riemannian spin manifold of dimension n with
Sc V > e ? satisfies
K- areay,V < const,, e°. (K)

Proof. Everything hinges upon (the existence of ) a remarkable differential operator
on V called (Atiyah-Singer)-Dirac operator. If n = 2m, this operator acts between (smooth
sections of ) two vector bundles over V, called spin bundles S, and S_ and the (Dirac)
operator is denoted Dy : C*(S;) — C*°(S_). These S4 and S_ are unitary bundles of
C-ranks 2™~ ! which are built in a canonical way out of the tangent bundle T(V') and D
is a first order (elliptic) operator (algebraically) constructed out of the covariant derivative
on S, corresponding to the Levi-Civita connection V on T(V). (More precisely, there
exist two irreducible complex 2”7~ !-dimensional representations of the group(!) Spin (2m)
and S, and S_ are the corresponding vector bundles associated to the principal bundle
Fr — V. In other words, the bundle S, is always defined on small neighbourhoods U; of
V, but the gluing isomorphisms over U; NU; between 5S4 [U; and §;|U; are defined only up
to + sign and making coherent choices requires the spin structure. Similarly, the bundle
S_, in general, is defined up to + sign and it becomes an honest bundle in the presence of
spin. Notice, that + sign ambiguity is the same for Sy and S_ and so the tensor product
S+ ® S- is globally defined on V even if V is non-spin and the same applies to all even
tensor products of these bundles, such as S®@ S_, S; ® S4 ® S4 ® S—, etc. This formally
follows from irreducibility of the underlying representations of Spin(2m)). Two crucial
properties of D, are as follows.
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1. Atiyah-Singer theorem. The indez of Dy on a closed manifold V equals certain
non-zero rational combinations of the Pontryagin numbers of V, the so-called Todd genus

A[V].
Recall that

-

Ind D, = dimKer Dy — dim Ker DY,

def

where D% : C°(S_) — C*°(Sy) is the adjoint operator which is a “twin” of D4 and i1s
denoted D_. It is convenient to bring the two together and form the sum

D=D,&D_:C%S;®S_)— C®(S; &S_).

Clearly, D is selfadjoint and D* > 0 = ind D4 = 0.

This index theorem for D is not very interesting for dim V non-divisible by 4 waere
there are no Pontryagin numbers and consequently ind Dy = 0. On the other hand one
can construct (this is easy but not quite trivial) a spin manifold V' of a given dimension
4k with A\[V] # 0. Also recall that A= A\(pl,pg, ...) is a certain universal formal power
series in variables p; (where each p; is given degree 1) which starts as follows

A=1-Lp1+ g5 (— 4py + Tp}) + sroe57 (16ps — 44papy +31p7) + ..

If V is a manifold, then p, is substituted by the Pontryagin classes p; = pi(V') € HY¥Y (V)
(see 73) and A = Ay becomes a (non-] homogeneous) cohomology classin V (where all terms
of degrees > dim V /4 vanish). Thus 4[V] denotes the value of A on the fundamental class of
V, i.e. the Pontryagin number corxespondmg to the k-th grade term of A for k = dim V/4.

(Notice that the zero grade term of A is non-zero; it is 1 € H(V') coming from the map
of V to the one-point space.)

11. Bochner-Lichnerowicz formula.
D* = Ag+ 1Sc. (BL)

Here Ag denotes the Bochner (positive coarse) Laplacian acting on the spin bundle S =
S, dS- and Sc denotes the multiplication operator s +— (SC )s on spinors s, 1.e. sections of
S. Recall that Ag is defined with the Levi-Civita covariant derivative V on S by Ag = V*V
which is equivalent to the integral identity (Assi,s2) = (Vs1, Vsz), for smooth spinors
with compact support, where the scalar product is defined as usual by

(o, 3) = /’]<a(v), B(v))dv.

Thus Ag > 0 and the kernel of Ag consists of parallel spinors, i.e. those satisfying Vs = 0.

Remark. 1t is not surprising at all that D? — Ag is a zero order operator expressible
in terms of the curvature tensor of V. This follows from simple symmetry considerations
which apply to all “natural” second order operators over Riemannian manifolds. (For
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example, the Hodge Laplacian on i-form differs from the corresponding Bochner Laplacian
by a certain operator on A*(V) concocted out of R, jke, which reduces for : = 1 to Ricci
acting on 1-form). However, it takes the exceptional symmetry of spinors to make this
(zero order) operator a scalar and then the scalar curvature inevitably (?7) enters the game.
Yet the geometry behind this simple linear algebra remains obscure. (Of course, the reader
may complain that it could not be otherwise as we had given no definition of D. But, in
fact, D is essentially uniquely defined as the square root of Ag + %Sc and in any case,
we need for the time being only the sheer existence of D with the above properties. A
decisive plunge into the algebra of spinors around D is unavoidable, however, for extending
Lichnerowicz’ approach to more general Dirac type operators as in [Wit] and [Min].)

@IH

. Lichnerowicz’ theorem. Every closed spin manifold V with ScV > G has A[V] = 0.

Indeed, for all spinors s,

(D%, )= (Ass+ () 5. 9) = (Va, Vah+((5) s 9) = Vsl + [ (35 1slP
where the latter sum is strictly posmve for all s # 0. In other words the relations Ag > 0

and Sc > 0 imply that D* = Ag + 1 Sc > 0 and so A[V] =IndD = 0.

Corollary. There exist closed manifolds of all dimensions n = 4k
admatting no metrics with Sc > 0.

k

I
f—y

4

In fact, closed spin manifolds of dimensions 4k with A # 0 do exist as was indicated
earlier. (But one does not find any of them among compact homogeneous spaces as these
have Sc > 0 unless they are flat.)

The spinor power of Lichnerowicz’ theorem cannot be matched by traditional devices
of Riemannian geometry even if one strengthens the condition Sc > 0 to i’ > 0. The sim-
plest example where the theorem applies is the famous K3-surface, which is, topologically
speaking, a 4-manifold V' presented by a non-singular complex surface in CP? of degree 4,
say given by the following equation in the homogeneous coordinates in CP3,

I4+y4+z4+w4:0.

This 4-manifold V is simply connected (by the Lefschetz theorem) and admits a (Kéihler)
metric with Ricci = 0 by Yau’s solution to the Calabi conjecture. Furthermore, it is spin
while A[V] # 0 and so no metric on V has Sc > 0; yet no known elementary geometric
argument rules out Ricci > 0 or even Iy > 0.

However, for all its beauty the Lichnerowicz theorem tells us nothing whatsoever about
the geometry of V' with Sc(V') > 0 nor about the simple-minded topology, such as 7, (V)
for example, but only about the esoteric Todd genus. (Notice, that A= —3 (signature) for
4-manifolds V' which is not so esoteric.) To overcome this drawback we should use the full
power of ind D | which is not just a number but an element of the Ky-homology of V', that
is a (linear) function on the (set of) vector bundles X — V. (Eventually, ind D, will be
extended to the K-theory of a suitable C*-algebra incorporating the fundamental group
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71(V).) Namely, if X comes along with a linear connection, there is a natural extension of
D, to a first order operator from C*(Sy ® X) to C*(5-® X)) which is also denoted D
and is uniquely (and correctly) defined by the following property. If 2 is a smooth section
of X horizontal at some point v € V, i.e. having (Vxz)(v) = 0, then

Di(s@x)(v) = (D4(s) @x)(v)
for all spinors s. For example, if Vx is flat and so, locally,

S+®)&':S+®S+@€BS+, fOI‘

T

r = rank X, then D4 on S ® X locally equals the direct sum of r copies of Dy. The
resulting operator Dy on S @ X is elliptic for all X and the index gives us the desired
function on bundles

X ~ (index of Dy on Sy © X))
which is (obviously) additive for the Whitney sums of bundles.

Ix. Atiyah-Singer theorem for D, on S; @ X. The indez of this (twisted) Dy
satisfies

IndD, = (fh — ch 1\') V], (Twind)

where chy is the Chern character of X which is a polynomial in the Chern classes ¢; =

¢i(X) (defined below).

IIx. Twisted Bochner-Lichnerowicz. Assume that (X, V) 1s unitary, take the
adjoint D_ of the (twisted) Dy and set D = Dy + D_. Then

1
D? :A+ZSc+R0, (TwiBL)

where A is the Bochner Laplacian on S® X and R is a symmetric bundle endomorphism
of S® X (i.e. a selfadjoint operator of zero order) and where the pointwise norm of Ro
everywhere bounded by the curvature of Vx,

1R < consty, |[R(X)||, n=dimV. (%)

Remark. If X (ie. V) is flat, which means R(X) = 0, then the twisted BL trivially
follows from the untwisted one. In fact, the full (TwiBL) (including (x)) can be probably
derived from scaling considerations.

Now we are ready to prove the implication
ScV >:7% = N-areaV < constp el (*)
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To do this, we must show that every bundle X, where the curvature R(X) is small com-
pared to ini"/ Sc,(V), necessarily has all Chern numbers zero. Observe that if the curvature
ve

of X is small, i.e. < §ScV, then the curvature of every associated bundle X'’ is also small
and then, according to (TwiBL), the operator D? on S ® X' is strictly positive as

D?* = A+ 31Sc+Ry

where the needed inequality Ry < %Sc is ensured (as explained below) by our bound
|R(X)|| < §ScV for a suitably small § > 0. The positivity of D? makes she index of D
zero, then according to (Twind)

(A\V - chx') V] =0, (0")

and this relation for all X' makes all Chern numbers of X zero. Actually, we do not need
all associated bundles X’ but only a finite number of them, depending on dim V', where
the needed X' are certain tensor products of copies of X itself and its exterior powers,
AlX = X, A2X,... . Then indeed, there exists a positive 6 = 0, such that the bound
|R(X)|| < 6n Sc makes Rfy < 3 Sc for X' from this (finite!) set of bundles.

53. Algebraic conclusion of the proof of the K-area inequality. What remains to
show 1s

(0') = vanishing of the Chern numbers of X.

The proof of this we start in the simplest (and essential) case where Ay =1 (eg. V 1s
stably parallelizable) and (0') reduces to the identity chX' = 0. We denote the -th grade
component of ch € H*(V') by ch; € H? so that ¢ch = chg + chy + chy + ... and recall that
ch is defined for (complex) line bundles by

2,13
che = expe :l+cl—+—%cl+gc1+...

where ¢; is the first Chern class of ¢. Next. ch extends to sums of line bundles with the
following

Additivity.
chxgy = chx + chy,

for the Whitney sums of arbitrary bundles. This uniquely defines ch for all bundles X
(since they can be formally split into sums of line bundles) as a universal polynomial in

the Chern classes ¢; = ¢;(X) € H?(V),

ch =14 ¢1 + (agey + Bact) + (zecs + Bacacr + vac) + o

where r = rankX. An important feature for us of ch; = a;¢; + ..., is the non-vanishing
of the coefficients «; for all . Thus every Chern number, i.e. a homogeneous polynomial
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in ¢; (evaluated on [V]) is expressible as a polynomial in ch;. Then we recall that ch is
multiplicative for tensor products of bundles

chxey = chx — chy

and finally we bring into the picture the Adams operations Yi(X), k =1,2,3,..., which

are certain uqiversal combinations of the exterior powers A'(X) of X. The advantage of

Yr(X) over AY(X) is the following simple formula for ch of ¥y which is best expressed with
o0

the notation ch(t) = 3 chit’,

=0
Chwk(x)(t) = Ch,‘{(kt)(: ZC’likiti)
1=1
forall k=1,2,....
Trivial Algebraic Lemma. Consider a formual power series a(t) = 3 ait' and
1=0

v

take the products b(t) = [] a(k,t) for all strings of positive integers ky,..., k,. Then the

n=1
coefficients b; of these products at each t' (which are homogeneous polynomials in aj for
§ <1 such as a;a; + Piai—1a1 + ‘)/,'(1,,'-2(1“‘1)' +...) span, (for all integer strings (ky,.... k)

the space of all homogeneous polynomials in a; of degree 1 (where degaillag%tgr“ .=

def

dy +2d; +3ds +...).
Thus we arrive at the following chain of implications. (The tensor products of the
exterior powers of X have ch; = 0 for a given i) = (the tensor products of all Yr(X)

have ch; = 0) = (all homogeneous polynomials in chj of degree 1 equal zero) = (all
homogeneous polynomials in ¢; of degree i equal zero).

Here the first implication is based on the fact that the Adams operations ¥ (X)) are
polynomials in the exterior powers of X. the second one follows from the above lemma
and the third one appeals to nonvanishing of the cocflicients «; in the polynomials ch; =

ajcj + ... mentioned earlier. Now we see that indeed (f{\ =0 and (0')) = vanishing of

the Chern numbers of X by applying the above to 1 = % dim V and then the general case
(where A # 0) follows by observing that

(2 - (ch)k> (V] = 0 for all k) = ch[V] = 0,

(since A starts from a non-zero term in the degree zero as was emphasized earlier) and that
the tensor power Y =@ X has chy = ch% . This concludes the proof of the inequality I5-
k

area V < const, (inf Sc V)’l for closed manifolds V with Sc¢V > 0 and the non-compact
case follows from the relative version of the index theorem which is well adjusted to the
notion of K-area® and implies that

K-area™ (V) < constp 2 (K1)
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for ScV > €? (see 63).

Finally one may stabilize by passing to V X R* and apply the index theorem for
families. This gives the required inequality

I -area, V < const,(inf Sc v)~!
for ScV > 0 and a similar (stable) inequality for L-area},. Q.E.D.

5%. Spin problem, aspherical manifolds and extremal metrics. Here is an appli-
cation of (K).

Let V be a closed manifold which admits a metric go with sectional curvatures gy < 0.
Then V admits no metric g with Sc > 0, provided it is spin and the fundamental group
(V) is residually finite.

Proof. According to (v') in 4% such a V with K(V,go) < 0 has [N-area = o0 which
is incompatible with the above bound on I-area by (SecV)™! for ScV > 0.

Remark. The residual finiteness if 71(V') is non-essential as is seen with the gener-
alized K-area using infinite dimensional bundles (see 4% and 9%) Alternatively, one may

apply the K-area inequality to the universal covering (IN/,Q) since Scg = Scg. Thus we
have the implications

— . _o (K . o - A
Scg > ¢ 2= Scg>e? (:\>) K-areag(V,g) < const, =2 < 00 = K-area(V,gg) < oo,

where the third implication is explained 4%. But the L-area of (’;’,{70) is obviously
infinite as the exponential map gives us an expanding embedding R" — V. Also notice

that V (being contractible) is always spin which shows the redundancy of the spin condition
as well.

Questions. (A) Are there closed aspherical (and, more generally, 7i-essential as in
(vi) of 4%) manifolds V admitting a metric with Sc >0 7

Schoen and Yau anounced “No” for dimV = 4 and they expressed a belief that a
technical refinement of their argument will work for all n, see [Sch] and [Yau].

(B) Does the K-area inequality () extend to all complete (nomn-spin!) manifolds V
with ScV > 07

We shall indicate a modified version of (/') with a certain K\/ -area in place of the K-
area but this K ,-area inequality will give us no topological restriction on such a V. On the
other hand, the minimal surface techniques of Schoen-Yau (see 5%) lead to topologically
significant geometric inequalities similar to (K) for all (not even necessarily complete)
manifolds V with S¢V > 0 but these inequalities do not seem to imply (or follow from)

our (K).

(C) When does the I-area inequality become sharp and what are the corresponding
extremal Riemannian manifolds 17 7
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Possible definitions of extremality. We assume here V has Sc V' > 0 and consider
all possible Riemannian manifolds V' and proper maps f : V' — V such that

Scw V' > Scpiuy V for all v eV

We insist on our maps f having non-zero degree in a suitable sense. It may be just non-zero

. n M :
degree in the sense of f, on H(,,  or something more general. such as

(i) the map f is spin (e.g. both V' and V"' are spin) and has non-zero .:i-degree. 1.c. the
pull-back of a regular value, f~!'(v) C V', has 4 # 0.

(ii) There exists an almost flat x € L'(V') (i.e. representable by bundles with arbi-
trarily small ||R||) such that chx does not vanish on f~'(v). (An instance of that is the
projection V! =V} x V — V' where L-area (Vj) = oo.)

Now V is called length extremal if it admits no map f : V' — V7 as above which is
strictly contracting, i.e. having Lip f < 1. Morcover, one may require the implication

Lip f <1 = f 1s a Riemannian submersion.

Another possibility, more in the spirit of the I{-area, is to call V' area exztremal if there is
no f : V! — V strictly area contracting, i.e. strictly contracting the area of the surfaces in
V'. (Here one should be careful with the equality case, especially for n = dim V" = 2, as
surfaces admit plenty area preserving non-isometric maps).

Llarull theorem (see [Llajsyis, and [Llajscntax). The spheres S™ for n 2> 2 are area
extremal in the spin category.

Llarull’s proof uses a sharp TwiBL formula for some (twisting) bundle X — §" (which
accidentally is the spinor bundle). He states in his paper only the .Z-degree theorem bhut
his argument also applies to such manifolds as S™ x T* — S§™. This will be used in 5% to
prove some semicontinuity of Sc under C'-limits of metrics.

Notice that by transitivity of degree, Llarull's theorem implies that the product mani-
folds S™ x (complete flat) are also area extremal in the spin category, i.e. where the compar-
ison manifolds V! — S™ x V} are spin and where the extremality, in the case of non-compact
(flat) Vi, is understood in the (slightly weaker) sense of non-existence of area contracting
maps f : V' — S" x V; with non-zero degree where ScV' > ¢ > n(n — 1) = ScS".
(Beware of manifolds V' of positive curvature admitting proper contracting maps V' — R*
of degree one!)

Next, since the curvature term in ( TwiBL) is additive for the products (Vi x Vo, X1 @
X5,), Llarull’s computation also yields (this seems obvious but I did not honestly check
it) that Cartesian products of spheres (possibly of non-equal radii) are also area extremal.
Furthermore, Min-Oo recently proved extremality of all compact symmetric spaces of R-
rank = 1. In fact, one may expect all compact symmetric spaces to be area extremal. Also
some non-symmetric homogeneous spaces may be extremal (but the 3-sphere squeezed
along Hopf’s circles is not extremal).
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Can one produce extremal manifolds by the following maximization process? Start
with (Vp,go) where Scgy > 0 and start enlarging go without making the scalar curva-
ture smaller. One may hope that there is some limit manifold (V,g¢), possibly non-
homeomorphic to V, but admitting a suitable contracting map V — Vb and having
ScV > ScV, and being extremal. An important point here 1s to show that the scalar
curvature is semicontinuous, i.e. it cannot jump down in the limit but this is not known
in the sharp form (compare 52). However, this maximization obviously works in the cat-
egory of homogeneous spaces and then one asks if the resulting homogeneously extremal
manifolds are external.

(D) The K-area inequality is unlikely to be sharp unless the scalar curvature (function)
Sc¢ = Sc, is constant on V. But for non-constant Sc one may improve (IV) by conformally
scaling g — ¢' = Sc-g and observing that the proof of (IV) yields,

I -areag(V,g') < const,, (')

which is significantly sharper than K for (strongly) variable Sc.

5%.K-area and the spectrum for Inf Sc = —¢ < 0. Let V be a closed Riemannian

spin manifold and let us bound I.E[VH in terms of the spectrum of the Bochner Laplacian
Ag on spinors. We use Hermann Weyl’s variational principle for Ag and observe with the
BL-formula D? = Ag + § Sc that the harmonic spinors yield eigenfunctions of Ag in the
spectral interval [0, ia] for —o = inf Sc V. Then, by the index theorem,

0 1
lA[V'H = \ind Dl S rank ker D _<_ #spec AS[O, ZU]’

where # spec As[0, A] denotes the number of eigenvalues of As in the segment [0,A]. To
make this bound interesting we should relate spec Ags to more significant geometric in-
variants of V and we invoke at this stage the following Kac-Feynman-Kato inequality
connecting the eigenvalues A; of Ag with the eigenvalues A; of the ordinary (positive)
Laplace operator A on V',

Z exp —Ait < (rankg S) Z exp —A;t (KFK)
1=0 =0

which holds for all £ > 0 and where rankg S = 2" for n = dim V. (Such an inequality is
valid for the Bochner Laplacian in an arbitrary bundle.) Thus we have

~ 1 o
{A[V]l exp —Zat <2" Z exp — At

=0

for —o = infScV and all t > 0. Here we notice that Ag = 0 and so the inequality (KFK)
provides a non-trivial information on A; only for AlV] > 2dim V' and relatively small o. In
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fact, since the splitting S = Sy @ S_ is parallel, the K F -inequality applies to S4 and
S_ separately which yields

oo

IA\[V]I exp —3ot < on/? ZGXP —\it =2% (1 + Ze\p —A; t> (A-exp)

1=0

(where we assume V is connected and so Ag = 0 has multiplicity one). The advantage of
Ai = Xi(A) over \: = \;(Ag) from our (possibly naive) geometric viewpoint is the fact
that \; are continuous in the space of metric g with the C°-topology as follows from the
variational principle for the quadratic form

fro Jlaston s = [ )i

involving no derivatives of g, while the corresponding form for Ag (as well as for D?) uses
the first derivatives of ¢ entering via the Levi-Civita connection. (This remark and (BL)
imply, as was pointed out by Lohkamp, that the integral [ (v)Sc,(g)dv, for an arbitrary
function ¥ on V, only depends on the first derivatives of ¢, although Scg involves the
second derivatives. The same applies to other Bochner curvatures, e.g. Ricci on 1-forms and
implies the C!-closeness of the upper bounds on Sc¢ and Ricci, see [Loh]CLC and compare
p. 24 in [Gro|ppr.) We see, consequently, that for an arbitrary closed spin manifold (V, go)
with IA(V)I > 995+ , there exists a constant oy = 0g(go) > 0, such that go admits no Cce-
approrimation by metrzca g with Scg > —oy.

As another corollary of (‘E—exp) one obtains the following bound on 1( V) in terms of

6 = Diam V and —p? = inf Ricci V',
A(Vy<2t 4 (8p)"(const,, ) 7,
where one uses besides (E—exp) the inequality

N> 8RO =12, (Ai-Ricel)

b bl

valid for all closed n-manifolds V' with Ricci V' > —1 (and where the general case of Ricei
> —§2 follows by scaling).

Now we apply the K FK-inequality to the Dirac operator with coefficients in X with
curvature bounded by some constant, say |R(X)|| < Rx, and conclude to the following
twisted A-exp-inequality.

1=1

IA\V — chx[V]] exp(—ia - ChRx)t < 2"/? rankg X (1 + Z exp —/\it> (AE—ch—exp)

(where, recall; 1 + > exp —A;t = Trace exp — At).

=1
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In order to make this inequality useful, one needs unitary bundles X with Ry <o and
large (comparable to Vol V') chx([V] while rank X should be small. Then one obtains a

O
lower bound on Y exp A;t for certain (large) values of ¢, which leads to the following

=1

Non-approzimation example. Let (V,go) be a closed Riemannian manifold which

admits a map of non-zero degree into o closed manifold W with negative sectional curvature.
Then, if the covering V of V induced by the universal covering of W is spin (e.g. V= W
is a homotopy equivalence), there ezists a constant og = oo(go) > 0. such that go admats
no C°-approzimations by C*-metrics g on V with Scg 2 —oo.

Sketch of the proof. Assume, to start with, m1(W) 1s residually finite, let Wb j =

1,2,..., be finite coverings of W approximating the universal covering and let V; be the
corresponding coverings of V. One knows that the heat flow exponentially decays on the
universal coverings V and W since the fundamental group 71(W) is non-amenable and so
the heat flow on ‘N/j satisfies

Trace — /S]-t < const(exp —at) Vol ‘N/J

for a fixed a = a(V) > 0 and 1 <t < ¢(j) where t(j) — oo for j — oo. (The equivalences
non-amenability < exponential heat decay < Ag > 0, can be traced to Kesten’s work on
random walk in groups and, probably, to the original work by von Neumann; this was
brought to the attention of geometers by Robert Brooks.) Observe that for every g9 > 0
there exists jo such that W;, admits an go-contracting map to S", n = dimW, and so
the same is true for \7] with €, = const gg. To simplify the notations we assume g0 = €0
and f//'jo =V, so all V] cover V;; = V. Now, if n = 2m, we get an go-flat bundle X over
V with ¢ (X) # 0 by pulling to V a standard non-trivial bundle over S™ of rank n. This
bundle goes up to all ‘N/J — V where it has ¢, > 5VON7j with & = §(V) = (Vol V)7'. Next
we assume V' is spin and to make it even easier, let Ay = 1. Then the above inequality
(A-ch-exp) applied to V; reads

' Vol 17] exp( —%a — Cpep)t < n2" Trace —Ejt < const'(exp —at) Vol f/-,
where §' = §/n! and ¢t < t(j). This implies
exp(—%a — Cheg)t < C! 67! exp —at,
for all t > 1 as j can be taken arbitrarily large and so
10+ Cheg > a. (*)

Therefore, if %00 =a- C.zo > 0, we obtain the (non-trivial) inequality o > o9 > 0

(52
for the lower bound —o of ScV. Finally we observe that we could have chosen ¢ > 0
arbitrarily small and that the constant a = a(V) is CP-continuous in the metric on V.
Hence (*) applies to small perturbations g of the original metric go in V' with Scg > —0o.
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This concludes the proof in the presence of the finite coverings V and the general case
needs a similar argument in the universal covering V in the spirit of 9 and 95 L.

Remarks. All we needed of the curvature condition KN (V) < 0 is (a) m (W) 1s
non-amenable; (b) the universal covering W has infinite I\-area.

It seems likely that the above remains true for complete non-compact manifolds 1
(replacing the above W). Namely let

(a) the heat flow on V exponentially decays with the rate given by the lowest eigenvalue
/\() > 0 of A,
(b) every R-ball in V has K-area > cR?, for some ¢ > 0;

(c) V has local geometry bounded by p, or at least Ricei V> —p > —oc to avoid a
major pathology;

Then, probably, inf Sc V' < —o for some 0 = o( Ao, ¢, p, dimV") > 0.
Approzimation problems. Let a smooth metric g be a limit of g;.

Is then
Il‘%f Scg > II’}fIl\l/f Scqg;”

Even better, if
Sc, ¢ > lim inf Sc, ¢,

100

for allv eV ¢ Or, may be

/ Sc, gdvy > lim inf / Scy gidvy,,
1% 1%

1—00

under some extra conditions on ¢;? (See [Loh]gLc for a comprehensive discussion of this
problem and 52 for partial results.)

52. Remark and references on scalar curvature, minimal subvarieties and
asymptotlcally standard manifolds. There are two competing methods in the study
of Sc > 0.

I. Minimal hypersurfaces, splitting and symmetrization. If Vi C C V is a smooth
stable minimal hypersurface in V = (V,¢) with Sc¢g > 0, then V, = V; x R admits an R-
invariant metric g; with Scg; > 0 which in the quotient space Vi = ‘Z/R equals the
restriction of ¢ to Vi. (Recall that “minimal” means critical for the functional Vi —
Vol,,—1 V1 and “stable” is implied by V] being a local minimum for Vol,_.) Then with

a suitably minimal Vo, C V; one obtains an R?-invariant metric :g\\Q on f}o =V, x R? with
Scg G, > 0 etc, which eventually leads to strong topological and geometrical restrictions on
(V,9) smnlar to (but yet seemingly different from) the -area inequality (compare 52 )

The positive curvature splitting with minimal surfaces (in a somewhat different form)
was introduced by Schoen and Yau about 15 years after the appearance of the Lichnerow-
icz spinor paper (see [Sch-Ya]gims. [Sch-Yalsmps). They also applied their method to
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non-compact asymptotically flat manifolds and resolved the positive mass and action con-
jectures of the general relativity (see [Sch-Yalpum, [Sch-Yalpa ). Further modifications and
application of the minimal surface techniques appear in [FC-Sch], [G-L]psc, [Gro]ppp, [Sch]
and [Ya], where the reader finds further references).

I1. Twisted BL-formula. The original (untwisted) spinor method of Lichnerowicz-
Atiyah-Singer was further developed by N. Hitchin in 1972, in his theses where he showed,
in particular, that some ezotic 9-spheres admat no metrics with Sc > 0. The twist idea was
introduced by G. Lusztig, also in 1972, who was concerned with the Hirzebruch formulae
rather than with S¢ > 0. Namely, he looked at the cohomology of a manifold V with coef-
ficient in a flat bundle X over V and observed that in the presence of a parallel quadratic
(possibly indefinite) form @ on X, one could pair the middle dimensional cohomology,
H™(V;X)® H*(V;X) — R for 2m = dimV, and for m even speak of the signature
o(V;X,Q). He then identified this signature with the index of the signature operator
on V suitably twisted with (X, Q) and expressed the index in terms of the characteristic
classes of the O(p, ¢)-bundle (X, Q) (where (p, ¢) is the type of Q) according to the Atiyah-
Singer theorem thus generalizing the classical formula of Rochlin-Thom-Hirzebruch for the
ordinary signature o(V) = o(V; Triv!, Q = 2?) (see 7%, 7%, 8%)

Lusztig also proved a similar signature formula for families of flat S*-bundles which,
as was observed in [G-L]ssc, admitted the A-version yielding non-existence of metrics
with Sc > 0 on tori. Then the twisting was applied in [G-L]ssc and [(G-Llpsc to almost
flat bundles over sufficiently large manifolds V (all having I-area = oo in our present
terminology) and the relevant (macroscopic) concepts of largeness were further investigated
in [GroJprm. It is worth noticing here that the existence of a flat G-bundle over V with
non-trivial characteristic class in H"(BG;R) for a connected Lie group G and n = dim V
(e.g. O(p,q)-bundle X with a non-trivial Pontryagin number of X, — X _) makes a suitable
covering of V rather large. In particular, the stable I\-area of such a V" is infinite as we
shall see later on.

The KFK-inequality has been apparently known to physicists from time immemorial
(at least it was known to Jirg Frohlich who explained it to me around 1980, also see
[H-S-U]) and it nicely fits with the (A;-Ricci)-inequality (proven in [Grolpy,) as was observed
in [Gro]ypc (see p. 86 there) and in [Gal]. It is tempting to sharpen the KFK inequality
by replacing the bound on T exp-A;t by a similar bound on individual eigenvalues A;. Such
inequalities are implicitly present in the formulae (9), (9') and (10) in [GrlLrm but now
I believe I erred at that point and one should rewrite (9)-(10) with Zexp A; ¢ (as in our
inequality (A\—ch—exp)) properly replacing N(\) in [Gro]prm. (I have not tried to find a
counterexample to (9)-(10) of [Gro]prm). Fortunately, this does not essentially damage
the geometric message contained in these formulae.

There is one case yet where the individual eigenvalue bound is possible, namely that
for Ao, which was exploited for Sc < 0 by Ono and later by Mathai who proved something
similar to the above non-approximation example with a special regard to non-amenability
(see [Ono], [Math], [Hij] and also [Bera] for general information on Bochner formulae and

).
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The KFK-inequality and the BL-formula D? = Ag + % Sc suggest that the positivity
of the operator A + pSc, where A is the (positive) Laplacian on functions, must have,
for large p, comparable effect on D to that of the positivity of Sc. In fact the lowest
eigenvalue of this operator. denoted A¢(u), should play the same role as inf Sc. This can
be justified for p = % (and hence, for all ;¢ > %) by observing that the (R-invariant) metric
§ =g+ %dt? on V =V xR has Sc§ = Scg + %Aap. If we take the lowest (and hence,
non-vanishing) eigenfunction of A + %Sc (on V = (V,g)) for ¢, we get Scg = 2)0(%).
Then we observe that (IA/,Q) is (at least) as large as (V,¢) since V = '/V\/IR For exam ple,

K-areay V > K-areagV,

at least for compact V (which, actually was tacitly assumed here anyway). To see that we

go further, to the Riemannian product ¥V = V xR and observe that the standard (virtual)
bundle Z on R? with compact support representing the generator in the I -theory of R?/oc

can be made arbitrarily ¢-flat and then it lifts to a bundle Z on 17, also as flat as we wish
(since V 1s compact and so the projection X — R? is Lipschitz). Then every bundle X on

V, after lifting to V and tensoring with Z, gives us a comparably flat bundle on 1 Hence
our K -inequality for V remains valid with 2X (2) in place of nf Sc.

The geometric role of Ag(u) for g < § is not so clear but the topology of V' feels
positivity of A + pSc up to p = i Namely we have the following

Observation. If A + ;1 Sc > 0 for some pu > i then the Cartesian product with
the torus, V x T* for some k. admits a metric with Sc¢ > 0. In particular, this implies
according to [G-L|ssc that _1( V=0, provided V' 1s spin.

Proof. If A+ 1S is strictly positive then so is A + pn Sc for py = (N,;,“]r,) and large
N =dmV +k (we assume here V is a closed manifold) and let ¢ be the first (positive!)
eigenfunction of A + pn Sc. Then we conformally change the product metric on V x T*
by § = (¢ @ flat) — g, = g,oN 59, where ¢ is the obvious lift of ¢ from V to V x T*, and
recall (see [Ka-Wa), [BerBe]) that Scg; > 0. (Probably, a combination of the Schoen-Yau
successive splitting technique with surgery could deliver a metric g; with Scg, > 0 on V

itself for dim V' > 5.)

Question. What is the geometric (and topological) significance (if any) of the strict
positivity of A 4+ pSc for p < 17

II1. Comparison between I and IL. There are two basic advantages of the minimal
surface techniques over the spinors. First of all, one does not need the underlying manifold
V to be spin. For example, no direct Dirac operator argument rules out Sc > 0 on the
connected sum T## CP?. Second of all, minimal surfaces work in (sufficiently large) non-
complete manifolds where one has a problem with the Dirac operator. On the other hand,
whenever the Dirac method applies it delivers finer geometric (and topological) informa-
tion although in no serious case the results obtained by one method can be completely
recaptured by the other. (This indicates a dark invisible mass of deep hidden structure
showing two little tips, minimal and spinor.)
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One may try to extend the Dirac operator techniques to non-spin manifolds V' by
removing a suitable codimension 2 submanifold W for which the complement Vy = V — W
is spin and proving an appropriate relative index theorem for V;. (Compare [Chol; ». It
would be even better to give Vj a complete metric of positive scalar curvature whenever
V and W possess such metrics.) Also, one may look for a relative index theorem for
“sufficiently large” manifolds with “far away” boundary.

IV. Connes’ theorem on foliations with Sc > 0. Let V be a closed foliated man-
ifold with leafwise Riemannian metric having Sc > 0. Alain Connes proved in [ConcoTr
the following generalization of Lichnerowicz’ theorem,

If the leafwise tangent bundle 1s spin then A\(V) =0.

Connes’ proof relies on his rather sophisticated version of the index theorem integrat-
ing the “along the leaves” analysis transversally to the leaves. We shall indicate in 9%
a more elementary approach and also explain how a twisted version of Connes’ theorem
suggest a conjectural bound on the recurrency dimension of foliation (see 2%), namely

recdim < dim(leaves) — 2

for Sc > 0.

V. More on Sc > —o. If a closed manifold V' admits no metric with Sc > 0, then
Inf Sc is expected to be small for small metrics on V. For example, if V = (V| ¢¢) is locally
symmetric with Ricci< 0, then every metric ¢ on V' which is smaller than ¢y (or, maybe,
just having Vol(V, g) < Vol(V, go)) is likely to have inf Sc g < Sc go. Some result of this kind
is proven for dim V' = 3 in [Gro|ppp using minimal surfaces and we indicate in 5% (following
a hint by Rick Schoen) a similar approach with stable soap bubbles. (See [Gro]ypc and
[B-C-Glgr for such results with Ricei instead of Sc and [B-C-G]yg for bounds on Scg
where ¢ is (conformally) close to gq.)

VI. Spinors without the index theorem. E. Witten observed among other things
in [Wit] that the Bochner-Lichnerowicz formula alone rules out certain metrics with Sc > 0.
For example, let ¢ be a metric with Scg > 0 on R™ which is Euclidean outside a compact
subset. It is not hard to show that D; is positive and D, 1s Ly-invertible and so for each
spinor sg on R™ parallel at infinity there exists an Ly-spinor ¢, such that Dyp = D so.
Then the spinor s = sp — ¢ is g-harmonic and asymptotically parallel and the BL-formula
shows that s is g-parallel over all of R™ which eventually implies ¢ is flat (which was earlier
proven for small n by Schoen and Yau with minimal surfaces, see [[Kazd] for details and
further references).

Min-Oo extended Witten's method to the hyperbolic space H" instead of R" and
proved, for example, that

every complete non-compact connected spin manifold V with ScV > —n(n —1), n =
dim V', which is isometric to H" at infinity, 1s isometric to H™ (see [Minl|scr).

In other words, one cannot modify H" on a compact subset without pushing scalar
curvature down somewhere.
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Let us explain this for the Ricci curvature by looking at a family of parallel horospheres
in the perturbed space H", see Fig. 5 below.

perturbed
region /
1 H,

H

Fig. 5

If the Ricci curvature of the perturbed manifold is > —n + 1 = Ricci(H"), then the
perturbed horospheres are more mean-convex than the original ones (of mean curvature
n — 1) and they also have smaller (n — 1)-volumes. Therefore if we normally project a
perturbed horosphere after it has passed the perturbed region onto a non-perturbed one
(H, on Fig. 5) we obtain a map with smaller Jacobian than in the non-perturbed case.
This gives us a map of (a part of) a starting horosphere (H; on Fig. 5) to H, which is
standard at infinity and which contracts more than its regular share inside. Clearly, this
implies that there was no extra contraction at all and the horospheres did not change while
passing through the perturbed region and so there was no any perturbation to start with.

A modification of this argument (see iv in 52) applies to rather general manifolds
and gives a non-trivial upper bound on Ricci in compact regions in terms of the ambient
geometry (where such a bound should be sharp, I guess, for symmetric spaces). On the
other hand the moving horospheres can be deformed to u-bubbles of 5%, which leads to
the following version of the Min-Oo theorem.

Let V be a complete connected (possibly non-spin) manifold with Sc > —n(n—1), n =
dimV, having an end isometric to that of H" (and possibly having other infinite ends).
Then it is isometric to H™ provided n < 7. (The dimension restriction is due to possible
singularities of u-bubbles, but according to an unpublished result by Schoen and Yau
these singularities are irrelevant in so far as we deal with the scalar curvature and so the
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conclusion of the theorem holds for all n.)

This theorem (as well as the original version by Min-Oo) tells us that the filling of
the round sphere in H™ by the ball is the best possible in terms of the lower bound on Sc
which brings in the following general discussion.

5%. Topological and Riemannian filling problems. We say that a closed oriented n-
dimensional Riemannian manifold is filled in by an oriented manifold W, if W is a compact
manifold with boundary @W = V. The original Riemannian metric g on V' can be always
extended to some h on W and then we say that (W, h) fills in (V,g) in the Riemannian
category. We assign some measure of geometric and/or topological complexity to W, try to
find a filling W with minimal possible complexity and use this minimal (infimal) complexity
among all fillings W as a Riemannian invariant of V. We start with a couple of topological
versions of this problem.

I. Find W filling in V' with a minimal possible Morse number, i.e. with a Morse function
on W vanishing on V and having the minimal possible (Morse) number of critical points.

This problem makes sense in each cobordism (and also bordism) theory and it can
be successfully attacked in many cases by traditional surgery techniques (albeit this may
be rather subtle already for estimating the Morse numbers of manifolds realizing given
homology classes in non-simply connected spaces, see 8%) Namely, the Browder-Novikov
theory seems to imply the following filling estimate.

Every V of dimension n > 5 with trivial characteristic numbers admats a filling W
such that the Morse number M(W') s bounded by

M(W) < constn(rank (V) + Z b(V))

=0

where rank w1, (V) denotes the minimal number of generators of my’s of the connected com-
ponents of V and b; are the Betti numbers with suitable coefficients.

Idea of the proof. As V is oriented one can kill 7; by k& = rankm; surgeries thus
making V simply connected (even with smaller k equal the minimal number of elements
normally generating 7). Then, on the level of the Poincaré complexes, one can construct
the required “small” filling and next it can be given a smooth structure with the Browder-
Novikov theorem. The easiest case is that of a framed odd dimensional manifold which
can be brought by at most M(V) surgeries to a homotopy sphere V; fillable by Wy with
M(W)s) < const,. In general, however, I can immediately see only a Q-version of the filling,
i.e. filling W; with the required bound on M(W;), not of V itself but of ¢V for some positive
integer i < ip(n). All this equally applies to a realization of a given relative bordism class
of a simply connected space but non-simply-connectedness is quite a different matter.

I1. Instead of the Morse numbers M (V') and M (W) one may use a stronger invariant
carrying more topological information. Here we use N(V), the minimal possible number
of simplices for a p.l. (or smooth) triangulation of V. Then we define the filling number
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FN(V) as the minimum of N(W) over all fillings W of V. (If V' does not bound, we still
may define N F(V) by subtracting from V a combination of some standard generators of
the cobordisms in question.) There are at most finitely many manifolds V' with N(V) < Ny
(by the standard smoothing theory) and so every smooth invariant of V, including FN(V),
admits a bound in terms of N(V). The problem is to find, qualitatively speaking, the best
bounds (where in the definition of FN (V') we may or may not insist that the triangulation
of W extends a given one of V). For example, every Pontryagin number P of V is bouaded
by some function Fp (N(V)) and we shall see presently that

Fp(N) < expexp...expN.

dim V

But it seems quite realistic to expect just the linear bound Fp(N) < constp IV, or at worst,
a polynomial one, Fp(N) < constp NP, A similar problem comes up with the function
FN(V) where also there is a huge gap between known multi-exponential bounds and the
expected linear ones.

IX'. Locally bounded fillings. Let us measure the local complexity of a triangulated
space by NLoc(Tr V), the maximal number of neighbours a simplex may have. Then fix
two numbers N; and N, much larger than N; and try to fill in a p.1. triangulated manifold
TrV with NLoc(Tr V) < N; by a p.l. triangulated W with NLoc Tr W < Nj. (If one does
not like p.l. category one may think of smooth triangulations.) An elementary argument
shows, that if V' bounds at all, then it bounds some Tr W with NLoc Tr W < N, provided
N, is sufficiently large compared to N;. What is more amusing here is a possibility to
extend this to (oriented) pseudo-manifolds (i.e. spaces built of n-simplices where every
(n — 1)-face has exactly two adjacent n-simplices). Namely, every oriented pseudomanifold
V of dimension n > 0 can be filled in by a pseudomanifold W (with boundary OW =V ),
such that NLocW < F(NLoc V') for some universal function F' = F,(N).

To grasp the idea let first V' be a manifold. Then it bounds a pseudomanifold W
with some standard singularities, namely cones over the generators in the corresponding
(here oriented) cobordism group. The number of these is finite by Thom’s theorem and
so their complexities are bounded. Next, suppose V has only isolated singularities. These
are cones over certain manifolds, say Uy....U;, which are, in totality, bound V' minus the
cones and have N(U;) < Ny, ¢ = 1...j. If two of them, say U; and U, together bound
some manifold V; », this can be chosen with N(Vj ;) bounded by a constant (depending
on N;) and we can eliminate such a pair of singularities by cobordism W ; between
V = V; and V2 where W; , satisfies some local bound and V, has by two singularities
(corresponding to U; and Us) less than V = V;. If one could divide all U; into such pairs
(or just groups with a a priori bounded number of members) one would construct step by
step our Wy = Wi, UW, 3 U.... Of course, such a grouping is not possible in general,
but it becomes so after introducing extra singularities, also added one by one in pairs,
isomorphic to the cones over £U’; which are added in small groups the way we wanted to
subtract them. This (after a little thought) gives us a cobordism W; from V" to a non-
singular V; to which the previous argument applies. Notice that these steps from V' to V;
do not need any cobordism theory (but this will enter again if we look for a bound on the
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function Fn(Ny) > N,). Now, suppose, the singularity is supported on the k-skeleton and
then make some modification over the k-simplices to push the singularity to the (k—1)-
skeleton. Over each open k-simplex Ay the Singula‘rity is (Ag x cone over U;) where U;isa
(n—Fk— 1)-dimensional manifold and where the number of isomorphism classes of these U,
is bounded in terms of N,. If some finite combination (with a priori bounded number of
members) of U; bounds a manifold, we can by surgery eliminate these U, and again, in the
general case, such a grouping is preceded by adding to V some (possibly very large) number
of “standard” V,’s, where each has N(V,) < consty,, such that their U;, match our U;.
Again, this is a matter of elementary algebra (with no any topology being used). Thus, by
elementary induction. every V" with bounded singularities can be made non-singular by a
cobordism with bounded singularities and the resulting non-singular space, say V' can be
filled in by a W’ with bounded singularities according to Thom’s theorem.

Now comes the true problem: estimate the number of simplices of these W with
bounded singularities in terms of the number of simplices in V.

This is related to a similar problem stated earlier where we did not require the local
bounds (but insisted on V' and W being manifolds rather than pseudomanifolds) since
one can achieve such bounds by induction on skeletons as follows. Suppose our V has
a bound on the links of the simplices of codimensions 1, 2, ..., n — k — 1 and we want
to achieve it over the k-simplices A. Here again the singularity is (AX cones over U)
where each U; is locally but not globally bounded. If each U; can be filled in by a locally
bounded FillU; with N(FillU;) < F(N;) we could make the singularities of V' smaller by
adding only a F(N(V)) number of simplices. Thus the locally unbounded filling problem
(of estimating N(W)) reduces to the locally bounded one.

Low dimensional ezamples. (1) The circle triangulated into N segments can be
filled in by a triangulated disk with at most 7 triangles at every vertex and with at most
104N triangles. (Of course we need less, but I take 10* to be safe without much thinking;
in any case, the proof is left to the reader.)

(2) Every oriented surface V' triangulated into N simplices bounds a 3-manifold (in
fact a handle body) divided into (at most) 10'°° N simplices.

To prove this one may assume, by the above, the triangulation of V' has at most 14
triangles at every vertex. Then the corresponding locally bounded problem can be solved
in the following geometric setting (while a purely combinatorial proof is left to the reader).

II". Let V be a Riemannian manifold and Loc V denote sup (| (V)| + (inj Rad V)7!).
First we want to fill in V by W with Loc W < const Loc V for some fixed (possibly huge)
const = const,. such that near the boundary OW = V the manifold W has product
geometry, i.e. that of V' x [0,¢] with ¢ = (Loc V)71, where the injectivity radius of W
is measured only e-far from 0W. I V bounds some W, then it s easy to give W a
metric with such properties but what is more interesting is to have such a W with a
bound Vol W < F(Vol V') where the best function F' would be the linear one giving the
bound Vol W < const, Vol V. Notice, that every V with Loc V « 1 can be triangulated

into N ~ VolV simplices with N Loc Tr V' <1. Conversely, such a triangulation can be
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smoothed (if it is smoothable) to a metric with Loc <N Loc and Vol <SN(Tr). Thus the

combinatorial problem concerning locally bounded pseudo-manifold filling is equivalent to
its Riemannian counterpart.

Filling-in surfaces. Let first V be diffeomorphic to S52. Then it admits, Iy a
theorem of Alexandrov, a convex isometric embedding into the hyperbolic space H 3 with
given constant curvature —x < inf K(V'). Furthermore, one knows that the local geometry
of this embedding (i.e. its second quadratic form) is bounded by that of V and by ~ and
the volume of the convex body W < H?® is bounded by const AreaV for all x < —1.
This W (slightly modified near the boundary) linearly (!) solves our Riemannian filing
problem for V diffeomorphic to S*. Next, an arbitrarily oriented surface with bounded
geometry can be cut into pairs of pants by controlled cuts which reduces the problem to
the case of S2. Thus, every oriented surface V with a bound on LocV admits a filling W
with another bound on Loc W such that VolW < const Area V. Consequently, the locally
bounded pseudomanifolds filling problem 1s linearly solvable in dimension two as we have
claimed.

Remark. One could replace the Alexandrov embedding theorem by the Riemann
mapping theorem for S?. On the other hand one could construct the filling for general
surfaces directly by using Laborie’s isometric embedding theorem.

II". Let us give a homotopy theoretic version of the above filling problem where we
concentrate on the simplest case of maps S”+"* — S™. If such a map f has Lip f < A,
it can be regularized (smoothed) so that the pullback of some regular value, say V =
fr'e'é(s) C S™*t"  will have (local and global) geometry controlled by A as follows, for
example, from Yomdin’s quantitative transversality theorem. Conversely, if we have a
framed n-manifold V C $™%" with local control over the geometry, the corresponding
map S™FT" — S™ is Lipschitz controlled. Thus the volume controlled Riemannian filling
problem translates in this case to the Lipschitz extension problem. This may be used to
prove the above mentioned multiexponential bound where the appearance of expexp....
is due to the use of iterated loop spaces or Postnikov systems. (For example, contracting
a map S% — CP™, 3 <k < 2m, involves an exponential distortion in the course of the hift

to S?m*1. Yet the above 2-filling argument allows sometimes to eradicate this exp, e.g. for
the map S™t2 — S™.)

Having failed to prove the linear bound for the above filling one may look for obstruc-
tion and an obvious one is the g-invariant of V. But this can be linearly bounded by Vol V
(see [Ch-Gr]on) with the heat flow serving as a kind of linear analytic filling.

II1. Filling without curvature. A given Riemannian metric g on V = OW can be
extended to an h on W with arbitrarily small volume but then necessarily the distance
function dist, becomes smaller on V than dist,. In fact, if dist, = dist; on V', then,
(almost) obviously,

Vol(W, h) > C(V,g).

What is less obvious, is the existence of h with distj |V = dist, satistying
ntl
Vol(W, h) < constp(VolV,g) n |
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which generalizes the isoperimetric inequality of Federer-Fleming and which is proven in
[Gro]rrM using ideas borrowed from the classical Plateau problem. Unfortunately, one has
a poor understanding of this const,. For example, one does not know if the filling of the
equator S® C S™*! by a hemisphere is the best possible. (Other natural candidates for
extremal examples, where the above inequality may become sharp, use a distance function
on V related to a Riemannian metric not on V but on an ambient space. For example,
one may take a sphere V in a, say symmetric, space X and ask if there is a filling W of V
with disty |V > distx |V and having smaller volume than the ball in X bounded by V.)

Filling radius. Besides Vol W an important characteristic of a filling is inRad W

= sup dist(w,0W = V) (where recall the distance in W defined as the infimum of
el weW

lengths of curves between the points in question where the curves may touch the boundary
at some points.) Next one defines FilRad V' as the infimum of inRad W over all fillings W
with disty |V = disty-. This is related to dim, V' in the following obvious way, dim, V' <
n—1= FilRadV < ¢ and so FilRad can be vaguely thought of as a distance from V'
to something lower dimensional. For example, suppose we are given a A-Lipschitz map
V — V; where Vi has the following local contractibility property: every ball of radius
6 <1 in Vy is contractible within the concentric 26-ball. Suppose that AFilRadV < o,
for a small positive 6, ~ 27". Then f admits a continuous extension to W. This is done
by sending each w € W to the nearest point v € V and then to f(v) € Vi. But the
nearest point v may be not unique. What we do is choosing an e-fine triangulation of
W and making some choices for the vertices, w; — vi — f(v;). The distance between
f(v;) and f(v;) for adjacent w; and w; cannot exceed 2inRad +¢ and so we have a short
path between f(v;) and f(v;) in Vi. Then the boundary of each triangle in W goes to
a closed curve of length 6inRad W + 3. which can be filled in in V} because of the local
contractibility of Vi. This gives us an extension of f to the 2-skeleton of W, then we
extend to the 3-skeleton, etc. (compare [Gro]prm )-

Ezamples. FilRadV > ¢! InjRad V for some 6, > 0.

If A < é6,(FilRadV)™! for the above é, > 0, then every A-Lipschitz map V — S™ for
n = dim V has zero degree.

Notice that the condition disty |V = disty, albeit crucial, could have been slightly
relaxed in the above argument which will become relevant presently.

IV Fillings with lower bounds on curvature. Let again (V,g) be a closed Rie-
mannian manifold but now with an additionally given quadratic form & which we want to
serve as the second fundamental form of a filling W of V. Then we pick up some curva-
ture K, e.g. sectional curvature, Ricei curvature, scalar curvature, and try to mazimize

K™ (W) = inwf K7(W) over all fillings. Then the supremum of K’ (W) over all fillings W

of V = (V,g,S) becomes an invariant of (V,g, S) which we want to evaluate and also we
want to understand the geometry of the extremal and nearly extremal fillings W. (The
classical calculus of variation suggests maximizing or minimizing some integral curvature

characteristics of W . but even for such strong functionals as [ |K(W)|*dw we know yet
w
too little even to make a conjecture.)
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There are two natural choices of S for this purpose. The first one is where V" appears
as a closed hypersurface in a standard (e.g. symmetric) space and bounds some domain
Wy. Here g and S are the induced metric and the second fundamental form of V' in W
and the basic question is whether Wy is extremal for a particular curvature function K,
i.e. if some filling W of (V,¢,S) may have K’ greater than that of Wy. Another useful

choice of S is § = \g for some constant A where our sup Fill K (V, g, \g) = sup K (W)
Wy
becomes an invariant of ¢ alone for each choice of A.

The basic result, motivating our setting, is the Schoen-Yau-Witten theorem claiming
that the domains Wy, C R™ are extremal for K’ = Sc, i.e. one cannot find W filling
OW, (with g and S induced from R") without having Inf Sce W < 0, and this generalizes,
according to Min-Qo, to domains in the hyperbolic space I’ = — const as well as in the
hemisphere (K = const).

The case K’ = K. The Gauss theorema egregium expresses I'(1W) on V' = oW
in terms of K(g) and & which gives us for n > 2 an a priori upper bound on 1%%/f

K(W) (unpleasantly) limiting possibilities of the filling. Yet more precise evaluation of
sup Fill K(V, g, Ag) in terms of the global gcometry of (V| ¢) remains interesting especially
for manifolds V of positive curvature.

K’ = Ricci and scalar curvature. Here some (V,¢.S) may have fillings W with
arbitrarily large Ricci.

Ezample. Take (V, g) to be a flat torus and § = Ag for some A < 0. Then this
admits fillings W with RicciW > p for arbitrarily large p. To see this realize V = T™"
as the boundary of a neighbourhood of the zero section of a real line bundle W over
Vo =T"/Zy,say U. C W D Vy. We may give V; flat metric and make it totally geodesic in
W simultaneously making all sectional curvatures of W on the bivectors (7,v) € T(W)|V,
equal k > 0, where v is the unit normal to Vj, in W and 7 are tangent to Vj. If s 1s large so
is Ricci W while the second fundamental form of U, = V can be adjusted with ¢ to be Ag.
Notice that the implied involution on V = T" can be made for n > 2 orientation reversing
as well as free which makes W orientable. Yet there is something not quite convincing
about this example and, probably, it can be ruled out by some mild restriction.

Proposition-Ezample. Let W be a compact manifold with convez boundary V = OW
(i.e. § > 0), such that the mean curvature of V satisfies M(V) > p > 0 and Ricai W > —p?
for (p?/n—1)—p*=6>0. Then

(a) inRad W < ap™" for a = pu*/é.

(b) There ezists a constant C = C(g,67 ") = C(inf Ricci V,671), such that every two points
in V. owith distw(vi,v2) <1 have disty(vy,vp) < C. '

Sketch of the proof. The first claim follows from the following standard differential
inequality for the mean curvatures of the equidistant hypersurfaces V; C W,

M > (n—1)"Y M) = p,
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which forces My to go to oo in time < au~' (see [Grolsig for an elementary discussion).
Notice that one does not need convexity of V = W at this stage.

Next, to prove (b), we look at the distance function disty (vi,v2) and observe that
its Laplacian on V' x V tends to be quite negative for large 8. In particular, distw (v, v2)
cannot have a local minimum (v, vy) for vy # vy if & > 0. Moreover. the standard
minimization argument (relying on the Omori-Yau maximum principle if we want to use
inf Ricci V) shows that there are positive ¢, and &3 depending on (V,¢) and é. such that
every two points v; and vy in V' can be brought e;-closer in W by an ¢;-raove in V, and
so they cannot be too far apart in V if they are close in W.

Corollary. If M(V) — oo then necessarily inf Ricci W — —oo for all fillings of
(V,g,8 > 0) with g kept fized (and M = Trace S).

Proof. If M becomes much larger than — Inf Ricci, then V behaves as if it had a very
small filling radius. In particular, every A-Lipschitz map V' — S™ extends to W if M (V)
is large compared to A and Inf Ricci IV is not too small, which is, certainly, impossible for
large enough A.

Questions. (a) One can probably significantly relax (if not totally remove) the
convexity condition albeit the following example makes one feel unconfortable.

@!)

Vi

Va
Fig. 6
The surface of revolution of the curve in Fig. 6 can be smoothed with positive mean
curvature M > 2 > 0 while the filling is flat.

At the same time the V-distance between v; and vy can be forced to go to +oo with
dist w(v1,v2) < const. However, this does not constitute a counter-example as the intrinsic
geometry of V becomes rather unruly with RicaaV — —oo.

(b) Can one replace in the above corollary Inf Ricci W by Inf Se W ? (Maybe with
S — oo strengthening M — o0.)
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5%. K\/-area for non-spin manifolds. The major geometric impact of our bound on
the K-area by (inf Sc)™! for Sc > 0 is the following

Rough area bound. Let gy be an arbitrary Riemannian metric on V. Then there
exists a positive constant C' = C(V,gq) > 0. such that every complete metric g which s
areawise greater than go has

inf Sc,¢ <C
veV

(where “areawise greater” means that every smooth surface S'in V has Areay S > Areay, S).

This bound has been established so far only for spin manifolds V' and now we want
to prove it for all V.

First approach. Every V admits an S™-bundle W — V for all large m where the
global space W is a spin manifold. (For example, if V' is orientable then the total space
of the unit tangent bundle is spin.) If V' comes with an areawise large metric ¢ then
our sphere bundle can be given a connection with small curvature and the fiberwise (unit
spherical) metric adds up with g to a metric g on W with Scg ~ ScS™ + Scg, where,
recall, Sc S™ = m(m — 1). Furthermore we can enlarge the fibers by scaling them by a
suitably large R (yet with R™! not too small compared to the curvature of our connection)
which makes the corresponding metric on W, say §p, areawise large for g being areawise
large (as G is areawise monotone in ¢) and having Scgg ~ —"1(-%_—1) + Sc g (where we need
R~ comparatively large). This largeness of gy signifies, in particular, a lower bound on
K-area W and then our spin result applied to W implies the desired conclusion for our
(non-spin) manifold V.

Remark. One may use here more general (non-spherical) fibrations W — V' with
compact homogeneous fibers such as CP™ or Gr,R™ handily coming along with vector
bundles which can be used in the definition of the I{'-area.

Second approach. If V is non-spin, the spinors are defined up to £ sign and form,
what we call %—spz'n bundles S, and S_. Now, instead of the ordinary bundles X we
use %—spin bundles X which have the same + ambiguity as S; and S—. Then the tensor
products Sy @ X and S_ @ X are ordinary vector bundles and we have the (twisted) Dirac
operator D : C(S4 ® X) — C*(S_ 2 X). We define the K ,-area using these -spin
bundles X requiring as earlier that some Chern number of X does not vanish (noticing
that the notions of a Chern number and of the curvature make perfect sense for these X')
and observe that the proof of the K -area inequality now applies to non-spin manifolds V
and shows that if ScV > 0, then

I\'\/areast V' < consty(inf Se V)7L (K\/)

Remark. The K\/-area has the functorial properties similar to those of the K -area
but only for spin maps f : V; — V5 which respect the second Stiefel-Whitney class,
i.e. having f* (wz(Vz)) = wy(V}). For example,

K j-areaV) > A\T2K ,-areal; (*)y

50



whenever there exists a spin A-Lipschitz map Vi — V5 of non-zero degree (compare (*) in
§4), and other properties of the K -area (see §4) similarly extend to the I ~area. Unfor-
tunately, we are unable to compare the K\/ -area of a non-spin manifold with that of S
or R™ and the inequality (I /) leads to no topological restriction on V with ScV > 0 if
the universal covering of V is non-spin. (Most topological restrictions for S¢ > 0 without
the spin assumption follow by the techniques of minimal varieties of Schoen and Yau but
it is less clear how to recapture the geometric aspects of the K -area by these techniques.)

5%. Symplectic manifolds and positive scalar curvature. Let (V,w) be a symplectic

manifold of dimension n = 2m and ¢ a Riemannian metric on V. Then w can be diago-
m

nalized with respect to ¢ at each point v € V, e.g. w, = Y a;x; A y; for a g-orthonormal
i=1
coframe z;,y; at v. Thus g is symplectically characterized by m numbers |a;| and so every
system of intervals 7 = {I; C [0,00)}, 7 = 1,..., gives a class of metrics Gz on (V,w)
characterized by a; = a;(¢g) € I; for ¢ € G7. In particular, we have the class G; = Gy(w)
of adapted metrics g where each I; reduces to the single point 1. Two other important
classes are G5 where |a;| < 1 and G« where |a;| > 1. Notice that each class G7 is invari-
ant under the symplectic automorphism group of the tangent bundle (T(V),w) which is a
huge extension of the group Sympl(V,w) of symplectic automorphisms of V. Now, every
metric invariant ¢ — inv(V,g¢) gives us a function on Gz (invariant under Sympl(V,w))
from which we may hope to extract symplectic invariants. For example, inf and sup of
inv(V, g) over ¢ € Gz are invariants of (V,w). Furthermore, one may use all of the Morse

landscape of the function Gz — R as a (symplectic) invariant of (V,w) (and a physicist
myv

would try sz exp(—Ainv(g))dg).

A single example we have met so far was inv(g) = K -area(g) in 42 and here we look
at the scalar curvature Scg.

If (V,w,g) is a closed Kdhler manifold, then one knows (Chern?) that
/ Sc(g)dv = Iy(w) = am (ar(V) — [wm_l]) V] (*)
Vo €

where a,, = 4% /(m — 1)!, and this was recently extended by David Blair to quasi-Kahler
manifolds, 1.e. for ¢ adapted to w as follows.

/<s¢g+§||wnz>dvzlo<w> ()
’

where J is the almost complex structure naturally associated to w and g (defined by
g(z,Jy) = w(z,y)) and V is the covariant derivative of g (see [Bla]). Thus fi,(Scg)dv <
Io(w) with the equality exactly for Kéhler metrics g. This suggests the following three
(symplectic) invariants of (V,w)

(1) I;(w) =sup fv Scgdv —Ij(w),
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(2) Iy(w) = (sup nelf"/ Scy g) Vol V — Ig(w),
g v

(3) Is(w) = (sup Scg) Vol V — Iy(w).
g
where in (1) and (2) g runs over all adapted metrics and in (3) over the adapted metrics
with constant scalar curvature.

Notice that Iy < I, < I < 0 and the basic question is whether (or when the
vanishing of I;, for a given ¢ = 1,2, 3, implies the existence of an adapted Kahler metric
g on (V,w) (and it would be useful to understand the Euler-Lagrange equation for the
function g — [ ||J,||*d,v on the space of adapted metrics g, where the solutions generalize

1%

Kahler metrics by saying that J and w are in a certain sense g-harmonic). Also observe
that I3 may be, a priori, equal —oo, if (V,w) admits no adapted metric ¢ with Sc ¢ constant,
but I guess the existence of an adapted ¢ with Sc g = — (large const) must follow for m > 2
from a suitable h-principle. On the other hand it may be hard to decide when (V,w) admits
an adapted metric with Sc > 0, as besides the topological restrictions disregarding w, one
must take into account the inequality Iy(w) > 0 (which also appears in the context of Floer
homology and seems to be quite restrictive).

Now let us modify our I; by allowing metrics ¢ from a larger class, namely G~ O G.
Notice that the condition ¢ € G (w) is equivalent to ||w|l, < 1 which well fits into the
K-area discussion. Define

I7(w) =sup Vol(V, go ) (Vol(V, g))_1 Scgdv — I

g Vv

where g runs over G' and go is some metric from G;. Clearly I (w) > I;(w) and, for all
we know, it may be +oo (as it happens if we disregard w and observe that every smooth
manifold V of dimension > 3 admits a metric ¢ with arbitrarily large average Vol ™! [ Scy,
obtained by adding spherical bubbles to a given (V, go)). Trying to prevent this, one may
modify I7 to I7 (w, 00, ) where g runs over the metrics in Gs(w) with Scg > —op and
Vol(V,g) < AVol(V, go) for go € G;. (Every g € G5 has Vol(V,g) > Vol(V, ¢gg) with the
equality iff ¢ € GG1). Similarly, we modify (2) and (3) by enlarging G; to G5 and replacing
Vol V factor by Vol(V, go) for some gy € G,.

It follows from the K-area inequality (or K’ /-area for non-spin manifolds) that I5 (w) <
oo for all (V,w), i.e. one cannot make Sc g everywhere large keeping “¢g > w”, i.e. |lw||, < 1,
and, moreover, one expects here sharp inequalities of this kind. For example, let (V,w, go)
be a compact symmetric Kahler manifold. Then one may think that every metric ¢ € G
has inf Sc ¢ < Sc go. This may be approached by a detailed analysis of the Bochner formula
for the Dirac operator twisted with the line bundle corresponding to w (compare [Lla] and
yet unpublished work by Min-Oo).

52. Soap bubbles for Sc > —o. Rick Schoen once said to me, about 5 years ago, that
soap bubbles could be applied to the geometry of Sc > —o as (and even more) efficiently

as minimal surfaces. We were talking at the moment about the foliated Plateau problem
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in hyperbolic 3-manifolds (see p. 73 in [Gro]rpp) and I was not ready to appreciate Rick’s
remark. But now we shall follow Rick’s suggestion, look at such bubbles and see that they
indeed provide a flexible tool for the study of Se > —o. For example, we shall prove that
the hyperbolic metric of constant sectional curvature and Sc = —n(n — 1) cannot be, even
locally, approzimated by metrics with Sc > —o > —n(n — 1).

Usually, soap bubbles refer to surfaces of constant mean curvature. Here we use a
more general (well known) notion of a u-bubble where  is a real function on a Riemannian
manifold V. We look at a hypersurface W in V bounding some domain W+ C V and set

VEWT = / pu(v)dv.
W+

Actually, one should think of pdv as an n-form on V for n = dim V and V¢, W™ should be
regarded as a 1-form on the space of the hypersurfaces W in question. Here we allow W to
have a non-empty boundary and then V¢, W™ is defined up to an additive constant (i.e.
as a 1-form) on the space of W’s with a boundary W C V kept fized. Then we consider
the function(al) W — R given by

W A(W) = Ve,W

for A(W) = Vol,_; W (thought of as “area”) and define u-bubbles as critical points
(i.e. hypersurfaces W C V') of this function.

Ezamples. (a) If u = 0, these bubbles are the ordinary minimal subvarieties, which
have (at their non-singular points) zero mean curvature.

(b) Let V = R™ and p(v) = (n — 1)|jv]|™!. Then the p-bubbles are exactly the
concentric spheres W, C R" of radii t € R, around the origin. Non-accidentally these have
constant mean curvatures, this is because the levels of u have constant mean curvatures,
M(p~1(t)) = (n — 1)t~'. Here our function W, — A(W;) — V£, W, is (clearly) constant
(= 0) in t (where W, is the ball bounded by the sphere W; and where the mean curvature
of Wy is +(n—1) with our sign convention). In fact each sphere W; provides the (non-strict)

global minimum for the function W — A(W) - V£, WT.

We want to show that in general, y-bubbles W have mean curvature M(W) = u|W
and then to compute the second variation (derivative) of A — V{,. Such a variation at W
is defined with a normal field (W )v for a unit normal field v looking outward (of W)
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as in Fig. 7 below.

Fig. 7

One knows that the first variation (derivative) of A = A(W) at W 1s

A = M (w)o(w)dw
/W (w)p(w)

where M denotes the mean curvature of W, and

Ve, = /W o(w)p(w)dw.

Thus
dA-V{,)=0= /(M(w) — w(w))p(w) =0

for all functions ¢ on W which implies W(w) = u(w) as we mentioned earlier. Next, one
knows that

A" = / (HdeH2 — (Trace S* — M? + Ricciv(v,v))ap2(w)) dw,
w
where S is the shape operator corresponding to the second gquadratic form of W C V and

n-—1 n—1
so Trace S$? = A? for the principal curvatures \; of W, while M = Ai. Furthermore
i p
=1 1=1

Ve, = /W(#(w)M(w) Tl (w)) o (w)deo,

where p!, is the v-normal derivative of u. So

1

(A-Ve,) =/w<||dson2+R¢2>dw
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for

R = —Trace S? + M* — Ricci(v,v) — pM — p,,.

This can be related to the scalar curvature by (following Schoen and Yau) substituting
Ricci(v,v) = 3 (ScV — Sc(V|W))

where Sc(V|W) is obtained, at each point w € W C V, by summing up the sectional
curvatures of V over an orthonormal frame in Ty,(W) C Tyw(V), and

n—1
— 1 (TraceS® = M*) == > AAj = 3 (Sc(V[W) = Sc W)
1,7=1
which makes
1
R= —%TraceS2 + -2—]\42 + 2(SeW = Sc V) — uM —p1,.
In particular, if W is p-critical, then the second variation becomes

/W(Hd<,9H2 — %(TraceS2 —pu* 424, —SeW + Sc V)p?)dw,

where W has constant mean curvature M = u. Finally we observe that Trace 5% >

(n— 1)_1M2 and so

2

(A—pve)y' < / e[ — 1 (-’:‘“—1 + 24", —SeW + scv> 2dw.
15% n -

It follows that if W locally minimizes A(W) — V€, ,(W) then

2
/ uwn?-%(”“ +2;/U—scw+scv> oldw > 0 (%)
1%

n-—1

for all functions ¢ on W.

Ezample. Let V be a warped product, V =W x R with the metric ¢ = a*(t)h + dt*
for some metric h on W and a positive function a(t) satisfying a(0) = 1. Then

AW x t) =a""'(t)Ao.
and S on W x t, viewed as the second quadratic form, equals (a'/a)h,
M = TraceS = (n — 1)d'/a,
— Ricci(v,v) = Trace §* + M' = (n — 'l)[(a'/a)2 +a"Ja—(a')?)d*] = (n—1)d"/a.
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Each W x t here has constant mean curvature M = M(t) and so it is u-critical for pu(t) =
M(t). Infact it is even (non-strictly) locally minimal and so the second variation of A-V¢,
is non-negative vanishing exactly at the (constant) normal field v since V¢, (W x t) for
p=M = (n—-1)a'/a, equals

¢ t
AO/ p(r)a* " r)dr = / (n — 1)a'(r)a™ 2(r)dr = A(W x t).
0

— 00

Notice that the principal curvatures of W x t are all equal,
M) =X(t)=...= () =A=d/a

and so Trace §? = (n — 1)"'M?. Consequently (%) becomes equality for w = const in this
case (which checks up with the equality

R=-1 (3{{—1 + 2 — Se(W x 1) + scv) =0,
obtained by a straightforward computation i.e. by subsituting 4 = (n — 1)d’'/a.

Sc(W x t) = Sc(VIW x t) + (n — 1)(n — 2)A\%,

and Sc(V|W x t) = ScV + 2Ricci for Ricei = (n — 1)a" /a).

Warping W with S'. Now we look at a different kind of a warped metric on W x S?
defined with a metric h on W and a positive function f on W by

gr=h+ f2ds?

which has
Sc(gg) = Sc(h) + (2Af)/f
where A is the positive Laplacian on W (see p. 157/369 in [G-L]psc)-

We apply this warping procedure to a stable (e.g. locally minimal) u-bubble W C V|
i.e. where (*) holds for all functions ¢ on W vanishing on the boundary. Then there exists
a function f on W vanishing on dW and satisfying

Af+Rf=Xf
for some Ag > 0, where
R=—1 (25 424" —ScW +Sc V),
and so
Scgr=ScW +2(Xg — B) = 2% + 25 424" +ScV > 2 _ 9/ | +Sc V.
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Approzimation corollary. Let the metric ¢ = a*(t)h + dt? on V. = W xR be
C°-approzimated on a fized band Vs = W x [0,8] by metrics g. with Scg. > Scg + 0.

Then there ezist functions fo on W such that the warped product metric 4. = he+ f2ds?
on W x S! has Scg. > ScW + o0y — &' for h, — h and € — 0 with ¢ — 0.
C

(One should regard warped metrics on W x S' as kinds of generalized metrics on 1%
and so this corollary reduces dimension in the C°-approximation problem by metrics with
Sc > o, compare §12 in [G-L]psc.)

Proof. We slightly perturbe the function u = u(t) = M(t) in order to make some
W x to C W x [0,6], with small ¢y eventually going to zero, strictly p-minimal. Then
(V, ge), which is C® — e-close to (V, ¢), also has, for small ¢, a y-minimal bubble, say We-
close to W x tg, in fact W< is non-singular and C*-close to W x ty (by an easy argument).
Then we warp the induced metric h. on W¢ with f = f. as above. Q.E.D.

Non-approzimation conclusion. A metric g of constant sectional curvature near
a point vy € V cannot be C°-approzimated by g. with Scg. > 0 > Scg.

Proof. The metric g near a point is a warped product in polar coordinates, g =
a*(t)h + dt, where (W, k) is a small round sphere in V around vg. By the above corollary,
an approximation ¢. with Sc g. > Sc g+ 0o with oy > 0 would give rise to a warped metric
Ge on W x S with Sc§. > Sch + o} which is incompatible with the version of Llarull’s
theorem stated in 5% as such W x S' comes along with the contracting map to the sphere
W, of the radius ¢ slightly less than that of W and yet with Sc < Sc g.. Q.E.D.

Remark. One may be relieved to learn that Llarull’s theorem (based on Dirac) can
be excluded and the proof rendered purely Plateau. To show this, let us think of §. as a
generalized metric on W approximating the original (spherical) one. Then one may assume,
by induction on dimension, that the scalar curvature of §. cannot essentially exceed that
of h. The details of the argument here are similar to those in §12 of [G-L]psc and left to
the reader. Notice that all -minimal varieties in the present case are non-singular, being
C'-close to round spheres, and so one does not have to limit dimV < 7 as in [G-Lpsc.

Approzimation for non-constant sectional curvature. One can apply the above
argument to a very small and narrow spherical band around a point vy € V with a suitable
p(v) = p(dist(v,vy) and obtain a certain upper bound on Sc g, in terms of the infinitesimal
geometry of ¢ at vy. For example, if the sectional curvature at vy satisfies I, (V) < ko,
then Scge < n(n — 1)kg + &' with ¢’ — 0 for ¢ — 0 (which recaptures the above constant
curvature result where Sc,, ¢ = n(n — 1)xo). The proof is similar to the above and left to
the reader.

On global effects of Sc > —o. Consider a compact Riemannian manifold V' with
two boundary components, say W, and W,, and take a function y on V' such that pu|W; >
—M(W;) and u|W, < M(W,), where the mean curvatures are signed with the exterior
normal field. Then there exists a minimal p-bubble W between W; and W, with implied
W+ being the band between W, and W, since W has M(W) = u|W and cannot touch
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neither W) nor W, by the maximum principle. If W is flon-singular (which is always the
case for dim V' < 7) then we can make the warped product metric § on W x S! with

Scg > a(V,u) =inf (SeV + 5 1 — 2|dpl)).

Now, suppose we know a priori that Sc§ < oy. (For example, the topology of V may
prevent every W separating the ends from having positive scalar curvature on W x S1!,
e.g. if the homology class [W] has infinite K-area, then Sc§ < 0, or there exists an
area contracting map of V to the round sphere S*~! and by Llarull’s theorem Sc§ <
r~2(n — 1)(n — 2).) Then we conclude that

inf (ScV +

| n

Lt = 2lldpel) < oo, (*)

for every function u on V satisfying the above boundary relations.

Here is a specific example. Let 1" be homeomorphic to W x [1, 2], where IV has infinite
K-area (and so W x S' adinits no metric with Se > 0). Let sup —M (1) = M be not
W,
too large, i.e. W, is not too concave in the M-sense, while M (W) > My > 0 (i.e. Ws is
mean convex). Furthermore, suppose that dist(W;, W) is large so it is easy to make up u
with small ||du|| and given behavior near W, and W,. Then we have the bound

Se V' < — 727 + 2|dy|

where the second term can be made small for dist(W;,W,) large while the best for the
first term is given by g = M, . Thus we can have a bound of Sc of the form

inf ScV < ——2= (M )? + small term.

This looks crude but it may be sharp in some cases. For example if we start with
the warped product metric ¢ = e¢?'h 4+ dt? on V with constant sectional curvature —1,
the above shows that every metric ¢' on V' which equals ¢ near the boundary and has
dist o (W1, W) > dist (W1, Wy ) necessarily satisfies Inf Sc ¢’ < Sc g with the equality only
for ¢' isometric to g. This still works where W is non-compact, e.g. W = R"~! in the
above example with (V = R"™! x R, e?'h + dt?) being the hyperbolic space, provided the
metric ¢’ is sufficiently standard (e.g. equals ¢) at infinity, which implies the version of
the Min-Oo theorem stated in VI of 52.

There are further applications of u-bubbles to S¢c > —o but these deserve a separate
paper.



§ 6. Index and the spectrum.

Observe that the BL-formula D? = Ag + iSc bounds the spectrum of the Dirac
operator D on a complete manifold V from below by

inf spec D? > % ir‘l/f Sco(V) (%)

and so every upper bound on inf spec D? in terms of the macroscopic geometry of V implies
a similar bound on Sc V. Now we focus on the spectrum of D (and of D?) rather than on
the scalar curvature and try to relate this spectrum directly to the geometry of V. Notice
that Spec D (unlike spec d + d*) is not immediately linked to the coarse macroscopic
geometry of V = (V,g) as the construction of D essentially uses the first derivatives of g.
Yet we shall see below, following Vafa and Witten, that a suitable macroscopicly visible
largeness of V leads to an upper bound on inf spec D? (which amounts, for a compact V,
to an appearance of an eigenvalue Ay of D small in the absolute value) similar to the bound

of ir‘1/f Sc V by the K-area of V. Moreover, we shall obtain such bounds for all geometric

operators D, where the most interesting D’s are Hodge’s d + d* and Dolbeault’s 9 + 3.

6%. K-length and c-straightness. We want to introduce an invariant of a unitary
bundle X = (X, V) over a Riemannian manifold V measuring the deviation of X from
being a straight, i.e. trivial flat bundle. Recall, that our '-area concerns the deviation
of X from a flat but not necessarily trivial bundle by measuring the curvature R(X).
Now we want to integrate R to some quantity P recording the parallel transport of the
connection and thus measuring non-straightness of (X,V). What we do in practice is
comparing V with a trivial connection in a larger trivial bundle X% D> X as follows.
First, more generally, let X° be an arbitrary unitary bundle containing X and V° be a
connection on X% Then the difference V° — V on X° is a 1-form on V with values in
End = End(X,) D Hom(X — X?) (with the inclusion induced by the normal projection
Xo — X), so we may speak of the operator norm in End, and in Hom(7,(V) — End,) for
all v € V, denoted |V? — V||, and ||V? — V|| = sup ||V® -~ V]|».
veV

Definitions. The non-straightness of (X, V), denoted ||Pn(X)]|, is

IPN(X))| = inf [V° - V|

where “inf” is taken over all straight (i.e. trivial flat) bundles X° = (X V°) of rank N
and all unitary embeddings X — Xj.

The K-lengthy of V is
K-length (V) = i%f 1PN (X))
where X runs over all “homologically substential” unitary bundles X = (X, V), with the

same meaning of “homologically substential” as earlier in §4, namely, non-vanishing of
some Chern number.
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This definition of the I-length is meaningfull for dim V' even. If dimV is odd, we
stabilize by passing to V x R, where, (as for non-compact manifolds in general) we restrict
to bundles X trivialized at infinity.

Our major concern will be limiting the A-length from below, i.e. constructing suf-
ficiently straight homologically significant bundles X over V. This can be done (es in
bounding from below the K-area) by exhibiting sufficiently contracting maps f : V — S,
for n = dimV, of non-zero degree and, for n even, pulling back to V a standard oun-
dle over the unit sphere S™ with non-zero top Chern class. (Notice that for the K-area
purposes f needs be only sufficiently area contracting but here we need contraction in
all directions.) It is convenient at this stage to introduce the hypersphericity radius of
V, denoted Rad V/S™ as the maximal (suprimal) number R, such that V admits a
Lipschitz-R~! map V — S™ of non-zero degree, where, if V' is non-closed, each component
of the boundary and/or infinity of V must go to a single point in S™ (and where these
points may be different for different components of the boundary /infinity).

Now we use all these notations just to express the indicated above lower bound on the
K-length in writing,

K-length yV > const,, Rad V/S™ for N>n. (%)

This is proven with a non-trivial complex vector bundle X, of C-rank n/2 over an even
dimensional sphere S™ which has ||P,(Xo)|| < const,, < oo and which pulls back to V
under an R™'-contracting map to a bundle X with ||Py(X)|| < R™! const, for all N > n.

Remark about reversing (x). An clementary argument for surfaces V (n = 2)
shows that

Rad V/S5* > const( N-length v V") (%2)

for all N and some const > 0.01. In particular K-lengthV is essentially independent
of N for N > 4. 1 do not know if this is true for n > 3 but one can show that the
stabilized “Rad” can be bounded from below by const y - length. For example, if V' is even
dimensional, then

Rad(V x R)/S™"! > consty - (I -lengthy V) for every N =1,2,.... (%n)

It follows from Serre’s theorem on inducing rational cohomology classes from odd dimen-
sional spheres. In our case we start with an odd dimensional non-torsion homology class
h € Hpp1((Grgy CV)x S1), for which, according to Serre’s theorem, there exists a Lipschitz
map ¢ : (Gry CV) x S — $"*! non-vanishing on h. We take the circle S of a very large
length L = Ly so that the best (i.e. infimal) Lipschitz constant of our map becomes a

function of k and N, say s; n(h), and notice that sup sg n(h) = sp N n41 < 00 as the
h€Hn 41

group Hp41 = Hpp1((Gry CNy x S1)) is finitely generated. Then we observe that if V
supports a homologically significant bundle X of rank k with ||Py(X)|| < €71 then V
admits a £"!-contracting map f into the Grassmannian Gry C¥, with the metric induced
from the operator norm (metric) for the imbedding Gry C* — {operators} sending each
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k-plane 7 C CV to the normal projection operator C — 7, such that h = fV] #0
(compare below). Now the relevant map V x S' — S n+l comes by composing ¢ with
fx1:Vx8 - (Gry N)x St

Problem. Evaluate the (Serre) constants sg N n41 for N — oo (and pcssibly n — oo
and k — o0o). This seems interesting already for cPN x St

This problem arises any time when the algebraic topology provides hornotopically in-
teresting maps between standard manifolds but gives us no realistic bound on the Lipschitz
constants of these maps. (Serre’s type arguments evaluate these constants by something
like €Xpexp...exp ]\i if not worse, compare 5%)

n

K-length and mappings to Grassmannians. If V admits a ¢~ -contracting map
f to Grr C¥ then the pullback of the canonical rank k bundle over Grg CN to V, say
X — V, has Py(X) < €7'. In fact, maps V — Gri CV correspond to embeddings
X «— X° where X? is the trivial bundle over V of rank N. The trivial connection V® on
X9 induces V on X by V = PV? for the normal projection P : X0 - X.

Conversely, starting from a connection V on X with small K y-length, one has, by
definition, an embedding X — X, where clearly, the induced connection, say Vi on X,
is close to V and this V, is induced from Gry CV. In fact, such an embedding X — X,
can be often achieved whenever X has small curvature R by constructing N sections of
X (or rather of the dual bundle X*) with small covariant derivatives. For example, let
V be covered by open subsets U;, i = 1,..., Ny, such that every loop of length < 6
in the e-neighbourhood of each U, bounds a disk of area A in the 2e-neighbourhood of
U; where, §, ¢ and A are certain positive constants satisfying § > 2(Diam U; + 2¢) (e.g.
e = Diam U; &~ §/4 < 1 and the s-neighbourhood of each U; is by-Lipschitz to the Euclidean
(6 + £)-ball with the implied Lipschitz constant = A?). Then, assuming A||R|| is small,
say < exp —k, one can construct over the s-neighbourhood of each U; an almost parallel k-
frame, and these, bumped down to zero near the boundaries of these e-neighbourhoods, will
give us an embedding X — X° for rank X° = N = kN° with controlled derivatives, namely
bounded roughly by u(e~' + A||R||), where p denotes the multiplicity of the covering by
U.(U;). In particular, K-area + local geometry bound K-length.

62. Differential operators twisted with almost straight bundles. We want to
compare the twisted Dirac operators in (X% V%) and (X,V). In fact, we do this for
an arbitrary first order operator D acting between two unitary bundles, and, to save
notations, we assume this is the same bundle, say S, and D : C*(S) — C*°(5). We recall
the principal symbol 0 = (D) of D that is an EndS-valued 1-coform (vector) on V defined
as follows. Take a 1-form £ on V and a section s of S. To find o, for a given v € V we take
a smooth functions f with df(v) = £(v) and set 0,(¢ ® s) = (Df)(s)(v). In other words,
the endomorphism o0,(¢) maps s to (Dfs)(v). We denote by ||o|| the operator norm, i.e.

61



sup lo(£®s)|| and use the following twist D x of D with an arbitrary bundle (X, V)
flell<1,lsli<1

CoS50X) Y Cu(Se(LuX)=C>(SoLl)sX) 75 C=(S®X),

L ]

Dy

where L denotes the cotangent bundle of V. (This agrees with our earlier twist for the
Dirac operator where there is no zero order term.) Observe that this twist does not increase
the norm of the principal symbol. In fact, |[o(Dx)| = |lo(D)|| for rank X > 0. Thus all
twisted Dirac (as well as Hodge and Dolbeaut) operators have their symbols bounded by

a fixed constant const, (which actually does not depend on n = dimV either with our
choice of ||o||).

Now we compare D xo and Dx by taking the difference D xo — Dx which is a homo-
morphism X — X° obtained by comparing V0 — V with the symbol of D and abiding
the bound ||Dx, — Dx|| < nllo(D)|| - |[V® — V||. To see this we write V' = V? -V and
x Z)Z ¢; ® V'(z) for an orthonormal basis ¢; in L. Similarly, write, o(s ®¢;) = oi(s) and
=1

then Zompose V' =(V},....V))and 0 = (01,...,0,) as follows,

15V , o®1
E Quy S DTy E Ay S, Q0GR Vi(z,) =

u,v TN

Z Auy 0'1‘(3“) @ VI;(-TU) = Z Z Ayy Ui(S;L) ®V'I(‘TV)
=1

B v

The norms of the operators ; and ¥/ are bounded by those of o and V' (by the definition
of ||o|| and ||V']|) and so we have

Z Ay 0i(8,) D Vi)

#)V

< HOH ’ “le ’ Z Quv Sp @ Ty

n.v

since the norm of the tensor product of operators is submultiplicative (|| AQ BY| < ||A||-|| Bl,
as is seen with an orthonormal basis which remains orthogonal under A and a similar basis
for B), which yields the required bound by summing over ¢ =1,...,n.

We specify the above to a Dirac type operator D (i.e. Dirac, Hodge, Dolbeaut, possibly
twisted with an unitary bundle) and come to the following conclusion, D'y = Dxo — Dx
is a zero order operator, i.e. a homomorphism X — Xo D X satisfying

Dl < &' = consta||V']] (+)
for V' = V° — V where const, = nx (universal constant)).
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Spectral Corollaries. (1) If V is a complete Riemannian manifolds, then the bottom
of the spectrum of |Dx,| is bounded from below by that of |Dx| as follows,

inf spec|Dx,| < inf spec|D x| + &'

for the above §' = const,||V'||n and V! = V°—V (where, recall spec [selfadjoint operator| =
|spec(operator)|).

(2) Let V be a closed Riemannian manifold. Then the number of the eigenvalues of
Dx, in every interval [a,b] is bounded from below by the number of the eigenvalues of D x
in the interval [a',b'] fora' = a+ §' and b' = b — §' (where [a',b'] agreed to be empty for
a' > b'). This is ezpressed in writing by

# spec Dx,[a,b] > # spec Dx|a',b']. (*)

(8) Let V admit a discrete cocompact isometric action of a group I' which lifts to X
and Xo and commute with Dx and Dx,. Then the above (*) remains valid with the (von
Neumann) I'-dimension (of the space corresponding to spec € [a,b]) instead of the ordinary
dimension (= # specla,b]). That is

dimr spec Dx,{a,b] > dimr spec Dx[a',d’] (*)r
(which is equivalent to (x) for finite groups I', where dimr spec... = |I'|7'# spec...).

The proof of (1), (2) follows by the following elementary perturbation argument which
automatically extends to the I-case of (3) (see 93). To prove (1) we observe, for an
arbitrary selfadjoint operator D on a Hilbert space X and A > 0, that

inf spec|D| > A & ||D(z)|| 2 Al|z]| for all z € X. (+)

First we apply this to D = Dx and A = infspec Dx + ¢ thus obtaining a vector z for
which ||Dx(z)|| < A||z]|. Then we apply Dy, to this z (recall that Dx, is defined on a
larger space than Dx) and see that ||Dx,(z)|| < (A + é')||z|| by the triangle inequality as
|Dx, — Dx|| £ é' on the domain of Dx. Then by applying (+) to Dx, we conclude to
the inequality inf spec|Dx,| < A + ' which yields (1) for ¢ — 0.

Next, in order to study the spectrum in a given segment [a, b], we apply (+) to D —¢
for some ¢ € [a,b] Nspec D and see that a perturbed operator, Dy = D + D’, necessarily
has a spectrum point in [a,d] if ||D’'|| < min(a — ¢, c — b) (where we may have Dg defined
on a larger space than D). In other word a §'-perturbation of D moves each eigenvalue by
at most §’. This implies (2) as the spectra of Dx and Dx, are discrete in the compact
case and (3) also follows with necessary I'-provisions.

6%. When an operator D over a large manifold V has many eigenvalues near
zero. We want to apply the above corollary to bound from above inf spec D where D is
a twisted (which incudes “untwisted”) Dirac, Hodge or Delbeaut operator. This is done
by using an auxiliary bundle X such that D twisted with X has non-zero index and thus
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specDx 3 0. (Here we assume n = dim V" even and D splits into Dy & D_ with ind D
actually referring to ind D). We try to choose this X as straight as possible, i.e. with
a unitary embedding into a straight (trivial flat) bundle Xo such that |V0 — V|| is small.
Then by the above (1) the zero mode of Dy gives a A-mode of Dx, = D®...& D for
N

X < §' = const,||V® — V||, which is also serves as a M-mode of D itself. If V is large, in
the sense of having large K-length or, even better (sce *), large hyperspherical radius, we
may choose such an X with small ¢'. Summing up we come to the following

spectral inequalities:

inf spec D < const,,(I{-lengthy V)T, ()
inf spec D < const,(Rad 1 (5 % *)
where V is a complete Riemannian manifold and N =1,2,... 15 an arbitrary integer.

Ezplanations. The above argument works, strictly speaking, if V is a closed even
dimensional manifold with D = D4 & D_ such that the index of the operator D, twisted
with X is given by the formula

ind =Ap — chy[V], (%)

where Ap is a polynomial in p, with non-zero term of degree zero. This is the case, for
example, for the Dirac, signature (i.e. Hodge's D = d+ d* with the splitting D = D4+ D
according to the eigenvalues of the Hodge *-operator) and Dolbeaut. If V is complete non-
compact we may assume without loss of generality that inf spec D > oo > 0 (otherwise
there is nothing to prove). In this case the operator D, twisted with a bundle X trivial at
infinity, is Fredholm and still satisfies the essential part of (*) by the following noncompact

version of the Atiyah-Singer index theorem.

6%. Relative index theorem. Let V be a complete Riemannian manifold where our

(selfadjoint) operator D 1s positwe at infinity in the sense that there ezists a compact
subset K C D, such that the vanishing s | k' = 0 tmplies

HD(S)HLz 2 00H5“L2
for all Ly-section s in the domain of D and a fized (depending on D and K) constant
0o > 0. Let V' be another manifold which is identified with V at infinity (say, outside K)

and D' be an operator over V' identical with D at infinity. Then the operators D and D'
are Fredholm and the difference of the indices of Dy and Dy 1s given by the usual formula

ind Dy —ind D', = (4p — Ap) [VU V'], (%)
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where Ap and A are the Atiyah-Singer polynomials (in characteristic classes) associated

to D and D'.

Fig. 8

This theorem applies, in particular, to two twisted operators over the same manifold
V,say D = Dx and D' = Dy where the bundles X and X' are identified at infinity,
for example, where X is a bundle trivialized at infinity and X' is the trivial bundle with
rank X' = rank X (identified with X outside some K C V). Next, the theorem yields the
spectral bounds (#x) and (xx %) also for odd dimensional V by passing to V xR or V x S!
for a sufficiently long circle S'. (But one gets by far more mileage from the relative odd
index theorem, see 6% and 6%) Actually, it is worth stabilizing also for even dimensional
V as the K-length of V x RM] as well as the hypersphericity radius may go up with increase
of M (albeit it is unclear by how much). Then, in order to avoid the dependence of our
constants on M, it is better to use the index theorem for families (rather than the ordinary
index theorem applied to V x RM) where t € RM is our parameter. Thus we set

K-length V" = sup K-lengthy (V x RM)
N.M

and stabilize (+%) to
inf spec D < const, (K—lengthst)_l. (Fx)st,
Similarly we define Rads V/S™ as sup Rad(V xRM)/S"+tM and stabilize (xxx) by substitut-
M

ing Rads; for Rad. (If V is non-compact it is less restrictive to use maps V' x RM — gntM
which are locally constant at infinity on each individual slice V x ¢, t € RM | rather than
locally constant at infinity on V x RM. Similarly, in the definition of K-areas, we may
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use bundles X trivialized at infinity of each V x t where the trivialization may move with
t € RM. The relative index theorem for families perfectly works in this situation while the
corresponding individual index theorem does not seem to apply to such X on V' X RM),

On the proof of the relative index theorem. This can be traced to the original
work by Atiyah and Singer where they discuss the ezcision property of the index homo-
morphism. The above formulation copies that in [G-L]psc (where we limited oursclves
with Blaine Lawson to Dirac operators on complete manifolds V with Sc V' > 0 at infinity)
and the proof of [G-L]psc can be adapted to the present situation. A more conceptual
argument is given in [Ang] and here we sketch yet another proof (based on an idea by
John Roe) which clarifies the “excision” aspect of the relative setting. Namely, we observe
that the right hand side of (**) makes sense without assuming D is positive at infinity and
we want to give an operator-theoretic expression replacing ind Dy — ind D), for general
(non-positive at infinity) operators D. Heuristically, we rewrite

ind D4 —ind D, = (dimker Dy — dimker D_) — (dimker D), — dimker D' )=
(dimker D4 — dimker D, ) — (dimker D_ — dimker D_) =

imd o, —ind 6_

for suitable Fredholm operators 6 and é_ (where, recall D_ = (D4 )* and (DL ) = (D4)*).
We want 64 to act from ker Dy to ker D!y and for this we need an operator connecting
the domains of D and D’. We use for this purpose the identification between (V, S, D) and
(V',8',D') at infinity and take some operator ® from sections of S to those of S* which is
given at infinity by this identification and which is zero over some compact region. More
precisely, we take a smooth (cut-off ) function v on V' which equals 1 at infinity and which
has supp ¢ inside the region where V is identified with V'. Then ®(s) is defined for all
section s : V — S in three steps.

1. Multiply s by ¢ and restrict the product ¢s to u = suppp C V.
2. Take the section (ps)' corresponding to s over U’ C V' indentified with U.
3. Extend (¢s)’ by zero on V' - U".

Now we compose ® restricted to Ker D4 with the orthogonal projection P! onto
Ker D',, call this composition ¢4 : ker Dy — ker D) and similarly define §_ :ker D_ —
ker D'_.

Ezample. Suppose we have a single manifold V' and é maps ker D into itself by
D oy ie. first by multiplying with a function ¢ equal 1 at infinity and then by normally
projecting to ker D in the Lo-space of sections of X. Such a 6 is Fredholm since the product
©s is Lo- close to s for every s € ker D which is (relatively) e-small in a neighbourhood
U C V containing K = supp(yp — 1), i.e. satisfying [, ||s]|*> dv < ¢ Iy |s||? dv, and since,
for every € > 0 and relatively compact U C V, there exists a subspace L C ker D of finite
codimension, such that all s € L satisfy this inequality (because the restriction operators
from U; to Uy CC U, are compact on ker D as D is elliptic).
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In general, however, where X # X’ the operator 6+ is not always Fredholm. In
fact, it is Fredholm if zero is an isolated pomt in the spectra of D and D', but may be
not otherw1se To remedy this we must regularize the projection operator P 1 La(S') —
kerD!, by another operator ', = (D’) for a suitable (spectral) functlon Yy:R->R
replacmg the Dirac é-function Concentrated at the zero point (of the spectrum) which
defines P, = §(D' o D' ) (where, recall, S" is split, §' = S, ®S_ and D = D, @ D'
with D!, S" — S’ and D’ : 87 — S! being mutually adjomt operators). Notice that if
P(1) = 1, then, formally,

ind D!, = Trace P} — Trace P! = Trace y(D" o D!, ) — Trace ¢(D! o D"),
since the operators D’ o D, and D', o D' have equal spectra apart from zero, and so by
“tracing” Y(D-oDy),..., (D! o D) one may recapture ind Dy —ind D_.
Now, the idea is to choose 1 so that the operators (. ..) will have

(a) finite propagation, i.c. there Schwartzian kernels K(v;,v,) vanish for dist(vy,vy) >
const

(b) locally tracable which means for positive operators A (and only such will be
needed) that p Ay is in the trace class for all continuous functions ¢ with compact supports
(which is equivalent under (a) to tracebility of either @A or Ap).

Now, as pointed out by Roe, these properties are satisfied for the functions 3 for which
the Fourier transforms ¢ have compact supports and so such ¢ are readily available.

One can define for such ¢
Try = Trace (D _ o Dy ) — Trace y(D_ o D')

since the operators )(D_o Dy ) and 4(D'_o D' ' ) coincide outside a compact set and hence
their difference is tracable (where the relevant ¢ is positive but, in fact, any ¢ with compact

supp 1/) will do). To make the above precise one should bring the operator to a single Hilbert
space as earlier. In fact, it is convenient here first to split ¥(D_ o D;) = A; + A,, where
A = p1¢(D_o Dy) and Az = pap(D_ o Dy) and where ¢, and p, are smooth non-
negative functions such that ¢; has (large) compact support. Then A; will be of trace
class and, if supp ¢, is sufficiently large, then

d AQ d* = .A’ = @2 'QD(D’_ 0] D_I+_),
which allows us to define

Try o = Trace A, — Trace Aj.

Similarly, we define

Tr_ v = Trace ¢, (D4 o D_) — Trace p ¥(D! o D)
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and set

ind ([D+] — [D;_]) = Try o — Tr_ .

de

Ezciston Proposttion. If (1) =1 and supp W is compact then the above “index”
satisfies (**), i.e.

ind ([D4] — [D4]) = (Ap — Ap/) [VUV']. (exc)

Proof. This (excision) formula is local and immediately follows, for example, rrom
the local version of the Atiyah-Singer formula. (Notice that it makes sense and remains
true for non-complete manifolds as well.)

Finally, let us derive (*) from (exc) for Fredholm operators D and D'. To do this

we choose a sequence 1; weakly converging to the é-function and use the continuity of the
trace. This yields

lim Try 4; = Trace §(D_ D) — Trace (D" D! ) = dimker Dy — dimker D!,
and similarly

lim Tr_ ¢; = dimker D_ — dimker D_.

1—0C

Q.E.D.

Ezamples and applications. (1) Let IK-lengthy V = oo. Then 0 € spec D. In
particular, if Radg, V/S™ = oo, e.g. if V is hyper-Euclidean (i.e. V > R", which means
the ezistence of a proper Lipschitz map V — R™ of non-zero degree) then 0 € spec D.

Notice that the above geometric criteria (-length = oo, Rad = oo, “hyper-Euclidean”)
are very robust. In particular, if V appears as a (infinite) covering of a compact manifold
V these properties are homotopy invariants of V. Thus, for example, if (V,7) is a closed
manifold admitting a metric g, of non-positive sectional curvature and V is the univer-

sal covering of (V,g) then V is (obviously) hyper-Euclidean and, consequently, D on V
contains zero in the spectrum.

Problem. Let V be a covering of a closed manifold V. Find a (most general) homo-

topy condition on V (and on m({V) C 71(V)) which would ensure the presence of zero in
the spectrum of D on V.

Remark. If D is Hodge’s d + d* then the inclusion 0 € spec D on X 1s a homotopy
invariant of V as this (inclusion) is equivalent to non-vanishing of the non-reduced Lo-
cohomology of V (and in all known examples this cohomology does not vanish). on the
other hand, if D is Dirac, then the presence of zero in the spectrum may depend on a
particular metric. Actual examples are known for compact V (e.g. V = 53, see [Hit]) but
no one seemed to work it out for infinite coverings. For example, let (V,g) be a closed
Riemannian manifold which admits a metric §, with Sc g, > 0. Can an infinite (say cyclic)
covering of (V,g) have zero in the spectrum of the Dirac operator? (One may ask similar
questions for Dolbeault’s 8 4+ 9*.)
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(2) Let V; be a sequence of finite k;-sheeted coverings, where k; — oo for ¢ = 1, 2,.

of a closed manifold V. The problem is to find an asymptotic bound on inf spec |D,| for
i — oo where D; stands for the lifts to V; of a given D on V. Here again, the asymptotics
of inf spec |D;| is a topological (even homotopy) invariant of V (and 7r1(V) C m(V)) for
D = d+d* but not for general D. Yet we seek a bound on inf spec D;in topological terms
for all our D. The asymptotics of the metric invariants of V, we used above, Rad V/S"
K-length V., etc. are all homotopy invariants and can be sometimes nicely computed with
a suitable metric. For example if V' admits a metric of negative curvature and all loops in
V; at some point v; € V; of length < ¢; are constructible, then, obviously, T.ad V/S" > ¢
and consequently

inf spec |D;| < consty et (+)

This estimate is qualitatively sharp for the coverings of the tori T™ given by t — it (where
¢; ~ 1) but not for general coverings of T".

Questions. (a) Which sequences of coverings V, of T" (determined by the subgroups
71'1(V) C 2" = 7(T")) have infspec D; — 0 for the Dirac operators D; lifted from

T— o

V = T™ with an arbitrary (non-flat) Riemannian metric? (Notice that the Hodge Laplace

operators on V; have the spectra accumulating at zero on form of each degree for all
sequences of coverings with the numbers of sheets k; going to infinity).

(b) Let V = H/T where H is the Heisenberg group and I' is a cocompact lattice. This
V admits standard coverings V; — V corresponding to dilations of H. The problem is to

bound inf spec D, by something better than ¢;'. (It is easy to see that £ ! works here
since the balls B(R) in H have Rad B(R)/S" = R.)

(c) Let V be homotopy equivalent to an arithmetic variety S/T" where S is symmetric
space of non-compact type and v correspond to a sequence of congruence subgroups
I'; ¢ T. Again we want to bound inf spec D,, say for the Dirac operator D by something
better than £; !, or to see in examples that £ is the best general bound.

Finally we notice that the ideology behind the Novikov conjecture suggests that
inf spec D; — 0 whenever £; — oo provided the classifying map V — BT for I' = my(V)
sends the fundamental homology class of V to a mon-zero element in H"(BT;R). But even
in the cases where this is known one yet has to find a good upper bound on inf spec D;.
(The bound inf spec D, < const {7 seems plausable for linear (sub)groups I' as they act
on products of Bruhat-Tits bmldmgs and for similar reason for hyperbolic and related

groups, such as the mapping class group where the negative curvature argument requires
some caution.)

65 Lower bounds on the number of eigenvalues. We introduce a new invariant of a
closed Riemannian manifold V, denoted maxch(V,N), N = 1,2,..., as the maximum of the
absolute values of Chern numbers of all complex bundles X over satlsfymg PN (X)) £1
(where ||Py|| measures non-straightness of an optimal realization of X in the trivial bundle
of rank N, see 63). This “maxch” will be applied to (the metric of) V scaled by some
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£ > 0 and so maxch(¢V, N) > d & there exists an X over V with ||Py(X)|| < € and having
some Chern number at least d. (Our old friend I-lengthy corresponds to the minimal ¢
for which maxch(¢V, N) > 1.) Similarly we refine Rad V/S" by defining max deg(£V/S™)

as the supremum of degrees of ¢-Lipschitz maps V — S™. This “maxdeg” is increasing in
¢ and

max deg({V/S") = s, " Vol V + o(€") for ¢ — oo

for some universal constant s, (see [G-L-P]). The two “maxes” are related by the obvious
inequality

maxch({V, N) > const,, max deg (V/SY

for all even n = dimV, all N > 2n and some universal const, > 0. (This is proven by
pulling a standard non-trivial bundle from S" to V)

Finally we extend the definition of maxch(V, N) to n odd by setting

maxch(fV,N) = maxch(¢V x S', N)

def
for the unit circle S! and we notice that, typically,
max deg (V/S" ~ max deg(fV x S1)/S"*1,

Length-spectrum Estimate. Let V be a closed Riemannian manifold and D a
geometric differential operator (i.e. twisted or untwisted Dirac, Hodge’s d+d*, or Dolbeaut
0+ 0*). Then the number of the eigenvalues of D in each segment [—a,a] satisfies

# spec D[—a,a] > 6, N~!' maxch(ynaV, N), (%)

for all N and some universal positive constants o, and ~v,. Consequently

# spec D[—a.a] > 6! max deg(y, aV/S™).

Corollary. For every closed Riemannian manifold (V,go) there ezists a constant
6§ =6(go) > 0 such that for each metric g1 > go the corresponding operator D = Dy, has

# spec D[—a,a] > 6 a" — 1 (#)

for all @ > 0. Moreover, (#) remains valid for every manifold (Vy,g1) admitting a con-
tracting map Vi — Vu of non-zero degree.

(No such bound is possible for the ordinary Laplace operator on functions, see 6%)

The proof of (x). By slightly tinkering at X (and transforming it to the tensor
product of suitable exterior powers of X, compare 52) we arrive at the situation where
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the top dimensional term in the Chern character of the modified X becomes of order d
and so the twisted operator D has index about d. Then (*) in 63 gives us a bound on the
spectrum of D twisted with the trivial bundle of rank N (in fact, slightly greater than N
as we have modified X') which is the same thing as N times the spectrum of D. We leave
filling in the details to the reader.

6%. Evaluation of “maxdeg” for “simple” manifolds. This does not come up as
readily as one might expect, yet several examples are available.

Tort and beyond. Take the flat torus T", where the shortest closed geodesic has
length L. Then, clearly, maxdeg (T"/S™ ~ £"Vol T™ for (L > const, (while maxdeg
¢T"/S™ = 0 for {L < 2rm). A similar estimate applies to approximately flat tori such
as finite coverings 17, of a fixed torus V. Namely, max deg¢ ff,/S" > by €™ Vol 17, for
£L > consty which implies the following lower bound on the number of the eigenvalues of

D lifted from V to V; N -
# D, [—a,a] > a" Vol V;

for a < f:l where L; denotes the length of the shortest non-contractible closed curve in
Vi. This i1s qualitatively sharp as T"-invariant operator D (e.g. non-twisted Dirac and

d + d* on the flat torus T") have # spec D, [~a,a] = a™ Vol T™ for all a < £

Next, look at a more general situation where V is an arbitrary manifold (not homeo
T™ anymore) and V; are finite Galois coverings converging to the universal covering of V,
ie. L; —» oco. What we keep of T" is the existence of a map f : V — T of non-zero
degree (which amounts to the presence of n cohomology classes in H!(V') with non zero

cup-product). Then we observe with pleasure that, for every £ > 0 (where small ¢’s are
the ones we are after)

max deg { T~/i/5" > consty £" Vol ‘7,-
for allt > 14(£) and, hence

~

lim inf(# spec D; [—a,a])/Vol V> 6y a" (#)

for some 6y > 0.

In fact, the pertinent maps V; — S™ come from composing V, > TI" — S™ and by the
same token (#) remains valid for all sequences of finite Galois covering V; converging to
1% lying over the covering induced (by f) from the universal covering R® — T™, (such as
the maximal Abelian covering of V, for example). And (#) also extends to this (infinite)
covering V by

dimp spec D [~a,a] > éy a”

for T being the Galois group of V (see 9%). The key case here is that of the universal

covering Viniv — V,ie. I' = m(V), and the simplest non-Abelian example 1s V, a surface
of genus > 2 (which does admit the required map f to T2 of non-zero degree).
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Nilmanifolds. Let V = G /T where G is a simply connected nilpotent Lie group and

T is a cocompact discrete subgroup. Take a sequence of finite Galois coverings G/T'; =

Vi — V converging to the universal covering Vieiv = G (which amounts to N I'; = 1)
1

and try to construct ¢-contracting maps f; : V, > S n=dimV, with possibly large
degrees deg f = f‘~/. Jac f;, where “large” here means close to ¢* Vol V; and where £ is
small eventually converging to zero. We recall that large metric balls B(R) in G have

Vol B(R) ~ R"

for some integer h > n = dimV called the ezponent of G (which equals the Hausdorff
dimension of the limit ¢ G, ¢ — 0). It is not hard to show that such a ball admits a
proper Lipschitz map onto the Euclidean R-ball where the implied Lipschitz constant is
independent of R. (This can be seen by looking at the limit lx_l}w(.) ¢G). One takes a

maximal system of disjoint R-balls in V, which are the same as in G for ¢ > io(R) and
by £-contracting each of them to S™ with { = R~ one obtains maps f; : V; — S™ with
deg fi ~ £* Vol V; for every fixed ¢ > 0 and ¢ > io({). If 1 > n (which happens for all
non-Abelian G), this is rather non-efficient for small ¢ as the average J acobian of such f;
is about ¢* rather than ¢ but no improvement is possible (even if we stabilize to V' x R*

and/or use maxch) as follows from the (Carnot-Caratheodory) geometry of lirr%) e G, (see
€

1.4.E' in [Gr]ccs). Now, our lower bound on the spectrum of ‘7, reads
# spec D, [~a,a] > 6y a" Vol V; for each ac€ 10,1] and ¢ > ¢o(a) (;ﬁh)

and this generalizes as in the Abelian case to finite (as well as infinite Galois) covering of
manifolds V admitting maps to G/T" of non-zero degree.

The bound (#h) is hardly sharp. For example, if D is the untwisted Hodge’s d + d*
on the 3-dimensional Heisenberg manifold (which has h = 4), then

dimp spec D [—a,a] = a®

as is proven by John Lott in [Lot] who also established the lower bound for this dimr by
o™t for the n-dimensional (with h = n + 1) Heisenberg group. But it is still conceivable
that some of our D’s (e.g. twisted or perturbed d + d*) have significantly less of the
spectrum in [—a, a] than Lott’s a™F for small a. In fact, the ordinary Laplace on functions
has # spec A3 [0,a] ~ a® as follows from the isoperimetric inequality on G (proven by
Pansu for the Heisenberg groups and by Varopoulos for general nilpotent groups) but this
does not tell us much of what we want as A is not a square of any of our D’s. Also, the
spectrum of D = d + d* on all forms is bounded from above by

# spec D, [~a,a) < a® vol V,

for all i, all sufficiently small ¢ > 0 and some a > 0, say o = 1/n?, which follows from the
cohomological interpretation of spec d 4 d* near zero (see 6%) and the proof is the easiest
for V admitting expanding endomorphisms.)
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(3) Solvmanifolds. Let G be a simply connected non- nilpotent solvable Lie group,
= G/T for a cocompact discrete subgroup I' C G, and Vi=GJTy, i =1,2,..., are
ﬁnlte coverings converging to Vumv = G, 1e. NT; = id as earlier. It is not hard to

construct, for every (small) a > 0 and all ¢ > ig(a), a-contracting maps Vi — S™ of

degrees > (Vol V;)/expa™! which gives us the following lower bound on the spectrum of
our operator D lifted to V;,

# spec D; [—a,a] > (expca™)™!

for some ¢ = ¢(V) > 0, every @ > 0 and ¢ > i4(a). But this does not look sharp, not even in
a most generous qualitative sense. In fact, one knows much here for the ordinary Laplace
operator A on functions on Vy,iv = G, Where the spectral density near zero (or equivalently,
the rate of decay of the random walk on G) has been investigated by Varopoulos and one
can descend, if one so wishes, to V; (see [Var-Sa-Co).

On the other hand it is conceivable that a-contracting maps V; — S™ for small
a > 0 and large ¢ are necessarlly exponentially non-efficient, i.e. have average Jacobians
~ expa~! (rather than a ™™ as for the flat manifolds) and their |degrees| < Vol V;/expa -1
but I could not prove it already in the first interesting case of 3-dimensional solvmanifolds
V. These are fibered by 2-tori (corresponding to R? = [G,G] C G) which are exponentially
distorted when lifted to G = Vv or roughly so in V. and a-contracting maps V. » §3
can be perturbed to (exp —a™!)-contracting ones along these tori. This makes the bound
|degree| < (exp —a™')/(Vol V,) quite plausable. (What is wrong with this argument is a
possible exponential strech of the perturbed maps in the direction transversal to the tori.)

(4) Algebraic manifolds. Let V be complex algebraic submanifold in CPY of real
dimension n = 2m and of algebraic degree 6. Then obviously

maxch((V, N) > 6™ (%)

for all £ > 10. In fact, this is true for every submanifold V C CP¥ with the induced metric
which is homologous to d times the linear subspace in CP™. Of course this example is tailor
made for (*); what remains unclear, however, is a similar lower bound on max deg ¢V/S™
(or, at least on max deg é(V x S')/S™*!) for a fixed ¢ independent of N and 6.

One sees with (*) that D has, for large d, about d/N eigenvalues in the segment [—a, a]
for a (large) fixed a independent of D and d.

Question. Can one have a lower bound on # spec D for (more) general Kéhler (or
quasi-Kahler) manifolds in terms of their complex (quasi-complex) structure and the coho-
mology class of the (symplectic) structure form w? (See [Gro]mix for some information.)

Ezercise. Bound from below maxch({V;N) for all (large) ¢ using selfmappings
CPN — CPY of growing degrees. Then bound from below # spec D [—a,a] for large

a and generalize this to homologically significant submanifolds V in a fixed W (with
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constants depending on W and the homology class [V] € H,(W) but not on the actual
geometric position of V in W).

(5) Manifolds of negative curvature. If V is a closed manifold with K(V) < 0,
then, as we mentioned earlier, one expects the spectral density of D on Vaniv be higher near
zero than that in R™ which would imply a similar lower bound for # spec D; [—a, a| for
finite covering V, approximating Xumv whenever such coverings exist. The correspondmg
geometric problem concerning these coverings is the existence of a-contracting map V; —
S™ of degrees > a™™ Vol V; for small a — oo and 7 > ig(a). The latter as we kncw is
possible if V' admits a map of positive degree to the torus T™ and then we have

dimp spec D [—a,a] > a" (*%)
as expected.~ Notice that if f/u,,iv is a symmetric space then the von Neumann dimension
dimr spec D [—a,a] is independent of ', but to prove (**) we need I' with a particular
property. Furthermore, once we know (#%), we have a bound similar to (**) for Vi cor-
responding to I'; C ' where this I may be different from the one used to prove (*x).
Of course, for symmetric spaces and D associated to the “symmetric” metric, one can
compute the spectral density via the harmonic analysis of the corresponding Lie group
(if one is an adept in the representation theory). But the above still seems to have some
independent merit (as, for example, it applies to “non-symmetric” I'-invariant D on \7)

We shall prove in 94§ that

(84

dimp spec D [—a,a] > a

with @ > 0 for some V with (V') < 0 where we also shall discuss max deg 817/5" in the
foliated framework.

6%. Vafa-Witten in odd dimension. The idea to use the twisted index theorem for
lower spectral bounds is due to Vafa and Witten (see [Va-Wi|) who emphasize in their paper
the fact that the twisted Dirac operator admit a lower spectral bound independent of the
twist, i.e. of the implied bundle with connection. (A year earlier, a similar idea fleetingly
appeared on the top of p.200/412 of [Ros|c» aps where the author worked with the Dirac
operator twisted with some C*-algebra module.) Here (as in [G-L]psc and [Gro|LrMm) we
are more interested in the effect of the macroscopic geometry of the underlying manifold
V on the spectrum of the untwisted Dirac on spinors as well as Hodge’s d + d* on forms.

Notice that the ordinary index theorem is essentially vacuous if dimV is odd and we
had to stabilize V to V x R. But Vafa and Witten use in their original paper the odd
dimensional index with values in (V) (see 6%) which allows them, for dimV odd, to
bound from below the gaps in the spectrum of D everywhere on R, not only at zero. Their
main result (brought to our geometric framework) reads,

Odd VW. Let V be a closed odd dimensional Riemannian manifold and D be either
(twisted or untwisted) Dirac operator (for which V' must be spin) or Hodge’s d+d*. Then
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the number of the eigenvalues in cvery interval [a,b] of length ¢ = b — a 15 bounded from
below by certain geometric mnvariant of V, Inv, V,

# spec Da,b] > Inv .V | (#odd)

where Inv.V has the following properties.

(1) For every V and ¢ > co(V) this invariant is positive in fact Inv (V) > 1 for
¢ > co(V) and moreover Inv (V)2 c", n =dimV, for large c. That is

Inv.(V) > consty ¢" (%)

for ¢ > co(V) and some consty > 0. (Notice that Inv,.V appearing in (#o44) is indepen-
dent of the implied twist as emphasized by Vafa and Witten.)

(I1) The invariant Inv.V is monotone increasing in (the Riemannian metric of) V
for every fized ¢ (and, of course, it is monotone increasing in c). Moreover, if Vi —
V, is distance decreasing map of non-zero degree, then Inv.Vy > Inv. .V, for each ¢ >
0. Furthermore Inv.V is scale invariant, Invy, A7V = Inv.V for all ¢, A > 0 (when
MYV, g9) = (V,A"2%g)). (Consequently Inv.V 1s C°-continuous in the Riemannian metric
gofV.)

(I11) Let V admit a Lipschitz-A"" map onto S™ of degree > d > 0. Then
Inv.V >d for ¢>y, A

where v, > 0 18 a universal constant.

(IIT’) Let U(N) be the unitary group with the operator norm metric and let us fiz the
standard generators hy, ..., hy in the cohomology group H™(U(N)) which are independent
of N for large N > n. Then, if V admits a Lipschitz-A"" map f : V. — U(N) and
€2 n )‘_1}

Inv.V >é, N7! max (Fr(h:), [V]) (%)

=1

1111

where 6, > 0 15 a universal constant.

The Vafa-Witten method was succintly exposed by M. Atiyah in [At]gpo and fur-
ther developed and applied to geometric problems in a variety of papers, especially by
Steven Hurder for (finite and infinite) coverings and foliations (see [Hur]cGF EIOLEIT,ETF)
and by John Roe in his coarse (macroscopic) index theory on complete manifolds (see
[Roe]ccrr pum ). We shall return to this later on in this paper but yet mention here that
the basic bound on the spectral gaps of D claiming that

each segment [a,a + c| for ¢ > ¢o(V) contains some spectrum of D,

remains valid for all complete odd dimensional manifolds V by the odd-dimensional version
of the relative index theorem.

It is worth emphasizing that the idea of the Vafa-Witten method consists in reducing
solution of an inequality, say ||Dz|| < A||z|| (equivalent to infspec|D| < X) to an equation
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D'z = 0 for some auxiliary operator D'. A similar reduction was earlier used for lower
spectral bound on $? with 9 in place of D' (see [Her]) where the direct link with VW-
method is not quite clear (see [Groyk for further information and references. Also see
[M-M] for a VW-style application of 3 to a lower bound on the Morse index of minimal
spheres in manifolds with K°'" > 0 and see [Dem)] for an interplay of the spectrum witn an
asymptotic Riemann-Roch theorem leading to Demailly-Morse inequalities for holomorphic
vector bundles with controlled curvatures). The application of solutions of the Cauchy-
Riemann equation to solving geometric inequalities extends to the non-linear domain (e.g.
for bounding the symplectic area with pseudo-holomorphic curves, see 4%) and it would
be interesting to delinearize VW for more general operators (e.g. in Donaldson theory).

6—196. Spectral gaps for general geometric operators. Let D be a positive selfadjoint
differential (or pseudifferential) operator of order r on a closed manifold D. Then the
number of eigenvalues in a large interval [0, a] is about a+ (this is an elementary exercise)

with the error term for @ — oo of order a™= (proven by Hoérmander using the wave
equation). That is, in writing,

# spec D[0,a] = Cp ar + O (an_:'l) . (#p)

1
This trivially implies a bound on the gap in the spectrum of D? (ie. the set {/\f},
A; € spec D) which reads

# spec D+ [a,b) >1 for b—a>constp andall a>0,
and, moreover,
# spec D? [a,b] > Cp(b—a)a™ ! for b—a > constp .

If D has a topological twist to it, e.g. being Dirac or a power of such operator, then the
VW-theorem gives a bound on the above const p and hence on gaps in spec D7) in terms
of C%geometry of V; now we want to indicate some geometric (and shamefully weak)
bounds on const p for more general operators D.

We start with the simplest case where D is the ordinary Laplace operator A acting on
functions on V. In order to bound # spec A%[O, a] from below by j one should produce,
according to the minimax principle, j mutually orthogonal non-zero functions f;, i =
1,...,7, satisfying ||df||z, < a|lfllz,.- A naive (yet often efficient) way to do it is to find j
disjoint balls B; in V of radius ¢ ~ ™! and take dist(v,V — B;) for f;(v). If the volumes
of the concentric halfballs % B, satisty

1
Vol 5 B, 2 6 Vol B;
then, clearly
. 1
IfiliL. = 5 € V6 Vol B,
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while
dei||L2 = \/VOl B,‘

which makes )
ldfillL, = 5 € 62 [Ifillz, -

P

For example, let V have the Ricci curvature bounded from below, say Ricci > —p?. Then
every pair of concentric balls satisfies Bishop’s inequality

Vol B(e/2) > 271+ Vol B(¢)

and each B(e¢) has
Vol B(e) < const, " 2™ .

In particular, if Ricci > —1, then for each ¢ < 1, V contains about Vol V/e™ disjoint balls
B; with Vol % B; > 6, Vol B; and thus,

# spec A% [0,a] > const, a™ Vol V (R1)

for all @ > 1 (and one has a similar upper bound on # spec Az for Ricci > —1, see

[Gro]py,)-

Now, recall that Ind + BL + KFK yields a similar bound with the scalar curvature
instead of Ricci and a suitable K-area of V instead of the volume where, unfortunately,
the bound on the number of eigenvalues A; of A in [0, a] is replaced by an average bound
(see 53). For example, if V is a connected spin manifold with |A-genus| > 2%, n = dimV,
and Sc¢ > —o, then we do not even need the I-area, as

oo

no o 1
Zexp—)\i t> (2_’5 IA[V]Iexp—Z o t) -1

=1

for all £ > 0 (we count from » = 1 as Ag(A) = 0, compare A-exp in 63). No simple
minded construction with distance functions can ever deliver an estimate of this kind!
(Yet the above elementary construction gives us the bonus of test functions f; which are
not just orthogonal but have disjoint supports). Next, we drop our assumption on A\[V]
and bring in the K-area in the following simplified form. Suppose V' admits a smooth map
¢ : V — 8™ of degree > d = d( A) which is area expanding at most by A, 1.e.

area (L) < A-area ¥

for all smooth surfaces ¥ in V. Then, as we know, the Dirac operator twisted with a
suitable C-bundle of R-rank n has ind &~ d and so the corresponding Bochner Laplacian
has # spec [0,a] > d for a = A + 0. Hence, we obtain with KFK the bound

oo

Zexp Mit>(n 2’})—1 dexp —an(Afo) t,

=0
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for some universal a, > 0,allt > 0, all A >0 and d = d(4). (As we allow maps V — S"
with larger and larger A we shall also have d — oo and then the above estimate becomes
better and better for t — 0 which corresponds to producing higher eigenvalues A; of A.)

The intermediate steps of the above proofs giving bounds on spectra of the Bochner
Laplacians are also quite interesting. In the first case the purely topological condition
|A(V)] = N > 2% 4 1 implies the existence of a unitary bundle Z = (Z,V) over V of
R-rank 2% where the Bochner Laplacian has at least N eigenvalues below o for —o =
inf Sc V, which is equivalent to the presence of N mutually orthogonal non-zero sections
Z;i=1,...,N of Z satisfying ||VZi||, < 5 Vo || ZillL,- Moreover, this Z is (spin)
associated to the tangent bundle of V' thus having the curvature bounded in terms of that
of V. But even without knowing the true identity of Z (which, in fact, Sy or S_), we gain
non-trivial information about the geometry of V. Next, in the twisted case, we assume
nothing about A[V] and yet obtain a Z of rank n2% having about d eigenvalues below
A = A + o for the above A and d (where the curvature of Z is about A|K(V')|). This is
again a non-vacuous property of (V,g) as KFK prevents bundles of R rank k over V from
having > k very small eigenvalues of the Bochner Laplacian.

A geometric bound on the gap in spec A% away from zero. The C%-continuity
of spec A% in the metric is non-uniform and a small deformation may create large gaps
(an e-perturbation of a metric roughly corresponds to composing A with 1 + A, where
|Ac|| & €). It seems to be unknown if the gaps are uniformly bounded on C°-Riemannian
manifolds (and I do not know the minimal smoothness of (V, g) needed for the Hérmander
method) but we shall now establish such a bound for odd dimensional C?-manifolds (in
fact we only need C1'!) using VW.

Gap bound for A%. Let V be a closed odd dimensional Riemannian manifold with
the sectional curvature and the injectivity radius bounded by one, 1.e.

K(V)I<1 and InjRad V >1

(where the bound Inj Rad > 1 is equivalent in our case to the absence of closed geodesics

of length < 2). Then the gaps in spec A7 are bounded by a constant const,, n = dimV,
and moreover

# spec A? [a,b] > Cr(b—a)" Vol V

for a universal constant C, > 0, all a > 0 and b > a + const,.

Proof. We are going to reduce the gap bound for A7 on functions to a similar bound
1

for d + d*, or equivalently A% on forms where Ay = (d 4+ d*)? is the Hodge Laplacian.
First we switch to the Bochner Laplacian A on forms related to Ay by the Bochner
formula Ay = Ap + R where R is an endomorphism of A*(V) made of the curvatures of
V. Our bound |K(V)| < 1 gives a bound on R and so the spectral gaps of Ap are bounded
by those for Ay plus a constant majorizing || R}|.

Next we observe that our bounds on |K| and Inj Rad (trivially) provide a bound
on the straightness |Pn(T(V))|| of the tangent bundle T(V) with Levi-Civita’s V and
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hence every associated bundle of V' (compare 61). In particular, the bundle A*(V) =
GB A* T(V) admits a unitary embedding into the trivial bundle of rank N* such that

the Levi-Civita connection V, in A*(V) differs from the trivial connection by some constn

and where also N* < N(n) ~ 4". We recall that V acts from H; = C*(A*(V)) to
H, = C®(A*(V)@T*(V)) and Ag = Vi V, which is essentially equivalent to Ap = v?
for a suitable unitary correspondence between H; and H;. This shows that the gaps in

spec A% = “spec V" majorize, up to the above const,,, those of spec A3 = “spec d” for
the differential d on functions. Q.E.D.

Commentaries. (a) Our bounds on gaps in spec A3 extends to complete non-
compact manifolds V.

(b) It is unclear how to make the above argument work for even dimensional manifolds

V.

(¢) I suspect, our gap bound for A (for both, odd and even n) can be recaptured by the
wave equation techniques (which must be obvious for true analists) but the VW-method
may still provide additional leverage.

(d) Let X be an arbitrary bundle over V with curvature R(X) bounded in norm by
one. Then the Whiterey sum 6} X for some N < N(n) admits a unitary section z with

IVz|| £ Cp (as we assume I\(V) < 0, Inj Rad V > 1). It follows that the spectral gaps

of Bochner’s A are bounded, up to some const,, by those of A% and so our estimates
extend to the Bochner Laplacian on X.

(e) It seems likely that the spectral gap bound for A% remains valid for complete
manifolds V having |K (V)| < 1 and Inj Rad, V > 1 at a single point v € V (as this is so

for Dirac and d + d* by VW and the relevant eigenfunctions, probably, sufficiently localize
near v).

(e”) (Pointed out to me by Misha Shubin.) If V' contains an actual flat Euclidean unit
ball B (not just an approximate one as in (e)) then A? indeed admits a universal gap
bound, because Az has approximate A-eigenfunctions for all A, namely fx = pexpAiu
for a linear function u on B and a smooth bump function ¢ on B. Such an f) has
A=Y Afx — Af|] < const ||f]jz, from which (an independent of A\) bound on gaps in
spec Az follows by an obvious perturbation argument.

637 10 . On Dirac and Hodge. The VW lower spectral estimate equally applies to the Dirac
operator D on spinors (if V is spin) and to Hodge’s d+d* on differential forms (Notice that

(d+d*)?%, unlike D? splits into the direct sum of n+1 operators, (d+d*)? = Z A; acting on

1=0
C>®(A*(V)) = B C><(AYV)) and so the VW-theorem for d + d*, when applies, predicts
small elgenvalugs of some of A,, i = 0,...,n without saying of which one. Typically,
one expects the largest spectrum for A; with ¢ = % for n even and 1 = "T_l, 2t for n

odd.) But the flavour of this is somewhat different in the two cases since the spectrum of

79



d + d* is continuous in the C’-topology on the space of Riemannian metrics (as explained
below) while spec D is only C''-continuous. Thus the VW bound for d 4 d* is an internaly
CO-theorem relating two geometric invariants, spec (d + d*) and the size of V (encoded
into the K-length) while in the case of Dirac VW shows D to be more geometric than is
apparent from its definition. (This suggests some C?-stabilization of the eigenvalues of D
by taking ll_tg) sup Ai(D.) for the e-perturbations of the metric of V' in the CY-topology,

where one may wonder how often this limsup equals A;(D), compare (4) below.)

To clarify the geometric (and topological) significance of spec d + d* we observe that
it is determined only by d : A*(V) — A*(V), which is purely topological, and the L,-
norm in A*(V) which (C°-continuously) depends on the metric. Then, apart from the
atom at zero corresponding to the cohomology, we have two quadratic forms (norms) on
each Im di_; C A*V), the first induced from the original L;-norm on A*(V) and the
second is the quotient norm for the surjection d;_y : A'*"Y(V) — Im d;_;. Then our
# spec d + d*[—a, a] equals rank H* plus the dimension of a maximal linear subspace @
in Imd, such that

HLPHﬁrst < aH’*PHse(tond for all P e d .

Now, clearly if V and V' are A-bi-Lipschitz equivalent, then the Li-norm on forms changes
by at most A™ and so

# specy d + d*[-A""a, A\ "a] < # specy, d + d*[—a,a) < # specy d + d*[-A"a, A"a] .

As we pass to coverings V; we see that the asymptotic of (# specy; d + d*[—a,a])/Vol V;

for i — oo and a — 0 is, in a natural sense, a bi-Lipschitz (even homotopy) invariant of V.

In fact it is more helpful to use infinite coverings of V, such as the universal co-
vering V where the atomic spectrum at zero defines the reduced Ly-cohomology, Ker
c’lv| L,/Closure Im J(Lg), the basic homotopy invariant of V, and the spectrum of de*
near zero contains an essential (homotopy) information on the non-reduced Lo-cohomology

Ker d | Ly/Im d(L,) (see [No-Sh], [Gr-Sh], [Lot] and references therein). Furthermore, one

may speak of spec d + d* and spec d+d for quite general (singular) spaces V' whenever
the cohomology is built with a set of simplices (cells) carrying a measure providing an
Lo-structure on the cochain level (e.g. where V is triangulated and d is the boundary

operator). Probably, the VW-method straightforwardly extends to conical spaces of Cheeger
and to Lipschitz manifolds with the index theory developed by Teleman and Sullivan and

a suitable lower bound on # spec d 4 d*[—a, a] may survive on most unhospitable singular
metric spaces.

Dirac on singular spaces is another story where one should keep the (singular) scalar
curvature away from —oo (compare [Cho}), as in Alezandrov’s spaces with K > —const.
But Sc > —const allows by far more intricate spaces which can be fractalized, for example,
by taking iterated connected sums with Sc > 0.

Question. Can one bound the spectra of d+d* and/or Dirac on the universal covering
V of V in terms of the K-area instead of the I-length? Notice that almost flat bundles
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X — V are almost straight on arbitrarily large compact parts of V but this seems to fall
short of what is needed for a proof. More specifically, let V be a compact (homologically)

symplectic aspherical manifold. Do then d + d* and D on V have zero in their spectra?

(4) Inv. as a norm on bordisms. The Inv. of the above (at the birginning of 6%)
odd VW (as well as of the even one) can be defined axiomaticly as the largest number good
enough to serve (#o44) (or the corresponding bound on spec [0, ¢] for n evea). Ultimately,
for each ¢ > 0 and @ > 0 one defines a kind of a norm on the (spin if D is Dirac) bordisms
(and thus homology) of a metric space W by taking

ix&f # spec Dyla,a + ¢

where V runs over all Riemannian manifolds admitting a distance decreasing maps V — W
representing a given bordism class of W (where one should restrict to a = 0 for n even).
One can do a similar thing with Sc V instead of the spectrum (see below) and for D = d+d*
one may use singular spaces V. This may bring geometricly tasteful fruits but I could not
go so far beyond a few rather obvious foundational observations.

(5) Scalar curvature and spec D. Since the Dirac operator equals Ag + i Sc the
role of inf Sc for Sc > 0 is somewhat similar to that of inf spec |D|. For example one could
define a “norm” on bordisms of the above W as the minimal (infimal) é for which a bordism
class is representable by a contracting (i.e. 1-Lipschitz) map V — W where Sc V > §~2.
In fact, one could use here area contracting maps instead of merely contracting ones which
are by far more numerous and geometricly appealing as they pertain to the dimension two
rather than one (see the K-area inequality 6%). On the other hand spec D beats scalar
curvature by the sheer abundance of invariants hidden in it, not only inf spec |D| but also
# spec Dfa, b] etc. But the last word on the curvature is yet to be said.

6%. Odd index theorem. If V is an odd dimensional manifold then the ordinary index
of every elliptic operator D is zero; yet there is a non-trivial index defined as an element
of the odd K-homology of V' which assigns to each map f : V — GLyC, representing a
K'-class, an integer, ind; D, defined as follows. Take some (e.g. trivial) connection V,
in the trivial bundle X — V of rank N and let V| = f,(Vy), where f is regarded as a
fiberwise automorphism of X -— V. We consider two twisted operators, D twisted with
(X0, Vo) and with (X, V;) acting on the same space, namely the sections of S® Xy, where
S is the original bundle (implied by the definition of D), denoted Dy and D,. Moreover,
as we can take convex combinations of connections, V, = tV; + (1 — )V, we can twist
D with V, thus obtaining a 1-parameter family of elliptic operators D; and we want to
assign an integer to such a family. This we shall do where D is a selfadjoint operator. In
this case the operators D, are also selfadjoint and Fredholm, as we assume at this stage V
1s compact. Then one can define the spectral flow of the family Dy, as follows. Assume the
spectrum of Dy contains no zero and then count how many eigenvalues of D, cross zero
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from left to right as ¢t moves from 0 to 1 as in Fig. 9

. ‘
(=0 (=14  (=1p2 =1

Fig. 9

Here A\; = A{(Do) and these moves as A\;(t) = A;(D¢). (Notice that D, has the same
spectrum as Dy since they are conjugated by f.) The spectral flow at the moment ¢ = i
is+1,att = % it is —1 and finally for t = 1 it is —2. In general terms, whenever we have
a discrete subset in R moving with ¢, say A, C R, ¢t € [0, 1], such that Ay and A; contain
no zero, then there is a well defined flow of points from A, through zero. This flow is also
defined for non-zero points A € R— Ag U A; and if Ag = A; the result is independent of A.

Next, consider the space D of selfadjoint Fredholm operators on a Hilbert space H.
Then non-invertible operators, i.e. having zero in the spectrum form a hypersurface say
Yo C D. The singular locus ¥} of this hypersurface has codimension two (not one!) in ¥
(which is seen with a finite dimensional reduction where this is more or less obvious. Say,
T, in the space of 2 x 2 symmetric matrices is given by the equation a® — bc = 0 where
the only singularity is at @ = b = ¢ = 0. More generally, symmetric matrices with two
zero eigenvalues have codimension 3). Thus ¥, form a codimension one cycle in D which
has a natural coorientation (the direction of the spectral flow from negative to positive).
If the Hilber space in question is finite dimensional, ¥y divides the space D, consisting of
all symmetric operators, into the components, corresponding to the signature = (number
of positive eigenvalues) — (the number of the negative eigenvalues). But if H is infinite
dimensional one may have a closed curve in D meeting £, transversally at a single point,
i.e. a family D; with the spectral flow one, for example operators D, with the spectra
Ar = Z+1t t € [0,1]. Such a curve represents a non-trivial homology class in H(D)
detected by its intersection with ¢, where instead of &4 one could take £, C D consisting
of the operators D € D containing A € spec D in-so-far as all D, in question do not have
X in their essential spectra, i.e. if D, — A are Fredholm. In particular, one can always use
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sufficiently small A as the Fredholm property of D, implies that for Dy + A if |A| < €. (The
difference between the topology of D in the finite and infinite dimensional spaces is due to
the fact that in the infinite dimensional case removing non-Fredholm operators makes the
remaining part, i.e. D, non-contractible.)

Now we return to our differential operators D, acting an (sections of) S x X, and
observe that here, strictly speaking, the path does not close up as Dy # D;; however,
specDy = specD; (since D, is equivalent to Dy via f) and so the spectral flow is well
defined. In fact it is better to think of D, as acting on a variable space H; of section of
S®X, as follows. The automorphism f : Xo — X, defines a vector bundle, say X — V x §?
obtained by glueing Xg = X — V x 0 with X, = f(X,) — V x 1 according to f and one
takes a family of connections V, on X; = X | V x t with ¢t now running over the circle S.
The spectral flow perfectly makes sense in this situation (which could have been reduced

to the case of a fixed H by Kuiper’s theorem claiming the contractibility cf the infinite
dimensional unitary group) and defines

indy D = spectral flow of D, .

Observe that this makes sense whenever the operators D, are Fredholm (as well as selfad-
joint). In particular, if V is a complete (possibly non-compact manifold) and D? is positive
at infinity (see 6%) then D is Fredholm (i.e. A =0 is not a point of the essential spectrum;
here, as everywhere in the index theory, we do not care if D is bounded or not as we are
concerned with the spectrum near zero) and, furthermore, if the map f : V — GLy C has
compact support, then all D; are equal at infinity to the Whithey sum of N-copies of D
and so also Fredholm. (In fact, D is Fredholm < D? is positive at infinity, see [Ang].)
Thus ind D is defined for D? positive at infinity and it satisfies the following

(Relative) index formula.
inffD = (Ap — chp)[V], (indy)

where Ap is the same even cohomology class as in the ordinary index formula, e.g. Ap =
Ay for the Dirac operator D and Ap = Ly for the signature operator. What is relevant
for our applications is that the zero degree term in A p is non-zero for the above operators.
Next, chy is the pull-back under f of some universal polynomial in the standard (odd)
generators in H*(GLy C) which has a non-trivial component of each degree. Since f has

compact support, so does chy and one can evaluate the cup product Ap ~— chy on the
fundamental class [V].

This formula for compact V is due to Atiyah, Patadi and Singer and the non-compact

case follows by readjusting the corresponding even argument (compare 63 ). In fact the

odd cas can be reduced to the even one with the (non-selfadjoint!) operator D=D,+ at
acting on sections of S ® X over V x S! as explained in [At]gpo for compact V. The
pertinents points here are the following.

(1) Since f has compact support, the bundle X — V x S! is trivialized at infinity.

Furthermore, if Triv NV x S!is the trivial bundle, the corresponding operator Dryiv
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has zero index (essentially, because 2 has zero index over S') and so ind D fits into the
relative framework of 63%.

(2) Ap equals the pull-back of Ap under the projection V x §' —» V while ch X
equals the S!-suspension of ch f.

Finally we observe that this formula is as good as the even one for the Vafa-Witten
type estimates. In fact it is better as it applies to D — X for all A not in the essential
spectrum of D (e.g. for all X if V is compact) and yields odd VW as we stated in 6%.

Remark. There is yet another way to define ind; using Toeplitz operators as follows
(compare [Ba-Do]). Let A be not in the spectrum of D and let H) be the spectral space
of D twisted with (the trivial of rank N) bundle X corresponding to spec < A. The
Toeplitz operator T associated to f is defined with the spectral projection Py on H) by
h + Py o f(h) for all h € H}. One knows this operator is Fredholm and one can show
that ind T\ = indg(D — A) (which is well known in the compact case). This definition
nicely fits into the m-invariant and foliated frameworks (sce §9%) where Toeplitz operators
were extensively studied by S. Hurder in [Hur]car g17r-

6%. Large manifolds with no small eigenvalues of the Laplacian. It seems,
intuitively, as if every sufficiently large Riemannian manifold (V,g) must have a small
A1 = A{(A). For example, if ¢ is the metric on the sphere dominating the standard metric
go by ¢ > p?go one may expect A\j(A,) Sp?. In fact, this so for dimV =n = 2 by a
theorem of Hersch, and also, for all n, but with the Dirac or Hodge instead of A by the
VW-theorem, but we shall exhibit counter examples for A and all n > 3 (compare [CdV]).

There exists metrics g > gy on S™. n > 3, with arbitrarily large A1(Dy).

Sketch of the proof. First we start with large metrics having large A on manifolds
non-diffeomorphic to S™. Namely, we recall that the congruence coverings V; of every com-
pact arithmetic variety V have /\1(17,) > const > 0 for i — oo, while v converge to (quite
large) universal covering Vaniv of V. (If the fundamental group m,(V) is Kazhdan’s T, one
may use any sequence of finite coverings converging to f/\miv.) Observe that such varieties
exist for all dimensions n > 2, for example those of the form H™/II = O(n)\O(n,1)/11
where H™ is the hyperbolic space and Il torsionless arithmetic subgroup in O(n, 1).

Now we want to change the topology of sucha V° = V, with large A;(A) by a suitable
geometric surgery (as in 12). To make it clear, we suppose n > 4 and show how to kill
the fundamental group of V° without introducing small eigenvalues. We assume without
loss of generality that V° is orientable and so the usual surgery kills ;. Geometrically,
this surgery consists in attaching disks D to some loops in V' and then taking boundaries
of slightly thickened disks, that are (D x Bl™!) = D x Sn=2. If we want to keep the
spectrum large, we must have D with large A; and these are readily available, just take
hyperbolic disks with curvature < —C' for C large and with boundaries isometric to the
circles we kill. If ¢ is sufficiently small, such surgery does not bring small eigenvalues
since the meeting place of D (carrying the geometric essence of the handle for small €) is
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of codimensions > 1 in VY and so the smallest positive eigenvalue of V%4 handle is no
smaller than that of V° or of the handle (with the zero boundary condition) +e.

Similarly, one can make all surgeries along spheres of codimension > 2 except for
connected sums (but with possible 1-handles attached to connected manifolds). Therefore
if V? is orientably bordant to zero, it can be moved to S™ for n > 5, by surgeries of
codimension > 2, since one may choose VY stably parallelizable (such V" exist, e.g. of
constant negative curvature, by a theorem of Deligne and Sullivan).

One can obviously organize the surgeries so that a metric ball B in V° = V; of large
radius R remains intact (as we can choose i as large as we want) and then our sphere V1
obtained from V? by surgeries also contains B. It follows, the metric g; on V! is larger
than the spherical metric go of the intrinsic diameter R as B can be compressed on (S, go)
minus a little ball and the rest of V! compresses to this small ball.

Let us indicate how to make the above work for all topological types of V for n > 3.
This is done by removing from V? a small ¢-neighbourhood of the (n — 2)-skeleton of
some triangulation Tr of V° and glueing in such a neighbourhood in the manifold V! with
the desired topology. Here we notice that the toplogy of V — U, (Tr" %) is essentially
independent of V for n > 3 as this is a handle body with a one-dimensional spine where
the number of the handles can be easily adjusted by changing the triangulation (and where
we assume V is orientable to avoid minor troubles). Thus, topologically speaking, we can
replace U (Tr" ™ V) by U.(Tr" 2 V1) with some diffeomorphism

OU(T:" ™ V) & QU(Te" V),

where one should be aware of the fact that such a diffeomorphism may have (and usually
has) a very large metric distortion going to oo with ¢ — 0. What remains to do is to
indicate a good metric on U (Tr" " V1) extending from the boundary the one induced by
the embedding OU.(Tr" "% V°) < VO What we do is a fast shrinking of this boundary
(as if by filling with a hyperbolic ball) with a simultaneous drift from the metric of V? to
that of V1, followed by filling the result by éU.(Tr"~? V1) with small § > 0 matching the
preceding shrinking. (We suggest the reader would fill in the details.)

Thus every closed orientable n-manifold V with n > 3 admits a metric ¢ = gg, for every
gwen R > 0, such that
(1) V contains an isometric copy of the hyperbolic R-ball for a given R.

(2) M(A,) > 1.

Remarks. (a) Probably, it is not hard to remove the orientability assumption.

(b) It seems, one can freely move topology with this kind of surgery (using Tr* for
k ~ %) without changing non-zero part of the small spectrum of d+d* apart from m = n/2

for n even and m = "fl

for n odd. However, the starting manifolds 17, cause here a
problem. (The only way I see how to control the spectrum on forms of positive degrees is
with Bochner-Matsushima type formulae but these do not seem to cover all m’s, but only
the range m < \/n.)
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(c) In order to replace (1) by g > R? go one should find triangulations Tr of V; (for large
i) with metrically large Tr"~2. Here is a related quintessential problem. Can one generate
H™(V;; Q) for large i and odd m by the pull-backs f*[S™]° of distance contracting maps
f: Vi > S™ with the implied contraction (i.e. (Lipf)~") going to oo for i — 007

(d) It would be nice to make the above construction more elementary by chasing away
arithmetic varieties. In fact, it is easy to construct large graphs with large A; (e.g. starting
from cubical graphs as in [GroJrrm) but thickening them to large manifolds does not look
obvious (dispite 9.2.A in [Gro]prym which I now regard with suspicion).
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§ 7. Invariance and non-invariance of the tangent bundle and Pontryagin
classes.

Can one change the tangent bundle T(V) of a manifold V by modify:ng its smooth
structure while keeping the homotopy type of V intact ? If “yes”, in how many ways ?
“No” is known for the spheres S™ for all n. “Yes” is obvious for many ope manifolds V.
Namely if V and V' are total spaces of two different vector bundles X and X' of the same
rank) over some Vj, then the tangent bundles T(V) and (T(V"') differ as ruch as X and
X' do, while V and V' are homotopy equivalent being contractible to the same V;. In
older days one could smugly believe in the homotopy rigidity of the smooth structure and,
consequently, of the tangent bundle of a closed manifold V. After all this had been known
for surfaces V, where the essential invariant of T(V'), the Euler class, i.e. the “algebraic”
number of zeros of a generic section (vector field) V — T(V'), s a homotopy invariant being
equal to the Euler characteristic of V. But as dimension goes up there appear too many
different possibilities for 7(V') to be contained by the homotopy type of V. For example,
one can show there are infinitely many manifolds V7, V;, ..., all homotopy equivalent to
S? x S*, but with quite different tangent bundles, distinguished by their first Pontryagin
classes py(T(V;)) € HY(S? x S*) = Z, namely with p;(T(V;)) = M. for some (large) fixed
integer M # 0 and ¢ = 0,1,2,..., where V, = $? x §* and where non-vanishing of p,
signifies non-triviality of the restriction of the tangent bundle T(V;) to S*. More precisely,
the implied homotopy equivalence S? x S* — V; sends §* = s x S* into V; and the
“restrictions” means “pull-back” under this map S* — V;. Notice that the non-vanishing
of p1(V;) precludes any embedding or immersion S* — V;, non-homologous to zero albeit
the generator of H4(S? x S*) = Z can be represented by a smooth submanifold. To see this
we compose the homotopy equivalence in the opposite direction, V; — S? x S* with the
projection S% x S* — S? thus obtaining a map V; — S2. We make this map smooth by a
small perturbation and take the pull-back W of a generic, and hence regular, point s € S%.
This W C V; is a smooth 4-manifold whose fundamental class [W] generates H4(V;) and
whose signature, according to the Rochlin- Thom-Hirzebruch theorem (see below), equals
3(p1(T(Vi)),[W]). In particular, if p; # 0, this signature is also non-zero which prohibits
S* from serving for W.

71. Recollection on signature o(V). Let V be an oriented 4k-dimensional manifold
(possibly non-compact and with boundary) and observe that the intersection index between
2k-cyclesin V is symmetric, Zy —~ Zy = Z, —~ Zy, (it is antisymmetric for dim V' = 4k +2),
and, hence, defines a quadratic form on the real vector space Hor(V;R). We assume
this space is finite dimensional, say of rank b, and we bring the intersection form to
2?;1 z? — Z?;l y2. (If V is a closed manifold, then this form is non-singular, by the
Poincare duality, and so b = b4 + b_). The difference o = by — b_ is called the signature
(of the form and) of V. If V is a closed manifold, then the signature o(V') is a homotopy
invariant of V (since the intersection on cycles is Poincare dual to the cup-product on
cocycles) and it is not “just an invariant” but the invariant which can be matched in the
beauty and power only by the Euler characteristic. (If V' is non-closed, (V') is an invariant
under proper homotopy equivalences). Here is what one should know about o.
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(1) o(V) = —o(V) where —V means the reversing the orientation of V. (This is
obvious).

(2) c(Vi ][] V2) = o(V1) + (V2). (So obvious, it is hard not forget to mention).

(3) Cobordism in'variance. If V, a closed manifold, bounds an oriented (4k + 1)-

manifold W then o(V) = (The intersection is, obviously, zero on the kernel oi the
inclusion homomorphism I H w(V) — HQk(I’ 2 and the orthogonal complement of this
kernel for the intersection form on H,(V), say ker™, is contained in ker itself by the Poincare

duality in W and the intersection vanlshes on ker as well as on ker. Hence (V) = 0 by
obvious linear algebra). It follows, o(V') is a cobordism invariant (as well as a homotopy
invariant) of V. Namely if V and —V' make a boundary of some W, then o(V') = o(V).
For example, if V is an oriented connected sum, V = Vi #V,, then o(V) = o(V1) + (V7).

(4) Multiplicativity. If Vi — V is a finite d-sheeted covering of V, then a(\N/) =
do(V), provided V is a closed manifold. (Amazingly, there is no direct homological ap-
proach to this multiplicativity. The original argument appeals to Thom’s cobordism theory
with a possible short-cut to the bare essentials, the Serre finiteness theorem for the stable
homotopy groups (see 7%). The second proof depends on the Atiyah-Singer index theorem.
The latter was originally established using cobordisms but now there are several indepen-
dent proofs, some K-theoretic and some purely analytic, but none truly elementary).

(5) Cartestan multiplicativity. o(V; x Vo) = o(Vy)o(Vz). (It follows from the
multiplicativity of the signature under tensor product of quadratic forms).

(6) Novikov Additivity. Let 1V be cut into two pieces, say Vi and V2 by a closed
hypersurface S lying in the interior of V. Then

o(V1) +o(Va) = o(V).

(The 2k-homology of V is built of those of V} and V; and of the intersection of the kernels
of the inclusion homomorphisms #; : Hyp_1(S) — V} and iy : Hax—1(S) — V2. Since the
intersection form is invariant for the inclusions of V; and V; into V', the (2k—1)-homology of
V coming from V; and V; has ¢ = o(V;)+0(V2). On the other hand, the intersection form
obviously vanishes on Im Hyx(S) < Hax(V') and consequently, by the Poincare duality in
S, the intersections keri; Nkeriy — H,.(V') does not contribute to the signature of V).

Ezamples. (a) CP? has signature 1 as Ho(CP?) = Z with positive selfintersection of
CP! C CP? generating H,(CP?). Consequently CP?#CP? has 0 = 2 and so it is neither
homotopy equivalent nor cobordant to S? x 5? which has the same Betti numbers but zero
signature.

(b) Let V be the total space of an oriented vector bundle X of rank 2k over a closed
connected 2k-dimensional manifold Vj. then the signature of V (obviously) equals sign
e(X), where “e” stands for the Euler number defined as the selfintersection number of Vg
in V realized as the zero section. Thus e¢(X) is a proper homotopy invariant of (the total
space of ) X and, as one knows, this is the only numerical invariant (characteristic number)
with this property.
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7%. Pontryagin classes, L-classes, signature theorem etc. Every real vector bundle
X — V can be induced by a continuous map a : V — Gr.R*, for r = rank X, from
the canonical r-bundle over the Grassmann manifold Gr,.R* and the isomorphism class
of X is determined by the homotopy class of a. As we stabilize X by adding trivial
bundles, we embed Gr.R>* C Gr,.41R* C ... and take the union, called GrR>* = BGL,
the classifying space of the stabilized linear group GL = GL(oo) = oo, GL(r). (The
sole purpose of this stabilization is to remove the Euler class and if rank X > dimV
the stabilization is unnecessary). The non-torsion part of the cohomology of BGL is
a polynomial ring which can be polynomially generated by certain distinguished classes
pi € H¥(BGL;Z), i = 1,2,..., called the (universal) Pontryagin classes. The pull-
backs of these to V' under the classifying map a : V — BGL are the Pontryagin classes
of X, denoted p;(X) € H*(V;Z). If V is a closed oriented 4k-manifold, one extracts
numerical invariants out of (the cohomological invariants) p; = p;(X) by taking their
various products of total degree 4k and evaluating on the fundamental class of V', namely,
pf[V],pf—2p2[V], ...y pk[V]. These are called the Pontryagin numbers of X, and for X =
T(V), the Pontryagin numbers of V. The totality of the Pontryagin numbers encodes the
homology class a.[V] € Hy(BGL; Q). In particular, if the Pontryagin numbers vanish,
this class is zero which means that a “multiple of V” can be homotoped to the (4k — 1)-
skeleton of (some triangulation of ) BG L.

In general, one may pair (products of) p;’s with the homology classes in V' and the
resulting numbers encode the Q-information on our (stabilized) bundle X. More precisely,

we say that two bundles X; and X, over V are @-equivalent if there is an integer M > 0,
such that M X, is stably equivalent to MX,, where MX = X @& X & - - & X and “stably

equivalent” means “equivalent after adding trivial bundles of suitabllvel ranks”. One knows,
that two bundles are Q-equivalent if and only if they have equal rational Pontryagin classes
where “rationalization” means passing to H.(V;Q)) which is equivalent to having equal
numbers p;(h) for all h €@ Hy;(V). (This implies equality of all II,(h) for the products

J
II, of p;). And there exists an integer My = My(V) > 0 such that for arbitrary p' €
Hyi(V), @ = 1,2,..., the multiples Mop’ can be realized as Pontryagin classes of some
X — V. All this follows from Serre’s finiteness theorem (see 75). Another consequence of
this theorem is the finiteness of the number of proper homotopy equivalence classes of stable
vector bundles over V. This means, in particular, there ezists an integer M; = My(V),
such that every vector bundle X — V or rankr > dimV stably equivalent to MY for
some Y — V s proper fiberuise homotopy equivalent to the trivial bundle V. x R". Such
proper equivalence implies the homotopy equivalence of the corresponding sphere bundle
Sx to V x S™! (which is more attractive being a closed manifold for closed V', while,
by the above, the Pontryagin classes of X, and hence of Sy, may be taken almost at
will. For example, if all p;(V) = 0, then p;(Sx) equal the pull-backs of p;(X) (for the
projection Sx — V') and these p;(X) € H;(V) can be chosen multiples of arbitrary classes
p; € Hy,(V), i = 1,.... Thus the Pontryagin classes of VV x S"7! can be easily varied by
varying the smooth structure within the fixed homotopy class of V' x S7~1. This agrees
with (but not formally imply) our earlier example of S? x S* (where the pertinent bundle
has rank 3 over S* which is not the stable range but where Serre’s theorem still applies).
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L-classes. There is nothing sacred about the generators p; of H*(BGL). In fact we
prefer another set of polynomial generators of the rational cohomology of BGL, denoted
L; € H*(BGL : Q), which are uniquely characterized by the following condition.

Let V be an oriented 4k-dimensional manifold which is the Cartesian product of some
complex projective spaces and « : V' — BGL the classifying map for the tangent bundle

T(V) — V. Then
Li(a.[V]) = a(V), (*)

i.e. Lr(a.[V]) = 1if all CP/-factors of V have j even and Li(a,[V]) = 0 if some j is odd.
This indeed correctly defines L;, since the classes a.[V] € Hy(BGL) form a rational basis
in this Hy; for all CP7-product manifolds V' as an elementary computation (of Pontryagin
numbers of these V’s) shows. The first L, can be easily computed in terms of p;.

é(?pg —p3), Ly = ﬁ(G’Zpg — 13pap1 + 203, .. -,

Ll - %pla L2 -
but then it becomes a mess; yet, one can show that L; = {;p; + --- where {; # 0 for all
¢ and so p;’s can be rebuilt out of L,’s. (Actually, we could start with L; defined by (*)
witout ever mentioning p; but we paid our respect to the custom).

Signature theorem. Every closed oriented 4k-manifold V' has
o(V)= L[V],

where

LV] = LxV] = Lu(au[V]) (e5)

for the classifying map o : V — BGL.

Proof. According to Thom’s cobordism theory (which can be reduced in our case to
Serre’s finiteness again), two manifolds V; and V; are Q-cobordant, i.e. MV; is cobordant
to MV,, where MV denotes the disjoint union of M copies of V| if (and, obviously, only
if) their classifying maps are Q-homologous, i.e. «;[V;i] equals ay[V,] in Hyp(BGL; Q).
Since Hyx(BGL) is spanned by products of CP?’s, every V is Q-cobordant to a disjoint
union of products of CP’’s and their inverses (i.e. with reversed orientations) and, hence
obviously by linearity, (with the properties 1-3 and 5 of o) (**) follows from (*) (Everything
here but “hence obviously” is due to Thom with the final “hence obviously” furnished by
Hirzebruch. What, apparently, Thom missed was “linearity”, i.e. the implication

Ma=Mb=a=5b

in the vector space of linear functions on the cobordism group Cbrdy as he aimed at the
actual generators of Cbrdy; not only those over Q provided by the products of CP7’s).

Multiplicativity corollary (see (4) in 7). If V — V is a finite k-sheeted covering

~

then o(V) = ko(V).

1
q
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In fact, L[V] is multiplicative as, obviously, a.[V] = ka.[V]in H,(BGL). Q.E.D.

Browder-Novikov theorem. We saw earlier how one could vary Pontryagin classes
(or, equivalently L-classes of V' x S™ and this extends to all closed simply connected mani-
folds V of dimension > 6, where, according to BN, the signature formula L(V) = o(V) is
the only homotopy restriction on the Q-type of the stable tangent bundle I'(V'). Namely,
there is an integer M = M(V), such that for arbitrary (integer) classes L, € Hy (V),
1 =1,...,k =1, where 4k — 3 > dimV < 4k, one can find V' homotopy equivalent to
V and having Ly(V') = L(V)+ ML, « =1,...,k — 1, where this equality refers to the
identification between H*(V') and H*(V) for the implied homotopy equivalence V' « V
and where L;(V) = a*(L;) for the classifying map a : V. — BGL. But one can not vary

Li(V) for dimV = 4k as it must abide (**)). The Browder-Novikov proof consists in
reduction of this by surgery to Serre’s finiteness theorem. (Practically all Q-finiteness of
the number of homotopy restrictions on T(V') apart from the equalities Ly (T(V)) = a(V')
and e(T(V)) = x(V) are derived from Serre’s theorem. And this theorem, in a certain
precise sense, 1s less elementary than the derivation arguments).

7%. On the invariance of L, and the Novikov conjecture. Now the stage is set for
a discussion on the homotopy invariance of the classes L;(V) € H*(V;Q) (or equivalently
of “rationalized” classes p,) of non-simply connected manifolds V. For example, let all
homotopy of V' come from the fundamental group Il = = (V), 1.e. V be a closed aspherical
(also called K(II;1) and/or BII) manifold which means contractibility of the universal
covering V of V. Then one may conjecture, following Novikov, that the tangent bundle is
uniquely determined in the Q-sense by the homotopy type of V| i.e. by the fundamental
group. That is, every map between two such manifolds, V' — V', which is isomorphic
on my's sends L;(V) « L;(V'). Take for example the n-torus T" for V. This manifold is
parallelizable and so all characteristic classes vanish. According to the conjecture this must
be true for every n-manifold V' homotopy equivalent to T", all L; and p; must be zero.
(Since H*(V') = H*(T™) has no torsion, vanishing of p; in H*(V;Q) implies vanishing in
H*(V;Z) and the Euler class is zero anyway being equal to x(V') = x(T")). To see this
from another angle, let ﬁ'u’m‘, — V' be the universal covering of V' viewed as a principal
bundle with the group Il = 7 (V') = Z" for the fiber and let X — V' be the associated
R"-bundle for the standard action of Z™ on R". (X equals 1~/u'mv x R™/(diagonal action
of Z¥) and it naturally projects to V'). Then the conjecture claims that X (turned into
a vector bundle by choosing a “zero” section V' — X) is Q-equivalent to T(V') i.e. has
the same L-classes. A similar interpretation is possible for all aspherical V. Namely, we
take the fibration X — V' associated to V! . — V' with the fiber V,;, for the Galois

univ
action of Il = m (V) = m (V') on Viniv and (conjecturally) claim that X is @-equivalent to
T(V') (which means here a fiberwise diffeomorphism between the fibrations M X @ Triv and
MT(V’)EBTriV'. (The universal covering Iw/umv does not even have to be diffeomorphic to R"”
but this is recovered by adding the trivial bundle). In fact, we would rather exclude V from
this at all, as we want to reconstruct (the Q-type of ) T(V') (as well as T(V')) functorially
out of IT alone. (A similar problem arises in the complex analytic and symplectic categories
where some results are available for Kahler manifolds).
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7%. Novikov in codimension one. The first homotopy invariance result concerns
manifolds which are not aspherical but rather looking like V = W x S, where the relevant
part of m; is just Z = m;(S).

(Novikov 1965). The class Li (V') of a (4k + 1)-dimensional manifold V 1s a homo-
topy tnvariant of V.

Proof. The class L is determined by its values on Hyx (V') and so we must prove the
invariance of (Lx(V'), h) for all h € Hy, (V). Every homology class h of codimension one
can be realized by a co-oriented submanifold W C V' appearing as the pull-back of a regular
value of a smooth map 8, : V' — S representing the Poincare dual class hd%? ¢ H1(V).
Now (L, h) acquires a meaning as it equals the signature of W. Indeed, by an obvious
functoriality of Ly,

(Le(T(V)). h) = (Li(T(V) W), [W])

(where we may assume V', and hence W, oriented without loss of generality) and as the
normal bundle of W in V is trivial, T(V)|W is stably equivalent to T(W). Thus

(Le(V),h) = (L T(W),[W]) = o(F)

by the signature theorem. So to prove the Novikov theorem we must give a homotopy
interpretation of o(W) in terms of the original manifold V. This is done below in the

framework of the proper homotopy type of the cyclic covering Vi = V induced from the
covering R — S! by the map 3;. This V}, has a dlstmgulshed homology class h € H4k(Vh)

corresponding to h which is realized by a lift of W to Vh, say Wy C V. This h defines a
cup product pairing on H 2k(Vh) by

(hy.hy) = (hy — ha,h)

and the signature of this pairing, denoted cup(ij’h |71), (which is a homotopy invariant of V

being a proper homotopy invariant of Vi ) equals the signature of Wy (which is diffeomorphic
to W). Let us prove the equality we claim,

a(mlpl |h y=o(W), (+)

(which is a pretty homological formula for (Li(V),h) = o(W), not just “a homotopy
invariance”

Proof of (+). Let V* be a non-compact 4k + 1-manifold with compact boundary
Wy and show that the form cup(V*¥|[W;]) on H?*(V*) has 0 = o(W,). In fact this
o= o(cup(VT|[Ws])) equals the signature of the intersection form Iy on Wy restricted

to the space H C Hap(Wy) corresponding to the cycles Wy N C in Wy for all (possibly)
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infinite cycles C in V1, see Fig. 10.

v+

Fig. 10

The 2k-cycles in the Iy-orthogonal complement H + of H have zero intersection with all
C’s in V' and thus, by Poincare duality in V1, they bound in V*, which implies vanishing
of Iy on H+ (compare the proof of the cobordism invariance of ¢ in 7%) and, by linear
algebra, the desired equality o(lp) = o(Io|H). Next, we take an open 4k + 1 manifold 1
(not necessarily anybody’s covering) divided into two halves Vt and V'~ by some closed
Wy and conclude again that the form cup(V|[Wy]) has the same signature as the manifold
W, moved deep into V= without changing the signatures, see Fig. 11 below.
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Fig. 11

The signature of W, is independent of 7 by the cobordism invariance while the form

cup(\7|[Wi]) is independent of i along with [W;] € Hsx(V') and so
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o(Wo) =o(W;) = o(cup(Viﬂ[I’Vl])) = a(cup(Viﬂ[IVo]) = o(cul)(vl[PI"g])).
Q.E.D.

Corollary to the proof. The class Ly, is a proper homotopy invariant of non-corpact
(4k + 1)-manifolds. .
7%. Higher signatures o,. Let us replace the circle S! in the above picture by an
arbitrary closed aspherical mainfold B with some fundamental group II = m(B) and look
at a manifold V mapped to B. A homotopy class of such a map is determined solely by the
homomorphism 71(V) — II and so our data actually consist of V' and a homomorphism
m (V) — II. We slightly perturbe our map, so it becomes smooth, say 3 : V — B and
we take the pull-back W = B~1(b) of a regular value b € B of §. This W is a smooth
submanifold in V of codimW = dim B and we are keen on the signature of W in the
case where m = dim W = 4k. We observe that the homology class [W] € Hy (V) can be
described in more invariant terms as dual 3*[B]°, i.e. the Poincare dual of the pull-back
of the fundamental cohomology class [B]*® € H%(B), d = dim B. Then we notice that the
cobordism class of W is invariant under homotopies of 3 and movements of b. For example
if b € B is a regular value for a smooth homotopy V x [0,1] — B between Bo and 31, then
the pull-back of b in the cylinder V x [0,1] furnishes a cobordism between Wo = 851(b)
and Wy = B !(b). Thus we see that the signature o(W) is a well defined invariant of
V with a given homomorphism (V) — II. Another way to see it is by observing that
o(W) = (Li(V),[W]) as in the case B = §'. In fact, since W is the regular pull-back of a
point, it has trivial normal bundle in V' (because it can be given by a nonsingular system of
equations ¢1(u) =0,...,94(u) = 0 in some neighbourhoof U D> W, where ¢,;’s come from
local coordinates ,...,%q4 in B at b for d = dim B) and so all (stable !) characteristic
classes L;(W) = L{T(W)) = L,(T(V)|W), are obtained by restricting L;(V) to W. In
particular

(W) = Li[W] = (L(V), [W)), (1)

or, cohomologically,

o(W) = (Li(V)) — 57[B]*, [V]), (9co)

which is equivalent to o) by the Poincare duality. Finally, we generalize (0co) by intro-
ducing the (higher) signature for an arbitrary cohomology class p € H*(B),

= (L(V) — 3°(p), [V])- (95)

Here L(V) = 1+ Li(V)+... € H*(V) and the evaluation of the cup-product L(V) — B*(p)

refers to the degree n component for n = dim V.

This definition of o, is quite general, it applies to an arbitrary aspherical space B =
BII with my(B) = II and V with a (homotopy class of a) map § : V — B. And the
resulting o, is called the (higher) p-signature if V. Of course, this definition makes sense
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for non-aspherical spaces B as well, but aspherical B’s are special as we shall see presently.
(If B is an arbitrary closed oriented manifold of dimension d, and p = [B]*® € HY(B), then
o, = o(W) for the pull-back W of a regular value in B, with the convention (W) = 0 for
dim W not divisible by 4, and this property, in fact, uniquely determines the class L(V') if
one uses maps to spheres).

Every p-signature of V' can be visualized as the actual signature of some submanifold
W in V. In fact, for every cohomology class v € H™(V) of codimension 4k(= n — m)
there exists a closed immersed submanifold W in V with trivial normal bundle, such that
the fundamental class [W] is Poincare dual to some non-zero multiple My of . (This is
yet another consequence of Serre’s finiteness. For example, if m is odd or if n > 2m + 2,
then according to Serre, V admits a map a : V — S™, such that a*[S™]® = M~y and thus
W = a~!(s), for a regular s € S™, is dual to M~. In general, one should combine the
above with the Hirsch immersion theorem). Then clearly,

o(W) = (Ls(V),[W]) = M(Lx(V) ~ 7, [V])-

Nowikov conjecture for o,. Let B = BII be an aspherical space and p € H*(B).
Then, for every smooth closed manifold V with a given (homotopy class of a) map BV —
B, the p-signature o, 1s a homotopy invariant of V, i.e. for every homotopy equivalence
e: V' = V, the p-signature of V' for the composed map ' = e o B equals o,. Equive-
lently, the B,-image of the Poincare dual of every rational Pontryagin class, B«.(PDp;) €
H,,(BII; Q), is a homotopy invariant of V. (One can imagine Pontryagin classes of some
singular spaces, in the spirit of Cheeger-Goresky-MacPherson, where the homological for-
mulation will be preferable).

We prefer to turn the conjecture to the following
Question. For which II and p is 0, homotopy invariant for all (V,3) ?

(Of course, it may happen that Novikov conjecture 1s universally true. But if not, our
question only gains in vahdity).

Novikov proved the homotopy invariance of all o, for the free Abelian groups II = 7¢
which amounts to his codim 1 theorem for ¢ = 1. In fact, Novikov was originally concerned
with V homeomorphic to Vi x T¢, where Tt = B(Z%) is the (-torus, and to Vo X T xR,
and general V’s with II = Z¢ where handled later by Kasparov).

Lusztig reproved the Novikov-Kasparov theorem for II = Z¢ by generalizing the signa-
ture theorem to families of flat S'-bundles and he also extended this to some cohomology
classes p in certain arithmetic groups (compare 8—;—) Lusztig’s argument, based on the
index theorem for the signature operator (i.e. properly interpreted d + d* twisted with
flat bundles), was generalized by Miscenko to certain infinite dimensional bundles who
thus proved the Novikov conjecture for all p in closed Riemannian manifolds B with non-
positive sectional curvature (eventually the conjecture was settled for all complete B with
K(B) < 0). In fact, the validity of the Novikov conjecture seems to be intimately related
to the macroscopic geometry of the universal covering B of B and Jor of the group II. Some
of this is explained in 7% and §9 (Also see [Fa-Hs), [Fa-Jo],[NC+] and references therein).
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73. On topological invariance of L, and Lipschitz geometry. Let us recall the
original Novikov homotopy invariance theorem.

Let U be an oriented manifold diffeomorphic to W x T* x R, where W 1s ¢ closed
manifold of dimension 4k. Then the value (L(U),[W]) is a proper homotopy invariant of
U. Namely, if v : U' — U is a proper homotopy equivalence, which happens to be sm.ooth
and transversal to W =V x t x r for some (t,r) € T¢ x R, then

(v THW)) = o(W),.

Novikov proved that by (a seemingly circular surgery argument) constructing inductively a
descending sequence of submanifolds in U’, say U' = Wy D W DW; D ... D W,_, D W,
where each W/ is homotopy equivalent to W x T*7' with the inclusions W] C Wi_,
homotopic to the standard ones, W, C W/ x T! ~ W!_,. The final manifold 7, 1s then
homotopy equivalent to W and so has o(W}) = o(W). On the other hand, this W;

obviously has trivial normal bundle in V' and so o(Wy) = (Li(V"). [W¢]).

Now, to prove the topological invariance of L; (and hence, of p;) for all manifolds V|
we will show, following Novikov, that if some homology class h € Hqx(V) 1s realized by
an immersed submanifold W with trivial normal bundle and certain signature o, then, in
a homeomorphic manifold V', a similar realization W' of h has the same signature o, ie.
o(W') = o(W). Since the normal bundle of W is trivial, T(V)|W = (V)& Triv* ™
and a turbular neighbourhood of W in V is diffeomorphic to W x R"~** immersed (i.e.
locally diffeomorphically mapped) into V. We take some embedded (-torus T! c R4k
for £ = n — 4k — 1, with a tubular neighbourhood T! xR ¢ R*™** and form a (non-simply
connected!) manifold U = W x T! x R immersed in V. As we pass to a homeomorphic
V', the corresponding U’ remains homeomorphic to U and hence, properly homotopy
equivalent to U. Therefore, a smooth W' in U realizing the homology class [W] in U !
(and thus homologous to W C U — V') has by the Novikov homotopy invariance theorem
the same signature as W. Q.E.D. (Notice that we used here the existence of W with
trivial normal bundle realizing a non-zero multiple of a given homology class of V' which
is a consequence of Serre’s finiteness theorem).

A homotopy application of the topological invariance. It is an easy consequence of
the above that the L-classes of vector bundles over an arbitrary base are invariant under
fiberwise homeomorphisms between bundles and the same is true for sphere bundles. We
know, this is not true for proper fiberwise homotopy equivalences but it may be sometimes
so for special homotopy equivalences. For instance one may speak of homotopy equivalence
in the category of metric spaces and (proper) Lipschitz maps where the implied homotopies
X x [0,1] — Y must be Lipschitz for the product metric.

Basic ezample. Let V; and V, be compact homotopy equivalent Riemannian mani-
folds. Then, obviously, their universal coverings Vi and V; are properly Lipschitz homotopy
equivalent.

Question. Let X and Y be bundles over the same base with (smooth) Euclidean fibers
and with fiberwise (not necessarily Euclidean) metrics. Suppose X and Y are fiberwise
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properly Lipschitz homotopy equivalent. Do they have equal L classes 7 Of course, the
answer may heavily depend on the geometry of the fibers and the most interesting case is
where the fibers are properly Lipschitz homotopy equivalent to the universal covering of a
compact manifold V.

Ezample : hyperbolic fibrations. Let the fibers of X and Y be complete simply
connected Riemannian manifolds with negative curvatures K < —x? < 0. Then each
fiber, say X, of X, admits a compactification X, homeomorphic to the closed n-hall,

n = dim X,, where X, sits in X, as the interior of the ball. The ideal boundary 0X, =

X, — X, is homeomorphic to S ! and the S?~!-bundle thus associated to X is fiberwise
homeomorphic to the normal sphere bundle of a section A — X. Furthermore, every
fiberwise Lipschitz homotopy equivalence X « Y induces a fiberwise homeomorphism
between the ideal boundary (spherical) bundles, and by Novikov’s topology invariance, an
equality between the L-classes of X and Y.

Hyperbolic manifolds. Let V' be a closed manifold with K(V7) < 0, and V-V
be the universal covering viewed as a principal II-bundle with II = 7 (V). Take the
associated fibration X — ¥ with the fiber V for the Galois action of IT on V (X equals
VxV /diagonal action naturally fibered over V' = 1% /M), let V' be homotopy equivalent to
V with the corresponding bundle X’ — V' and bring this bundle to some ¥ — V' via our
homotopy equivalence V' — V"', The homotopy equivalence V « V' (obviously) induces a
Lipschitz homotopy equivalence between X and Y over V (since V and V' are compact)
and hence, in the case K (V') < 0, the equality of the L-classes, which are, therefore,
invariant under homotopy equivalences between closed manifolds of negative curvature.
(And by the same token L-classes are invariant under Lipschitz homotopy equivalences
between complete manifolds of negative curvature).

Furthermore, by applying a Novikov type argument on the large scale one can drop the
assumption K (V') < 0 (while keeping (V') < 0) and eventually recover the full Novikov
conjecture for V by topological means without using the index theorem (see [Fa-Hs], [Fa-
Jo], [Pe-Ro-We] and references therein). In fact, this can be done quite elementarily using
products of surfaces of genus > 2 instead of tori (see 91).

The above L-equality problem for bundles may be preceded by the following

Realization problems. Let II be a finitely presented group which is $"~ at infinity
in the sense specified below. When does such a II admit a discrete cocompact action on
R”, or at least when does some Cartesian product II* x Z¢ admit such an action on Rnrk+e2
Even if no such action exists, one may try to associate to each principle II-bundle a “virtual
Euclidean bundle” and define its L-classes.

On being S™"~' at infinity. There are several possible definitions. For example,
if TI is a word hyperbolic group then one may speak of its ideal hyperbolic boundary 911
and “OI1 homeomorphic to S*~'” is one way to express the idea of “S™! at infinity”.
Here one knows for n = 2 that the realization problem has positive solution (without
stabilization) but this, unexpectedly, is a difficult theorem (equivalent to the so-called
Seifert conjecture recently solved by Gabai and by Casson with Jungreis). On the other
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hand we do have S®~! = 9I' with a natural T action and so our spherical (and Euclidean)
bundles automatically come along.

In general, for any finitely generated group one can define its “homotopy type at
infinity”. So, for n > 3, we should require I to be (n — 2)-connected at infinity and having
H,—1 = Z at infinity. This is, probably, equivalent (at least after some stabilizaticn) to
the existence of a complete Riemannian manifold V' of dimension n, such that

1. V is quasiisometric to Il with a word metric, i.e. V admits an e-net A for some
€ > 0, which is bi-Lipschitz to II.

2. V is uniformly contractible, i.e. there is a function py (r), such that every r-ball in
in V is contractible within the concentric p-ball for p = py(r) (which is assumed > r).

(In order to avoid possible complications one may additionally require that this V" 1s
“large at infinity” in a suitable sense, e.g. admits a proper Lipschitz map f:V — R” of
degree one, compare §4 and [Fe-We]).

Finally, for an arbitrary complete Riemannian manifold (not necessarily homeomor-
phic to R™) we want to raise the question of (the existence and invariance of ) characteristic
classes for the “group” (H-space) of its Lipschitz homotopy equivalences. Again the main
examples come from universal coverings of closed (not necessarily aspherical) manifolds
where Lipschitz homotopy equivalences (individually and fiberwise in bundles) tend to
preserve certain L-classes. (Compare [Pe-Ro-We] and §9).

7%. Wall-Witt groups of R(M) and homomorphisms WM : HBrd.BIl — Watt,
and « : H,(BIL;Q) — HBrd, ®Q. Recall that the oriented bordism group of a topological
space B, denoted Brd, B, is formally generated by closed oriented n-dimensional manifolds
V coming along with continuous maps 3 : V — B, which are subject to the following

Relations.

(1) Reversing the orientation of V' reverses the sign of the bordism class,

-V, 8] = —[V.3].
(2) Disjoint union of manifolds (and maps) correspond to the addition in Brd,,

[(Vl»ﬁl)U(VQ- B2)] = Vi, 1] + [Va, Ba).

(With this one sees that Brd, is commutative).

(3) For every oriented (n + 1)-dimensional manifold W with boundary V = W and a
continuous map a : W — B,

(V,a|V] =0.

Actually, instead of generating a group by all (V, 3) we may take the set {V, 8} itself with
the semigroup structure for the disjoint union [| and obtain

Brd,B = {V,5}/(1)+ (2) 4+ (3).
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For example, if B is a single point, then Brd, is the usual Rochlin-Thom cobordism group
of n-dimensional manifolds.

Next we add the following extra relation.

(4) If V; and V; are orientably homotopy equivalent and f; is homotopic to F, (or rather
to h o B for the implied homotopy equivalence h : V, — Vi) then

V1, B1] = [Va, Ba].

Finally, we stabilize, by taking products with the complex projective plane, V-~V x CP?,
where (v, c) = f(v). and by adding the corresponding relation

(5) [(V.3) x CP*]=0=[V,B] =0.

The essential property of CP? here is the equality o(CP?%) = 1 which shows (with the
Cartesian multiplicativity of o, see (5) in 8%) that this stabilization does not change the
p-signature o, of (V,3) for every p € H*(B) (compare 82). In fact, we could use any
manifold W instead of CP? of dimension 4k with o(W) = 1 and arrive (after using the
homotopy equivalence axiom (4)) at the same result (i.e. HBrd,B defined below).

Now we factorized the stabilized bordims by the homotopy equivalence relation and
set

HBrd,B = {V.B}/(1)+ ...+ (5) = Brd,B/(4) + (5).

If B consists of a single point then HBrd,B is torsion for n # 4k and HBrdsy/torsion
equals the ordinary Witt group of quadratic forms over R. Recall, that the Witt group of
a field K is formally generated by the isomorphism classes of non-singular quadratic forms
@ over K with the relations

(a) [p1 B p2] = [p1] + [p2], for the direct sum & of forms;
(b) [=¢] = —[¢]

(usually one takes instead of (b) the relation [zy] = 0 for the form zy on K? but this only
has effect on the 2-torsion of the resulting group). In the case K = R everybody knows
that Witt R = Z with the isomorphism given by the signature ¢ — o(y).

If B is simply connected, then again HBrd, B is torsion for n # 4k (where one should
assume B is a finite polyhedron to avoid irrelevant complications) and
HBrdyB/torsion = 7 = WittR(= WittZ = (WittQ)/torsion)
for the signature homomorphism [V, 3] — o(V') € Z, as follows from the Novikov-Browder
theory.

The real story begins when we take a group II and the classifying (aspherical) space
B = BII (with m; = II) where HBrdBII serves as a prototype for the definition of the Wall-
Witt group of (yet unspecified group ring of ) II. For example, for the trivial group II = {e}
this gives mod torsion, (see the above) the Witt group (= Z) of the (integral, rational (or)
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real group ring R({e}) = R. This may still appear rather far-fetched but HBrd, BII can be
(essentially) recaptured in more algebraic terms of the (Wall) Witt group of a group ring
of II. This is defined for an arbitrary ring R with an involution denoted r — 7, where the
relevant rings in topology are the following, the integers Z, the ring Z[%] consisting of the
fractions n/2¥ the rationals @, the reals R, and finally all of C. The involution is trivial for
the first four of them which are subrings of R and it is the ordinary complex conjugation on
C. The group ring R(II) consists, by definition, of the finite linear combinations ¥;r;7; (or,
equivalently of functions II — R with finite supports) with the obvious rules of addition
and multiplication (which is called convolution on functions II — R). Besides, we have
an involution on R(II) given by Yr,x; — EF,WZ-_I and denoted s +— s*. If R ¢ C and
we think of an s = Tr;7; as an operator acting on the complex Hilbert space (*(II) of
square summable functions II — C by convolution (group ring product) ¢ — so for all
o € £2(I1) (which is well defined being a finite linear combination of the 7;-translations
on ¢%(II), namely ;r;m;(0), for m;(o(n)) = 0(7ri—]7r)), then s* is the adjoint operator to
s. The (Wall) Witt group Witty; R is generated by the equivalence classes of non-singular
bilinear (—1)*-symmetric forms of finite rank over R(II). These are given by invertible
square matrices A = (q;j),a;; € R(IT), with A* = (=1)*4 where 4* is defined as (aj,).
Two forms represented by matrices A; and A, of the same size are (called) equivalent if
A, = B*AyB for an invertible B. The relations of the Witt group are two,

[‘41 i1 ‘42] = [.41] + [AQ]

where we identify forms with matrices and denote by & the direct sum, and

0 1
[(—1‘)“ 0] =0

which agrees with the usual Witt relation [xy] = 0 for the Witt group of quadratic forms
over a fleld. (Wall also defined Witt,qq but we shall not go into this in our paper).

Ezamples. (a) If II is trivial and R(II) = R then for k even
Wittor R = WittR

if the involution on R is trivial. If R = C with complex conjugation, then the Witt group
Witt,:C for k even is built of non-singular Hermitian forms A which, as real quadratic
forms, are characterized in Witt by the signature. In fact, the inclusion R C C (obviously
induces an isomorphism Witte; R~Witt,,.C = Z for k even where Witty;, is isomorphically
brought to Z by the signature, [4] — o(A) € Z, and the same is true mod torsion for the
inclusions Z C Z(3) C Q C R but this is less obvious (see [Mi-Hu]. (One likes Z(3) because
2 1s invertible in this ring and so there is no difference hetween quadratic and bilinear
symmetric forms). If k£ is odd then Witt;:R = 0 as all non-singular sqew symmetric forms

m
over R are equivalent to sums & z, A y; (and the same is true mod torsion for the above

2
subrings Z,Z[3] and @ of R). On the other hand WittyxC for odd k is isomorphic to that for
k even by the correspondence A(z,y) — A(zx,/—1y) turning sqew-Hermitian forms into
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Hermitian ones. (Notice that C with the trivial involution, obviously has Witty(eyen) = Z2
and Wittz(odd) = 0)

(b) Let R = R, be the (non-commutative) ring of complex matrices of order m with
the Hermitian involution. Then Witteven R = Z, where the isomorphism is »stablished by
the signature. Namely every matrix 4 = {a;;} of order n with entries a;; € R, defines a
(block) matrix, say A, of order mn with complex entries and o(A) = a(.z)

(¢) Let R be the ring Cont(X) of continuous complex functions on a compact space X.
Then a nonsingular Hermitian form of rank m over R amounts to a fiberwise non-singular
Hermitian form A on the trivial bundle Triv"® = X x C™ — X. This bundle can be
(homotopically uniquely) split into Ty & T_ where A is positive on T and negative on T
and one defines the signature of 4 with the values in K°(XX') by o(A) = [T4] — [T-]. This
o(A) is divisible by 2 in K°(X) as [T4] + [T-] = 0 = [Triv™] (which would not happen if
we had allowed non-trivial bundles to start with i.e. forms on projective rather than free
moduli over R. Conversely, for every vector bundle T over X one has the Hermitian form
1@ —1 on the trivial bundle T & T+ which (easily) implies that Witts(even) R = 2K°(X)
and since R 3 /=1 we see as above (for R = C) that Wittyoqa)R = Witto(even) £

Recall that for nice spaces (manifolds, cell complexes etc) K'°(X)/torsion &= H®V"(X)/
torsion, or better to say, N°(X)® Q = H®¥*"(X;Q), where the passage from the K-theory
to the cohomology is given by the Chern character [T] — chT (see 52) which is indeed an
isomorphism over @ by the Serre finiteness theorem. Thus

(WittewenR) © Q@ = HE(X; Q).

choo

(d) Let II = Z™ and observe that the group ring C(Z™) (with our involution) is canon-
ically isomorphic to the ring of complex valued functions (with the complex conjugation
for *) on the torus T" which are polynomials in the coordinates z; : T" — S 1'c C and
Zi = z; '. For example if n = 1 and T! = S§' C C, then s = Z;¢;i € C(Z) corresponds
to the (Laurent) polynomial p = S;¢;2" and s* « P. (One can see here an advantage of
C over R; the ring R(Z™) is harder to express in terms of functions on T"). Thus every
Hermitian form A of rank m over C(Z") define a Hermitian form on the trivial bundle
Triv™® — T" and thus an clement of K°(T") denoted o(4) € K°T"). Since Laurent
polynomials are dense in the ring of complex valued continuous functions Cont(T") and
so every form on Triv™ can be perturbed to one with coefficients in C(Z™) C Cont(T"),
one might conclude that this inclusion induces an isomorphism on Witt,. But this rea-
soning is faulty as a polynomial approximation to an invertible continuous function may
be Laurent non-invertible. Yet. (amazingly 7) the conclusion is valid and the inclusion

C(Z™) C Cont(T") does induce an isomorphism

Wit C(2") = Witz Cont(T") = 2K0(T") = Ho (1),

(This is worth & 30 % of the Novokov conjecture for II = Z" which claims here a specific
geometrically defined homomorphism WMa : Heyen(T") — Witteven C(Z™) to be injective,
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compare below and 8-:12-) It is clear now that the ring C(Z™) has quite large Witt group
(even if we complete this ring by the norm induced from the sup-norm on functions on T"),
as large as H*(T™). (To appreciate the hidden power of the above seemingly trivial formal
discussion we suggest the reader would prove that Witt,C(Z%) # 0 without resorting to
the topology of T? but by honestly exhibiting a sqew-Hermitian form A over C(Z?) (s2e 7%

for such an example) non-equivalence of A to zero in Witt, perceived by a direct algebraic
reasoning).

From HBrd, to Witt,. There is a natural (Wall-Miséenko) homomorphism W Mc¢
from HBrd,, BII to Witt,C(IT) for all groups II defined, roughly, as follows. Take a manifold
V of dimension n (representing an element in HBrdy,) with some triangulation and observe
that the chain complex of the II-covering V — V is a free Z(II)-module where one uses
lifts of simplices from V' to V for a basis (of cardinality equal the number of simplices in
V). If ¢y and ¢y are two simplicial chains in V of complementary dimensions, one may
define (sometimes ambigously) their intersection index ¢; — ¢z € Z which then gives us a
(partially defined) pairing with values in Z(IT), i.e. in functions II — Z by m+— (mey) — ca-

A more careful look reveals that neither the ambiguity (localized at the boundaries
of chains) nor degeneracy (tempered by the Poincare duality on the chain level) of this
pairing matters as one passes to Witt, (see 8%. We only speak of n even but this formalism
can be actually used to define Witt,qq). Furthermore, surgeries of V' essentially amount to

0 1
(-1 0
correspond to equivalences of forms. Thus we obtain a (natural homomorphism W Mg :
HBrd,, BIl — Witt, R(TI) for R = Z[1] and hence for R equal @,R, C as they contain Z[1].
(There are certain additional points to settle if one works over Z where 2 is non-invertible
which lie beyond the scope of the present paper and its author).

adding direct hyperbolic summands ( ) (for n = 2k) and homotopy equivalences

Now we return to (the Novikov conjecture on the homotopy invariance of) the p-
signature o, for p € H*(BII) (see 72) which assigns, loosely speaking, to each V mapped to
BII the signature of the pull-back of a suitable cycle in BII Poincare dual to p. The relations
(1), (2), (3) of the bordism group Brd, BII are matched by the properties (1), (2),(3)of cin
7% while the relation (5) for HBrd,, goes along with the Cartesian multiplicativity property
(5) in 7%. Thus o, defines a homomorphism, also called o, : Brd,BIl — Z for each p €
H*(BII). The Novikov conjecture for p claims that o, survives the homotopy invariance
condition(see (4) above) for HBrd,, which amounts to the existence of a homomorphism
Nov, : HBrd,BIl — Z making the following diagram commutative,



H
Brd,BM ——> HBrd,(BM)

where H is the quotient map (for HBrd, = Brd,/(4)+(5)). In particular, it would suffice

to construct homomorphism Nov? : Witt,Q(IT) — Z or even better Nov:,2 : WittC(II) — Z
commutatively completing the diagram,

WM
Brd, BM —> HBrd BM -—Q> witt, QM) ——> Witt, (M)

-
-

- -

- -

-
-
-

In fact, the analytic approach to the Novikov conjecture (see 8%) delivers such a homo-
morphism from Witt of even a bigger ring, namely the C*-algebra C*(II), the completion
of CII in the operator topology for the natural embedding of C(II) into bounded operators

on ¢(II) (where, recall, s € C(II) acts on ¢%(II) by the convolution, and observe that
C*(Z") = Cont(T")).

Now, write 0,(b) = o4(p), thus relating to each b € Brd.BIl the homomorphism
oy : H*(BII) — Z. We tensor everything with @ and denote by a? € H,.(BII; Q) the
class corresponding to oy. The resulting homomorphism k : (Brd.BIl)@ Q@ — H,(BII; Q)
for h : b+ 0@ can be described as follows. Recall that the bordism group of BII (as
well as of any other space) tensored with @ equals the tensor product of H,(BII; Q) with
Brd,{point}. In fact, a multiple of each b € Brd,BII can be represented by an integer
combination of (bordism classes of) maps 8, : V, x W, — B(II) constant in w € W,
where V), are stably parallelizable (and hence cobordant to zero for dimV, > 0), W,
are Cartesian products of complex projective spaces CP%%+ and B,[V,] form a basis in
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H.(BII; Q). The above homomorphism, h : Brd, — H, assigns to such a 8, the class
o(W,)(B,)«[V,] and to combinations of 3,’s the corresponding combinations of these.
This agrees with the homomorphism H : Brd, — HBrd, which sends [V x W, 3] to
o(W)H[V, 8] (according to the stabilization axiom (5)) in the definition of HBrd.). The
relation Brd,.BII E H.(BIl)@Brd,{point} (trivially) implies that  : Brd,BIl — H. BII)

is surjective when tensored with Q. In fact, a multiple of every homology class in BII (as
well as in any space) is representable by 3*[V] for a suitable (stably parallelizable) 1" and
B :V — BII as follows again from the Serre finiteness theorem. With this we obtain the
homomorphism

a: H (BI;Q) — (HBrd.BIl) ® Q)

as H : Brd, — HBrd, vanishes on the kernel of h : Brd, — H, by the above discussion.
Here is the full diagram,

Brd, @ Q e Q > HBrd @ Q
G, ® Q H,BM;Q)
¥ eVp
Q

where ev, for p € H*(BII) is the usual evaluation (pairing of cohomology on homology.

Conclusion. If a is injective then Nov, @Q exists for all p which implies the Novikov
conjecture for all p. Indeed Nov, ®Q may be obtained by just linearly extending ev,
from H,.(BII;Q) to HBrd, ® @ D H.(BI;Q). In fact, a little extra thought shows that
homotopy invariance of all ¢, is equivalent to the injectivity of our « : H,(BIL; Q) —
(HBrd.B1l) ® Q. Furthermore, one may pass to the Witt gouprs and observe that the
Novikov conjecture would follow from the injectivity of each of the homomorphisms ob-
tained by composing « with the (Wall-Mis¢enko) homomorphism WA from (HBrd, to
the Witt groups of II over Z[%],Q,R and C. In fact, the Novikov conjecture i1s known to
be equivalent to the injectivity of WMg o o : H.(BI; Q) — (Witt Q(II)) ® Q. Notice
that both H, and Witt, are associated to II by purely algebraic constructions while the
homomorphism W Mg o a goes via cobordisms (and uses the Serre finiteness theorem at
some stage). Yet the qualitative

rank Witt Q(I1) > rank H,(BII) (*)
is stated in purely algebraic terms and so one dreams of an algebraic proof of this for
many groups II. But the known proofs of the Novikov conjecture in the majority of cases

use analysis (sometimes topology) and no direct algebraic approach to (*) is available
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except for rather special groups IT (According to Alain Connes’ philosophy the difficulty of
identifying Witt, with H, is due to the fact that the habitats of these groups are different.
Witt, is naturally defined on the operator norm completion C*(II) of C(II) where Witt,
identifies with K, (as for rings of continuous functions) while the homology, or rather
cohomology H*(II), defined via cyclic cocycles, survives only much smaller extensions of
C(II). In some cases, e.g. for hyperbolic groups, the gap can be filled in but it remains
wide open in general, compare [Co-Mo]).

7%. Remarks and references concerning Serre, Witt and topological Pontryagin
classes. (a) The business of topology is finding certain quantities, preferably numbers,
attached to geometric objects which are smooth, homeomorphic, or, best of all, homotopy
invariants. These, when found, should be evaluated in specific cases to make sure they
are non-zero for sufficiently many examples. The basic instance of this is the index of
intersection between two cycles ¢; and ¢; of complementary dimensions, say ¢ and n — 1,
in a manifold V. This is a homological invariant of the cycles and a (proper) homotopy
invariant of V; if this index # 0 for some ¢; and ¢, we conclude that the homology groups
H;(V)and H,_;(V) do not vanish, and, according to the Poincare duality, the intersection
of cycles yields 100% control over vanishing/non-vanishing of the (rational) homology.

Another (essentially equivalent) test for non- triviality of a cycle ¢ 1s provided by closed

Sto

differential forms w via the implication w( c) f # 0 ® ¢ is non-homologous to zero

which manifests the duality between homology and cohomology in the same dimension.

One proceeds similarly in the (Novikov) problem of detecting non-zero elements c in
HBrd, BII or in some Witt, by constructing computable linear functions (signatures o on
these groups where the non-vanishing of o(c¢) is verifiable and where the pertinent invari-
ance mechanism (see §82 ) is I{-theoretic rather than homological. Namely, intersections of
cycles (and integrals of forms) are replaced (quantized ?) by indices of Fredholm operators
in Hilbert spaces where the invariance of the indices under homotopics of operators plays
the pivotal role (compare [At]gag).

Illustration. Consider a vector bundle X over a closed manifold V and try to show
X is non-trivial. This can be done (co)homologically by taking a characteristic cohomology
class of X and evaluating it on a cycle in V, e.g. by integrating a suitable (Chern-Weil)
curvature form of X over V. But instead one may take the Dirac (or signature operator
twisted with X | say Dy, and derive the desired non-triviality of X from the non-equality
ind D x # ind Dryiy. (Of course, the index theorem reduces the actual computation of the
indices to cohomology but this is not our concern at the moment).

(b) Serre theorem and applications. This theorem comes in many disguises and
says, in effect, that the rational (i.e. numerical) homotopy invariants of many simply
connected spaces are essentially the {co)homological ones and so there is nothing new and
unexpected down there hidden from our eyes in the depth of homotopies. Here are specific
formulations.

I. The stable homotopy groups of spheres of positive codimension are finite.

105



In fact cardHomot(S™ — SV) < oo, unless n = N or n = 2N — 1 for N even. Thus
the only numerical homotopy invariants for maps S™ — SV are the degree (for n = N) and
the Hopf invariant (for n even and n = 2N — 1) which are both obtained by integrating
form over cycles.

II. For every finite complex V the homotopy classes of maps f : V. — SV are
classified modulo torsion (i.e. ®Q) by the cohomology HYN(V) wvia the correspor.dence
[flhomot < F*[SN]°, provided N is odd or 2N > dimV + 1.

This means that a non-zero multiple of each class ¢ € HN (V) is representable by
F*[SN]ee for some f and if two maps f) and f, have equal pull-backs of [SV]° to HN(V; Q)
then some non-zero multiples M f; and M f, are homotopic, where M f refers to composing
f with a selfmapping SV — SV of degree M.

If V is a smooth closed n-dimensional manifold, then H™ (V) is isomorphic to H,,_n(V)
where spherical classes ¢ € HV (V). i.e. of the form f*[S™] corresponds to (n — N)-
dimensional homology classes in V representable by submanifolds W C V with trivial
normal bundles which appear as pull-backs of regular values of smooth maps f : V — SV,
Thus, for N odd, a multiple of every class in H,_ n(V) is representable by such a manifold.
no direct geometric proof of this has been ever found !

Multiplicativity of signature. Let V be a finite Galois G-covering of V' and prove
the identity (V') = (card G)o (V') by showing that MV is cobordant to M(card G)V where
kV denotes the disjoint union of k copies of V. Let Xg — V be a vector bundle associated
to the principle fibration V' — V via a representation G — G L; where the action of G is
free at a generic unit vector x € R¥ (e.g. G acts on the space R°9¢ = maps(G — R) in
the usual way). Then the orbit G(z) defines a G-valued section of Xy, i.e. an embedding
V- Xy intersecting each fiber across a G-orbit. We add a complementary bundle, say X,
to Xo, so that X = Xy @& X, is trivial and the above embedding lands in the unit sphere
bundle of X which is V x S¥ for some N (as large as we want) and where the normal
bundle of V there is trivial. (Actually, V has already trivial normal bundle in Xy but X is

slightly more convenient). This V C V x SN can be represented as the regular pull-back
of some map f : V x SV — SV which is, obviously, cohomologous to the (card G )-multiple
of the projection fo : V x SV — SV and by Serre M[f]homot = M (card G)[folhomot- The
pull-back of a regular point of the implied (smooth) homotopy V x SV x [0,1] — S¥
provides the required cobordism realized by a submanifold in V x S x [0, 1] with a trivial
normal bundle.

Conclude by observing that the range of Serre’s theorem includes, besides spheres,
all compact homogeneous spaces and among non-homogeneous ones such spaces as Kahler
manifolds. But understanding this needs Sullivan’s theory of minimal (algebraic) models
of rational homotopy types.

(c) Definition of Witt, with algebraic Poincare complexes. Let us indicate
(following [Mi3]) a unified definition bringing HBrd,B(Il) and Witt, R(II) to a common
ground. Recall that Witteye, R for an arbitrary ring R with involution (e.g. for R = R(II)
or for the ring of continuous functions over some space) is built out of non singular (sqew)
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Hermitian forms, or equivalently, isomorphisms A : M — M*, where M is a free module of
finite rank over R and M* is the (Hermitian) dual (also free) module. Now, we generalize
by replacing an individual M by a complex of free moduli, of formal dimension n,

(M,3)=0—C, 2 Cy 50 .. 80y =0

where the basic examples are the chain complexes of II-coverings V of triangulated n-
dimensional manifolds V', and consider the Hermitian dual complex (of cochains)

(M*6=0)=0-C" Bt "5ten g

(with a suitable Hermitian sign adjustment in the definition of §). We work, instead
of isomorphisms, with chain homotopy equivalences A : M — M?* where A; : C; —
crt (which embody the Poincare duality for V). We use 4; & A, for addition and the
equivalence relation is made by emulating cobordism in the algebraic language. Namely,
we carefully record the algebraic effect of an individual surgery of V' (mapped to BII)
as adding and/or eliminating certain generators in M and declare M; and M, equivalent
(algebraically cobordant) if they can be joined by a chain of such algebraic surgeries. More
conceptially, we define algebraic Poincare complexes with boundaries, thus introducing the
algebraic counterpart of cobordisms. If n = 2k, one can kill all C; and C* for i # k by
algebraic surgery thus arriving at an isomorpism A' : Cp — C*¥ = Cf equivalent to the
original A and equating the new Witt.,e, built out of Poincare complexes with the old
Witteven made of Hermitian forms. (Similar simplification is possible for n odd where the
algebraic surgeries bring the Mis¢enko definition down to the original one of Wall).

The algebraic cobordism relation is stronger than the geometric one as it includes
homotopy equivalences and so the group HBrd,BII happily maps into Witt,. (See [Mig],
[Kas], [Ran]arr, [Ran]ykir and [Ran]nc for details and further references).

Exzample. Let Il = Z & Z where Q(II) equals the Laurent polynomial ring in the
variables t?:l, ¢ = 1,2. Then the (symplectic) form over Q(II) corresponding to the 2-
torus, (i.e. the Poincare complex of this torus) can be given by the following invertible
matrix A

A= ( ((t2)7" —t2)/2 (1+ ()" —f2+(t1)—1t2)/2)
(=1=t1+ (t2)7 = ti(t2)7")/2 ((t)™h —t1)/2

kindly communicated to me by Andrew Ranicki. It is not at all obvious that the class of A
does not vanish in Witt; Q(II); but it is known to be non-zero even in C(II) D Q(II) and
in the C*-algebra C*(II) D C(II) as follows for, example, from Lusztig’s theorem (see 82).

(d) Historical reminiscences. Everything presented in §7 belongs to history, 20
years back and more. The key idea of using the signatures of submanifolds for the invari-
ance proofs of Pontryagin classes is due, independently, to Rochlin and Thom. Rochlin no-
ticed in 1957 that the invariance of the signature under topological cobordisms (by Poincare
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duality) implies the topological invariance of Lgx(V***1). Thom and Rochlin-Svazc inde-
pendently observed in 1957-1958 that the pull-backs under piecewise linear maps of generic
points are manifolds in the combinatorial category and so the signatures of these pull-backs
are combinatorial (co)bordism invariants. This allowed an extension of the Pontryagin
classes to p.£. manifolds and, in particular, proved invariance of Pontryagin classes under
p.f. homeomorphisms of smooth manifolds. (For several years afterwards Rochlin had
been trying to prove the topological invariance of all L; (and thus of Pontryagin clesses)
but was continuously sliding into the (proper) homotopy category where Serre’s finiteness
theorem predicted the lack of necessary structure for such a proof as surely as the laws
of thermodynamics rule out the perpetual motion machine). In 1965-66 Novikov real-
ized that non-simply connected open subsets harbour sufficient homotopy information for
the topological invariance and put forward his homotopy invariance conjecture for general
groups II. The analytic approach starts with innocuously looking 1969 paper by Gelfand
ans Mistenko (see [Ge-Mi]), where they compute Witt, C*(Z™) via IK*(T") (see (d) in
7%), followed by Lusztig’s 1972 artillery shell charged with the index theorem. We still
live through the explosion in the atmosphere saturated with C*-algebras, Fredholm repre-
sentations, spectral flows, etc.
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§8. Signatures for flat and almost flat bundles and C*-algebras.

We approach the Novikov conjecture by systematically searching for homomorphisms
HBrd, BII — Z which, by the very definition of HBrd,, are homotopy (as well as bor-
dism) invariants of closed oriented manifolds V (mapped to BII) representing the group
HBrd,. As HBrd, naturally goes to Witt, C(II) we shall be quite conten’ to have these
homomorphisms extended to Witt, C(I") — Z.

Non-ezample. Take a unitary representation p : I — U(p) and extend it by linearity
to an involutive homomorphism C(IT) — Mat, C where Mat, C is the ring of p X p matrices
with the usual Hermitian involution. This induces a homomorphism Wittyy C(M) —
Witt,r Mat, C = Z (see 7%) which on the level of HBrd, can be described as follows.
Let (V,8 : V — BII) represent some element in HBrd, BII and let X, — BII be the
flat unitary bundle associated to p. We also denote by X, the B-induced (flat unitary)
bundle over V and we look at the cohomology of V with coefficients in X,. If dimV =
2k, then there is a C-values pairing in the middle dimension on this cohomology, say

HY(V, X,) o HAV, X,) — € which is obtained by composing the following
1. The cup product

HYNV X))o HNV.X,) - H¥(V;X,® X,)
(which is defined generally as H*(V: X ,) @ H(V; X ) —» HTI(V; X, ® X))

2. HQk(V;Xp ® X,) — H*(V,;C) for the (R-linear) map X, ® X, — C given by the
scalar product (r @ ') — (z,2') in X,.

3. Evaluation of H*"(V;C) on the fundamental class [V].

(If we represent the cohomology by k-forms with coefficients in X o> 82y by > zw;
and E,’ T;wj, then our pairing amounts to [, Ei,j (i, 2;) (wi Awj)). If k is even, this
pairing is Hermitian and we may speak of its signature, denoted o,(V') and in the odd case
we pass from “sqew-Hermitian” to “Hermitian with” the help of /=1 as earlier and define
po(V) just the same. This o, looks as good as the ordinary signature o(V') with the same
charming properties (see (1)-(5) in 71) but ..., it just happens to be equal to pa (V) for all
unitary representations p. (This follows from the index theorem and the vanishing of the
Chern classes of flat unitary bundles. I wonder if there is a direct algebraic proof in the

language of the homomorphism C(II) — Mat, C.

To help the problem let us pass from the unitary group U(p) to U(p,q), the group
of isometries of CP*¢ endowed with the Hermitian (p, ¢)-form 37_, z;7; — ?:54_1 2iZ;.
(The encouraging (p, ¢)-sign is a possible non-vanishing of U(p, q) characteristic classes in
agreement with the Chern-Weil theory). So we take a representation p : Il — U(p, q) which
extends to an involutive homomorphism C(II) — Mat,, C, where Mat,, C is the ring of
(p+ q) x (p+ ¢) matrices with the involution corresponding to our new (p, q)-Hermitian
form. Namely A* is defined. for all A € Mat,, C. by the rule (z, A*y)Pq = (Am,y)pq, le. if
we write A in (p, ¢)-blocks then the (p, ¢)-involution is expressed in terms of usual one by
(:111 ‘412> = ( 44’{1 —44;1>

A.Q] ‘422 *pl] ——44){2 A;Z '
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One easily sees that Wittor M,, = Z and so each p : Il — U(p, ¢) defines a homomorphism
0, : Wittog C(IT) — Z. If this o, is applied to a manifold V' with a flat U(p,gq)-bundle X,
induced by the implied map 8 : V — BII from such an X, over BII, then the resulting
a,(V) = 0,(V, ) can be easily identified with the signature o(V; X,) of the cup-preduct
pairing on H*(V;X,). (If k is even it is the true signature but for k odd the pairing is
sqew-Hermitian and, before taking the signature, “skew” must be compensated by v—1).
This signature a(V; X,) is as cute and pretty as our old o(V') (corresponding to the trivial
representation) and it displays all the beautiful formal features (1)-(5) of o indicated in 73
But, first of all 0(V; X,), being a homological creature, is homotopy invariant, exactly like
ordinary o. And now come the p-counterparts of (1)-(5) where we start with (3,) leaving
out (1,) and (2,) which do not merit being written down more than once.

(3,) Bordism invariance. If V equals the boundary of some compact W and X,
extends to a flat U(p, ¢)-bundle over W O V (i.e. the implied homomorphism (V) —
U(p, ) extends to m1(W)), then o(V:X,) = 0. (In fact, this only relies on the Poincaré
duality and so equally applies to p.l. and even to the topological category).

(4,) Multiplicativity. If V — V is a finite d-sheeted covering then
a(f" .‘:’,,) =do(V;X,),

for the X , induced by this covering form X'p. (The above proof of multiplicativity of o
applies here as well).

(5,) Cartesian multiplicativity.
o(Vi x Vo3 X, @ X)) = o(V3 Xy yo(Va; Xy, ).
(This is clear. In the important special case, where p, is trivial, this reduces to
a(VxW;,X,) =c(W)o(V;X,).
(6,) Additivity. Since the signature makes sense for singular forms, o(V; X,) 1s

defined for open manifolds V via the pairing on the cohomology with compact support.
(The statement and the proof of additivity we leave to the reader).

(7,) Codim 1-formula (compare 7%). Let W be a closed hypersurface of dimension
2k in an open connected manifold V with X, over it. Then the signature of the cup
product pairing on H*(V; X,) with evaluation on [W] equals a(W; X ,|W), provided V' is
divided by W into two halves as in Fig. 11 (The proof is the same as in 7% by Poincaré
duality).

Remark on real bundles. If X, is a flat O(p,¢) bundle, i.e. with a quadratic
(p, q)-form in the RP*4-fibers, then o(V; X,) is defined whenever dimV = 4k and it 1s
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extended as zero for the dimensions not divisible by 4. And for dim V' = 4k + 2 one may
use flat sympletic bundles X, corresponding to the representations p of II into the group
Spl2p, i.e. the automorphism group of (R??, P_,xiAy;). In this case the cup pairing
on H2*T1(V) with coefficients in X, is symmetric and so the signature is defined. The
above properties (1,)-(7,) obviously extend to the real case where one should remark that
the tensor product of (—1)!-symmetric and (—1)’-symmetric forms is (—1)**_symmetric
(where symmetric = (—1)%‘-symmetric and sqew symmetric = (—1)%¢+!_symmetric). In
fact, one may reduce everyting to the complex case with the natural embeddings O(p,q) C
U(p, q) and Spl2p C U(2p,2p).

Ezamples. So far our discussion was void of actual content as we have not shown to
the reader a single bundle X, with ¢(V, X,) not being a multiple of the ordinary signature.
But these X, do exist as was pointed our by Lusztig and Meyer (who brought in these
conceptions). Namely, let II be a torsion free discrete subgroup of a semisimple group G
with no compact factor group and B = II\G/maxcomp be the locally symmetric space
with m;(B) = II. (Notice that B = BII as the universal covering of V', i.e. G /max.comp.
has non-positive sectional curvature). Then each U(p,q) representation of G gives us a
representation p of II C G and thus a flat bundle X, over B (and over each V mapped to
B) among which one finds non-zero p-signatures, especially if I C G is an arithmetic (e.g.
cocompact) subgroup. A specific example is that of G = Spl2p and II = (Spl2p) U GL2pZ
(or rather a subgroup of finite index there without torsion) where many Riemann surfaces
(as well as higher dimensional subvarieties) V. C B = II\ Spl2p/U(p) have non-zero
o ,-signatures for the Spl-bundle corresponding to the original representation p : Il —
Spl2p. (To get a perspective one should keep in mind that arithmetic groups are of
exceptionally symmetric nature not dreamed of in the realm of general infinite groups. It
is also likely, that apart from several exceptional cases such as 7; (Riemann surface) the
representations p : I C U(p, ¢) with sufficiently rich o, should be of arithmetic nature).

Now we focus on a single flat Spl-bundle X-over a closed surface B with o(B,X) =
s # 0 (see 82) and derive from this.

8%. Quick proof of the topological invariance of Pontryagin clases. Our basic
tools, besides the above flat symplectic bundle X — B with non-zero signature s of the
quadratic form on H(V; X) (dual to the intersection form on Hi(V;X)), will be the
Rochlin-Thom expression for the value of the Li-class (and thus of Pontryagin classes) at
a homology class h € H, (V) by the signature of a 4k-submanifold W C V realizing h
with the trivial normal bundle and Novikov’s idea of using (non-tubular) neighbourhoods
UCUp =W xR c V., n=dimV, of the form U =W x B* xR for suitable closed
hypersurfaces B* C R"** with Ury, B* = B* xR, where our B* will be BxBxBx---xB
instead of Novikov’s T¢. (Recall that a non-zero multiple Mh of every h € Hqx(V) for
dimV — 4k odd can be represented by the fundamental class [W] of some W with trivial

normal bundle by the Serre finiteness theorem). We first do the case dimV — 4k = 3 as
follows.
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Basic Lemma. Let H be a closed oriented (4k + 2)-dimensional manifold and B :
H — B a smooth map. Then

a(B7Hb)) = s to(h; ¥ (X)), (%)
where b € B is a reqular value of 8 and B*(X) denotes the pull-back of X to H.

Proof. Both signatures, on the left and right hand sides of (*) are bordism invar:ants
of (H, B) and since a non-zero multiple of every bordism class is a combination ; ¢; ¥ W,
where ¢; are cycles in B, i.e. points, circles, or copies of B, and where the implied maps
B; are projections ¢; x W; — ¢; C B, one needs only to check (%) for H = ¢ X w. Iif
¢ = B, then (x) follows for the Cartesian multiplicativity for = B x W (see (5,) above);
otherwise, both signatures are zero. In fact, o(B71(b)) = 0 since the B1(b) is empty for
(generic) b € B — ¢ and o(H; 87(X)) = o(W)a(c; X|c) = 0 for the dimension reason if
dime = 0 or 1 (o(W) = 0 for dim W # 4k and o(c; X|c) = 0 for dim ¢ # 4k + 2; so both

factors vanish which is more than enough).

Corollary (A). Let (Hy,B31) and (Hy, B2) be topologically bordant, i.e. there ezists a
compact topological m_am'_f_old U with U = W, — Wy such that By and By eztend from OU
to a continuous map B : U — B (where the minus sign refers to the reversed orientation).

Then
o (A7 (b)) = o(B; (D). (+)

(Notice that (H;, 8i),1 = 1,2, are assumed smooth and so the regular pulbacks ﬁ:l(b)

are manifolds. Also notice that (+) does not directly involve X but this appears in the
proof).

Proof. The cobordism invariance (see (3,) of o(H; 3*(X)) only uses the Poincaré
duality and so allows topological manifolds T. Hence o(871(b)) = o(H; *(X)) is also a
topological bordism invariant. Q.E.D.

Alternative corollary (B). Take Hy = Bx W, let U be properly homotopy equivalent
to Hy x R and H, be a hypersurface in U separating the two ends of U (as Hy x 0 in
Hy xR). Then a smooth map 3, : Hy — B, homotopic to the composition of the following
three, the inclusion Ho — U, the homotopy equivalence U — H; x R and the projection
H, xR=BxW xR — B has 03, (b) = (W)

Proof. Combine (*) and (7,).

The proof of the topological invariance of Ly for dim V — 4k = 3. We take
W C V with trivial normal bundle and a neighbourhood U C V of W of the form U =
W x B xR C UpppW =w x R*, where B xR C R3 appears as the tubular neighbourhood
of the surface B embedded to R®. Now, we change the smooth structure in V and thus in
U, take a smooth hypersurface H separating the ends of U for the new smooth structure
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and map H, — B by some smooth 3; : H, — B in the homotopy class corresponding to
Hy - U =W x B xR — B. What we have to show is the equality o(8; (b)) = a(W)
and this follows either from the above (A) or (B). Namely, H, does not interset H, =
WxBxreU=W x B xR for some (say, sufficiently large) r € R, so H; and H, bound
together U C U and A applies. (notice that U can not be made smoth to accomodate both
H, and H; on its boundary). Alternatively, one may apply (B) in a similar obvious way.
(Notice that (A)-argument mimics the Rochlin 1957 proof of the topological invariance of
L; for dimV — 4, =1 and (B) imitates Novikov’s codim 1l-argument of 1965, see 743).

The proof for dimV — 4k = 2{ + 1. We use now B! = B x B x...x B with

-~

14

X[:£(®X®---®Xoverit.
4

Basic lemma,. Let dim H = 4k + 2¢ and 8 : H — B® be a smooth map with the
following property concerning the projections p : B — BY, €' < £. We require o(H,;
(poB)Y*X¥) =0 for all p (there are Q-0 of them for each €') and all ¢ =0,1,---,
£—1. Then

a(B7Y(b)) = s ‘o(H; B*(X)). (*¢)

Proof. Check (*¢) as earlier for H = ¢ x W, where ¢ = c¢; X ¢y X - - - X ¢g is a Cartesian
product of our old cycles in B, i.e. points, circles or whole surfaces.

Observe that our requirement is satisfied for H itself (since product of surfaces have
zero signature) and hence for H = B x W and that it is both topological bordism invariant
by the (A)-argument as well the proper homotopy invariant of H x R by (B). The rest of

the proof for £ > 1 is the same as for £ = 1 with a negligible extra effort needed to embed
Blf — R2If+l'

Finally, we take care of the remaining case dimV — 4k even by passing to V x S!.

Q.E.D.

8%. Flat bundles over surfaces with non-zero signatures. Let B be a compact
oriented surface (possibly with connected boundary with strictly negative Euler charac-
teristic x(B) and X — B a flat vector bundle over B. A non-trivial example of this is
some “square root” of the tangent bundle of B, call it X,, — B. This can be visualized
topologically via the associated circle (unit sphere) bundle UX,, — B which is obtained by
taking some double covering of the unit tangent bundle UT(B) non-trivial (i.e. connected)
over each tangent circle. Such a covering is (essentially by definition) the same thing as
a spin structure on B; this exists since the Euler class of T(B)(= x(B)) is even, but not
unique. In fact spin structures are classified by H'(B,Z,). (This is better seen if we view
T(B) and X,, as complex line bundles so that T(B) becomes the tensor square of X,,).
Then observe that the bundle UT(B) — B has a flat PSLyR-structure corresponding to
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the usual action of PSL,R = SL,R/{+1} on the unit disk identified with the universal
covering of B which gives us a flat SL,R-structure for the bundle Xp — B. (This applies,
strictly speaking if B has an empty boundary, if 9B # 0, the universal covering is realized
as a part of the unit disk). Notice that this bundle is symplectic as Spl2p = SLy, for
p = 1. We shall see later that |o(B; X,,| = 2 |x(B)| # 0 but now we want to show how to
compute (co)homology of B with coefficients in X in general.

H(B; X). This is zero unless B is a closed surface and 2-cycles are exactly horizontal
sections B — X. In particular, if the underlying representation p of 7;(B) to the group
of the automorphism of the fiber (this is GL,, for m = rank X) has no fixed vector # 0,
then Ho(B; X) = 0. For example Hy(B; X,,) = 0.

Ho(B; X). Here 0-cycles are just vectors in X, b € B. If v is a loop in B based
at b with monodromy A : X, «, then x — Az is the boundary for each z € X, and so
Hy(B; X) = 0 unless p fixes a covector.

H,(B;X). This is more interesting. Take a standard basis of loops Y1, ,Ym,
m = by(B) = rank H;(B; Triv'), at some point b € B and let A;, i = 1,---,m be the
corresponding monodromies of the fiber X (i.e. p(v:)). Then the 1-cycles are m-tuples
(z1,--+,Tm), Ti € Xs, satisfying the equation Yoo, i — Ajz; = 0. Notice, that if p has
no invariant vector, the support of such a cycle cannot consist of a single loop 7i and so

this support is necessarily singular (not looking as a nice 1-cycle). Even without solving
this equation we predict (Euler-Poincaré):

rank Hi(B; X) = —x(B) rank X + rank Ho(B; X) 4 rank Hy(B; X)

which gives us rank Hy(B; X) = —x(B)rank X for irreducible p. Furthermore, if we cut
B into pieces B;, j = 1,---,n along simple non-contractible curves, such that X has no
parallel covector sections over these Bj, then

H\(V;X) = €D Hi(B,; X|Bj), (®)

i=1
unless B has no boundary and X admits a parallel section over B (i.e. Ho(X;B) # 0).

If, in addition, X comes along with a parallel sqew-symmetric form w which gives
us a quadratic intersection form on H(B;X), then the decompositon (@) is necessarily
orthogonal for such a quadratic form since cycles with disjoint supports have zero indices
of intersection. (Recall, that this index is defined for pairs of 1-chains in general position
c = Zux,,'yu and ¢’ = Y 7,7, where v, and 7, are simple oriented arcs in B and z,
and z, are sections of X over 7, and v,. Whenever two arc transversally intersect, say v,
and 7, at some point b,,, we take £w(z,.z,) in the fiber Xy,, where the + sign is the
usual index of intersection between 7, and 7, and cNe' =37 Fw(zy, x,) which defines
a quadratic form on H;(B;X) dual to the cup-product form on H'(B;X) mentioned
earlier). This implies (and refines in this special case) the additivity of the signature of
the intersection form on H(B;X) (see (0,) above) and reduces the computation of the
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intersection form to the case where B is a “pair of pants” i.e. $? minus three disks, where
the homology and the intersection form can be computed with the chain complex on three
arcs forming a 1-skeleton of B, see fig. 12 below.

Fig. 12

Here the 1-chains are the sums ZL] z;v; and the cycles are the solutions of the system

where z; € X3, , 7 = 1,2,3 and 4, : Xb, — X,_ are parallel transport operators along
vi. The intersection form on the chains is wp, (T1,25) — wp_(Aq1z1, Aozh) (for the usual
orientation on R?) which we write (as quadratic form) as w(zy,zs) — w(Aiz1,A2z;). To
facilitate the computation of (the signature of) this form on cycles, we assume that the
natural symmetry s : B — B of the third order (fixing (by,b_) and permuting vy; + vy
Y3 + 1) extends to X. Let, moreover, X be real of rank 2 and s acts non-trivially on
Xp, and Xp_. Then the s-invariant chains are (obviously) cycles and if Ho(X;B) = 0
all of Hy is s-invariant. If, furthermore, (Xb,,wsp, ) is identified with the tangent plane
Ty, (B) with the usual area form and the action Dy, s, and (Xy_,wp_ ) is similarly identified
with T;_(B), then wy_ (z,s2) > 0 for 0 # = € Xp, = Ty (B) and wy_(z,sz) < 0 for
0# z € Xy =T, (B)since Ds rotates Ty, (B) counter-clockwise and Tj_(B) clockwise).
Thus the intersection form on Hy(B; X) is positive definite.

Let us explain why this applies to the above bundle Xsp = /T(B). To see that
some spin structure is s-invariant, we take the quotient B = B/{1,s,s?} which is again an
orientable Riemann surface whose threefold covering is B. We take some spin structure
on B, i.e. some X, = VT(B) and observe that the lift of this to B away from the
(two) ramification points perfectly goes across these points so that the lifted structure is
s-invariant and behaves at b and b’ as required. Consequently

o(B; X,p) =2 = -2x(B).
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(The sign here depends on how we orient X,,. If we change the orientation by replacing
w~— — w, we thus change the sign of 7).

Conclusion. Each closed Riemann surface B has positive definite (quadratic) in-
tersection form on H,(B; X,,) with [signature| = |2x(B)|. (This was pointed out to me
by Bill Goldman who observes furthemore in [Gold] that for each S LoR-bundle X over a
closed surface B,

o(B; X)) =2e(X)

where e(X) is the Euler class. Goldman also notices that his formula implies the Milnor-
Wood inequality |e(X)| < 1|x(B)| for all flat SLoR-bundles over B. We elaborates this in
8%. The proof follows by decomposing a general B into pairs of pants and by observing
that the signature is invariant under homotopies of flat SL,R-bundles of closed surfaces
(as the intersection form is non-singular by Poincaré duality) and so everything can be
reduced to the symmetric case. (We suggest the reader would extend our conclusion to
surfaces with boundary where the statement, not the proof, needs extra case and consult
[Mey] for further study of the twisted signature).

8%. Pontryagin classes for topological manifolds. Let us indicate a modification
of the above argument which allows an extension of the definition of L to the topological
category (and at the same time reduces the role of bordisms to the Serre finitness theorem
pure and simple). For this we need the following topological version of Novikov’s formula
(+) in 7% concerning signatures of cycles of codim = 1 in open manifolds. Here we shall
be dealing with such a topological manifold of dimensions 2k + 1 and a distinguished
2k-dimensional homology class k “dividing” U in the following sense. There 1s a proper
function p : U — R such that h is contained in the image of the inclusion homomorphism
Hai(o™V)a, b)) = Hax(U) for some (and, hence for each) non-empty segment [a, b], —oo <
a < b < +o0o. Given such an h and a U(p, ¢)-flat bundle X over W, we define the cup-
pairing of H2¥(U,X) on h in the obvious way and denote it by o(h; X').

Localization Lemma. Let U' C U be an open subset and h' be a 2k-dimensional
homology class of U' which goes to h under the inclusion homomorphism Hyu (U —
Hyx(U). Then

o(h . X|U') = o(h; X). (+)'

Before going into the proof we indicate several examples.

(1) Suppose U is a closed manifold. Then, necessarily h = 0 and the lemma is vacuous.
(It is not true, in general, that the signature of a cycle h in U does not change if we pass
to some neighbourhood of this cycle ; we do need the “dividing” property of h).

(2) Let h be a realized by a closed submanifold H of codimension one in U. Then small
(say, tubular) neighbourhoods U’ C U of H obviously have o([H]; X|U') = o(H; X|H) and
our lemma reduces to that in 73 with the additional X -twist.

(3) Let U be the interior of a compact manifold U with boundary H =0U =U - U
and U' C U be a small (e.g. tubular) neighbourhood of infinity (i.e. of H in U). Then [H]
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vanishes in H,j(U) and so its signature in U’ must be zero which amounts to the vanishing
of the signature of H which agrees with the cobordism invariance of the signature.

The proof of (+)'. One can assume that U' = p~1(] — 1,1{) € U (for a suitable
@), write U' = Uy NU_ for Uy = ¢ (] — 1,00[) and U_- = ¢~ (] — 00,1[) and (+)'
would follow from the corresponding equalities for U C U and U’ € U_. Or we may
assume U’ contains one of the two ends of U, i.e. either Uy or U_, say U_ and now
we use the same argument as in 7%. Namely, we first observe that o(h; X) equals the
signature of the intersection form on the image Im of the restriction homomorphism of
HEE (U; X) = H?*M(U; X) to H% (U_; X) = H2Y(U_; X), where Hi® denotes the
homology with infinite supports which equals the cohomology via the Poincaré duality and
where the intersection form in question is

(hy,ha) = hiNha N h € R

(This can be defined via the Poincaré duality or by combining the geometric intersec-
tion of the supports of cycles with the scalar product in X). Next, notice that if some
ht e Hor41(U—; X) satisfies h* N hy Nh =0 for all hy € Im, then ht Nk € Hop(U—; X)
goes to zero under the inclusion homomorphism Hyp(U_; X') — Hoi(U; X)) by the Poincaré
duality in U and so ht N I belongs to the image of the boundary homomorphism
0: Hyp1(U; X) — Hor(U; X). Hence, our intersection form vanishes on the space Im*
of all these At (compare Fig. 10 in 7%) and the proof follows by linear algebra.

Remark. All we have actually used in this argument was the (local) Poincaré duality
in U over R.

Iterated (co)bordisms. Our objects are triples (U, h, X) with dimU = 2k + 1 as
above and two such triples (U;, h;, X;), i = 1,2, are called precobordant if there exists a
third such triple, say (U, h,X), and (equidimensional!) embeddings U; — U, ¢ = 1,2,
such that h; go to h, and X restricts to X;. Our lemma says, in effect, that the signature
o(U,h, X) def o(h; X) is a pre-cobordism invariant in the topological category. Next we
observe the “pre-cobordism” is not, a priori, an equivalence relation in the topological
case (but clearly so in the smooth and p.l.-categories where h can be realized by a codim
1-submanifold), see Fig. 13 below.

Fig. 13

And we define cobordism as the equivalence relation spanned by pre-cobordisms. Of course,
the signature is a cobordism invariant.
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Homotopy invariance of cobordism. Let S be a topological manifold, U C S be
an open subset with compact closure, X — U a flat U(p, q) bundle and h C Hy_1(U) be
a dividing cycle in U for ¢ = dimU = dim S. Then for every topological manifold V and
proper continuous map f : V — U the cobordism class of the pull-back f~YU,h,X) is
invariant under proper homotopies of f. where

FTUUL R, X)) = (F7HU), F1(R), FH(X))

det
for f*(h) = PDf*(PDh).

Proof. The cobordism class of the pull-back does not change if we replace U by a
slightly smaller open subset, set U' C U with compact closure in U. Now if f, is sufficiently
close to f;, we have the inclusion f,;'(U') C f;'(U) which provides a cobordism between
the f; and fy -pull-backs of (U, h, X). As every homotopy f; can be divided into small
steps, the invariance follows.

Definition of Ly for n —4k = 3. Let U be a compact topological manifold and
define Ly C H**(V;Q) by prescribing it values on each homology class ¢ € Hn-3(V),
n = dimV, as follows. Take U = B x R C S° for a Riemann surface B (of genus > 2),
extend our flat Spl-bundle from B to X over U and take a map f : V — 53 so that
f*[S3c° = PD(Mg) for some M # 0. Then set (Ly,g) = (sM) o(f~(U,h,X)) for
h = [B] € Hy(U) and s being the signature of our basic bundle over B. Clearly, this
defines a linear function on H, _3(V), i.e. a class in H*3(V; Q) which we call L.

Notice that if V is smooth we can arrange the matters so that U = f~H(U) =U x W
for W = f~(u) where the equality o(U; h; X) = so(W) follows from the Cartesian mul-
tiplicativity (and so we replace the cobordism theory in our earlier topological invariance
proof by the elementary homotopy invariance of cobordisms).

The case n—4k = 2¢ > 3. Proceed as above, but now with U = BfxRC S = §%#+1,
Open manifolds V. Use proper maps to R* 1 instead of maps to 26+
The case n — 4k even. Stabilize to ¥V x Ror V x S!.

On stabilization. Our L are not, a priori, stable for V.~V x R but they are stable
for V x Re—V x R3. In fact V x B x R obviously embeds into V' x R and when we use
some U C V x R to define L, we take U x B C V x R? for the composed embedding
UxBcC(VxR)xBcCV xR3 in order to define Ly of V' x R? and apply the Cartesian
multiplicativity, o(u x B,---) = so(U,---). Now we may speak of the stable classes Ly
which have an advantage of being functorial for equidimensional topological immersions
Vi — V3 as every such immersion can be turned into an embedding Vi X RN — Vo, x RN
for large N and functoriality for equidimensional embeddings is obvious with our definition
of Lj (even before stabilization). To finish the story one should proof the (Cartesian)
multiplicativity of Ly for V = Vi x V; (this is easy if V} is smooth or p.l. but I do not see
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how to do it for both V; and V, topological without dirting my hands in the topological
topology) and/or the corresponding property for Whitney sums of topological bundles.
(See [Ki-Si] and [Ran]yay, for the classical approach).

Multiplicativity for coverings. This follows directly from the homotopy invariance
of cobordism and the Serre finitness theorem, as usual (while the original proof by J. Schafer
appealed to the topological transversality theory of Kirby and Siebenmann).

8%. Lusztig signature theorem for flat (sqew) Hermitian bundles and norms
on Wittyx.  We are back to a general situation of a flat U(p,¢)-bundle X, = V and
before stating Lusztig theorem we observe some additional properties of the signature

o, =0(V;X,).

Eztendability of o, to Witt C(I1). Since the bordism invariance of o, depends solely
on the Poincaré duality, it remains valid for algebraic cobordisms of algebraic Poincaré
complexes and thus defines a homomorphism o, Witty, C(II) — Z compactable with
the homomorphism Brdy, BII — Witt,, C(IT) (which factors through H Brdy, BII). More
algebraically, p : TT — U{p, ¢) defines an involutive homomorphism C(IT) — Mat,, C and
hence a homomorphism

Wittty C(T1) — Witt,, Mat

w,

cx7z

Py
recapturing o, as o . by an casy arguinent.

A cellular bound on 7. If " adinits a coll decomposition (e.g. given by a Morse
function) with at most b middle dimensional cells then., obviously, lo(V; X,| < brank X,
for all p. Consequently. if #(17: X ) # 0 for somc p. then a d-sheeted covering Viof V
needs at least d/rank X, cells.

Ezamples.

(a) If V fibers over the circle then eyclic d-sheeted coverings of V can be decomposed
into ¢ cells with ¢ independent of d. Thus o(V; X, ) = 0 for all representations p. Recall,
that some hyperbolic 3-manifold 1} fiber over S! and so the signature vanishes on V =

Vo x V7 for all V.
(b) Let V be a Cartesian product of closed surfaces of genera > 2. Then, clearly, V;
needs at least IA(V(I){ = d |\ (V)| cells for any decomposition which is > d2*, k = dim V/2.

What is less obvious is that every manifold V' which admits a map B:V' = V of degree
d contains 2 d cells (of dimension k = n/2) in every of its cell decompositions.

Proof for dimV = 4. We know V admits a flat quadratic bundle X — V with
o(V;X) = s # 0. And every V' mapped to V with degree d satisfies o(V'; X —o(V')=ds
where X' — V' denotes the bundle induced from X by the implied map #: V' - V. In

119



fact, all three quantities, o(v’; X'), o(v’) and ds = sdegf3 are linear functions on the
oriented bordism group Brdy V', where the elements are represented by pairs (V', 5 : V' —
V). This group is spanned over @ by (compare 7%).

L(V'=V,8=id),
II. (V! =CP?%, B = const).

Our formula is obviously valid for I, and II, hence it is valid for (V', 8). Since both
signatures, (V') and o(V'; X') are bounded in the absolute values by the number ¢ of

cells in V, we have 2¢ > d|s|. Q.E.D. (The proof for dim V' > 4 is similar and left to the
reader).

Definition of the rank norm. Let rank(w), w € Witt;, be the minimum of ranks
(which we assume to be well defined) of quadratic moduli representing w. This applies to
both even and odd & for Witt; of a ring R and a similar definition is valid for the K -groups
of R. Then we introduce the rank norm ||w|| by

lefl = lim ¢! rank(7w).

FEzamples.

(a) Let R be the ring of continuous functions on a compact connected topological
space X. Then K,(R) = K*(X) and if X is finite dimensional then every element of
the reduced group K*(X) (obtained from K*(X) by factoring away I* {point}) can be
represented by a (virtual) vector bundle of rank < 2dim X and so the rank norm vanishes
on the reduced K,(X).

(b) Let V be a closed oriented manifold admitting a sequence (V/, 8; : V! — V') where

1
V! are closed oriented manifolds of the same dimension as V' and §; are continuous maps

such that
(i) deg f; = d; — o0;

(i1) the induced tangent bundles 37 (T(V)) are @ equivalent to T(V}), 1.e. [B!T(V))
equal [T(V/)] in K°(V)) & Q.

(iii) V/ can be decomposed into ¢, cells with ¢;/d; — 0.

Then the class of [V]wity of V' in Witt,, C(I), for IT = 71(V) defined by the Wall-
Mis¢henko homomorphism WM : Brd,, V — Witt,, C(II) has zero rank norm. In particu-
lar, if V fibers over S, then ||[V]wiul| = 0.

Let V be a Cartesian product of Riemann surfaces of genera > 2. Then ||[V]wiw|| # 0
as follows for the existence of a flat symplectic or quadratic bundle X — V with o(V; X) #
0. In fact one can identify in this case the subspace A C Brd.V @& Q on which the
norm [V', 8]+ [[WM[V', B]|| vanishes. This A is spanned by those [V, x W,, 8 = B(v")
where the classes 3, [Vﬂ C H.(V) have l-dimensional components in their Kiinneth
decomposition. (Since V equals a product of surfaces, H,(V') is built of those cycles which
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are products of surfaces and circles ; the above condition requires a presence of circles in

all i, [V1]).

Signature theorem. We recall the classical argument identifying the ordinary sig-
nature of a closed oriented 4k-manifold V' with the index of the Hodge-de Rham signa-
ture operator. We take some Euclidean norms on the bundles of exterior forms A (V)
and some smooth measure dv on V. With this we have the Lo-norms on forms for

1
A, = (fv “/\v“zdv)’ and define the adjoint operator d* to the exterior differential

on the forms. This d* maps smooth (i + 1)-forms to i-forms according to the formula
Sy (AN dv = [, (A dX), dv for all smooth (i + 1)-forms A and i-forms A'. One
checks elementary that the operator d + d* : C®A*(V) « is elliptic (notice that d + d*
mixes degrees) and that the kernel of d + d* canonically identifies with H*(V;R). Then
one observes that d 4+ d* sends even forms to odd ones and vice versa and the index of
d+d* : C®AY (V) — C°A°44(V) equals the Euler characteristic of V. There is nothing
specially “manifoldish” about it. One could start for example, with the boundary operator
0 on a finite cell complex V and arrive at the same interpretation of x(V) as ind d + 9*.

Next, we want to split the bundle A*(V') into two pieces in a less trivial way, say into
A* = AL © AL, so that d + d* should map C(A%) into C®(A*) with ind = signature
o(V). This becomes possible if we choose our norms in A* with more care starting from a
single norm in T(V) (or in A'(V)) i.e. with a Riemannian metric, say g, in V, which will
also be used for the definition of the measure dv. Here is the relevant linear algebra.

Let R™ be the Euclidean space with the usual metric and embed the Grassmann man-
ifold Gr; R™ of oriented i-subspaces into A'R™ by assigning to each L C R™ the pull-back
of the oriented volume form on L (of degree i = dim L) under the orthogonal projec-
tion R™ — L. Then observe that the oriented orthogonal complement L — L+ defines
a map L Gr;R" — Gr,_; R" which uniquely extends to a linear map on forms, de-
noted * : A'(R") — A" R™). (Linear extendability of L follows, by a little think-
ing, from its O(n)-invariance). Now, using * we define the scalar product on A*(R™) by
(A A = (AA*X) € A’R" = R, where A" is identified with R via the oriented Euclidean

volume form on R™ and observe that * : A'(R") — A" /(R™) is isometric for the norm

Al = (A A */\)% as #* = &1 (i.e. xA\; A*Ay = X\ A\, for forms of complementary degrees).
One checks with a minor effort that this is indeed a symmetric and positive definite scalar
product, and also one sees that if n is even, then *?> = (—1)*. In particular, if n = 4k,
then  is an involution on A%¥(R"), i.e. *?> = 1, and one can modify * to an involution
on all of A*(R") by taking ¥, = +*; with a suitable + sign, e.g. %; = * for 1 < 2k and
*i = (kp—-1)7! for i > 2k.

Now we return to our manifold V, and we define the norms in A*(V) using some
Riemannian metric g on V, i.e. a Euclidean structure on T(V), and the corresponding

* = %4 : A(V) = A" V). Thus

A = (/V/\ A */\)% . A EC®AYY), (%)
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and the only link of this norm with d is via the Leibniz and Stokes formulae

AAAp)=dAAp+ (=1)'AAdu (Lei)

/ d(A A p)=0. (Sto)
Vv

for arbitrary smooth forms of degrees : and n—i— 1 respectively. Observe, that these three

formulae do not mix * and d, yet as a conclusion one has the following relation between
these two operators.

d* = —xdx* for dim X even.

Indeed *d * A A %A = d+x A A X and by (Lei)

/*d*z\/\*)\':/d(*/\A/\')~(1)i/*/\Ad/\',

for i = deg A\, where *A A d)\ = *2XA A xd)\' = (—1)'A A *d)\'. Thus by (Sto)

/*d*)\/\*/\':—//\/\*(])\'

which makes *d+x = —d* by the definition of d* for our scalar product. Next we assume
n = 4k, recall the involution ¥ = +x, and observe that d + d* anticommute with ¥, as
(d+d*)* =d¥ —xdx%¥ = & —F2 xd+x% = —%d* —%d = —%(d* + d). Thus d + d*
interchanges the +1 and —1 eigenspaces of %, denoted A% (V) and A%(V). Then the
index of the operator £ = d+d*: CCAL(V) —» C*AL(V) equals dimH] — dim HZ

where H* = @, H' denotes the space of harmonic form, i.e. the kernel of d + d* and

1 =H*NC*®(A%L(V)). Since H* is invariant under the operator * (which is obvious) and,
hence, under ¥, which (as well as ) interchanges H* and H" ™ for ¢ # n/2, we conclude
that dim H% — dimH* = dim H2* — dim H?* where, recall n = 4k. Finally we observe
that the product pairing (A;, A2) — ]\ A1 A Ay 1s symmetric in the middle dimension and
A%¥ consists of those A where (A, A) = (A, \) while A% consists of the form A satisfying
(A, A) = — (A, A). Thus the cup-product form on H?*(V;R) = H?* is positive on 'H%_k and
negative on H2*. Hence,

ind £ = o(V), (o)

where, recall £ equals d + d* restricted to C°AL — C°°A*. Finally, to make full use of
(0), we invoke the general Atiyah-Singer index theorem which expresses ind D in terms of
characteristic classes and which specializes in this case to (compare 7%)

o(V)=ind L = L[V] (¢ =L)

Remark. Recall that L{V]is a characteristic number of V and so is multiplicative un-
der finite coverings V — V which pull-back T(V') to T(V'). But the issuing multiplicativity
of the signature o(V') does not need the full force of the identity ¢ = L, but only, (as was
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pointed out by Atiyah) the easy part, ¢ = ind £. In fact, the index of any elliptic operator
D can be computed as the difference of traces Tr P, —Tr P_, where P, and P_ are integral
operators with smooth kernels canonically constructed out of D, such that these kernels,
say K4(v,v") and K_(v,v') are supported in a given (arbitrarily small) neighbourghood
of the diagonal Ay C V x V. Thus the index appears as an integral of a local quantity,
namely K4(v,v) — K_(v,v) (or more precisely of Tr, Ky(v,v) = Try K_(v,v) as K and
K _ are matrix valued functions) and so is multiplicative for coverings.

Signature for flat bundles. We consider separately two cases.

1. The manifold V in question is 4k-dimensional and our flat bundle X — V is
(indefinite) orthogonal.

2. dmV =4k + 2 and X — V is a flat symplectic bundle.

Case 1. We denote by @ the implied non-singular quadratic form on X and by
evaluating @ on the exterior product of X-valued forms on V we obtain a pairing (A’ ®
X)® (A ® X) = A" denoted a Aq A which satisfies the Leibniz formule. d(a Ag ) =
(dxa) Ag B+ (—1)'« Ag dx 3, where dy is the exterior differential twisted with X, (i.e.
d(A®z) = (d\)®z for horizontal sections = of X) since locally A'® X is just the Cartesian
sum of several copies of A' as (X, Q) is flat. Next, we fix a Riemannian metric on V and
some positive definite scalar product { | )o on X. Then there (obviously) exists a unique
splitting X = X @& X _ which is both @ and { , ) orthogonal and such that Q| X, > 0
and Q|X_ < 0. We denote by 7 the involution on X equal +1 on X4 and —1 on X_ and
observe that the quadratic forms (z.2') = Q(x,72') is positive definite. Then we define
the scalar product on X -valued forms with the pairing

(/\®:r,/\'®:17')t->/ (:c,;r')/\/\*/\':/ Q(x,T;r')/\/\*/\
1% Vv

which bilineary extends to all of (A ® X)@((A'®@X),71=0,1,---,n, where it is clearly
positive definite. Now we are in the same situation as earlier with the involution A QA —
(*A) ® 72 on the middle dimensional forms wich extends as earlier with an adjustment of
+sign to an involution on A* % X and which is still called %. So again we have an elliptic
operator, Lx g equal dy + d% on X-valued forms which sends the (+1)-eigenspace of ¥,
say C(A*® X) 4 to (—1)-eigenspace C(A* @ X )_ and the index of Lx g equals o(V; X)
for the same reason as earlier (since the formal properties of (dx,*) are the same here as
in the case of X = Triv!, Q = +2.

We see already at this stage that o(1; X ) is multiplicative. Moreover, by the general
index theorem

o(V:X)=indLy =Ly ch(CXy - CX_)[V], (0 =1L)g

where CX | and CX_ are the complexifications of the Q-positive and Q-negative parts of
X. In fact, £ x ¢ 1s homotopic to the operator Lx, @ LY , where Lx, is L twisted with
X+ for some orthogonal (non-flat) connection on Ay and L% is the adjoint to the twist

of £ with X_. Thus ind Ly ¢ = ind Lx, —indLy_ where indLx, = Ly(chCX4)[V] by
the index theorem:.
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Case 2. (Symplectic). If S is a (parallel) symplectic (i.e. non-singular sqew-
symmetric) form on X then one obtains, with an auxiliary scalar product { )o on X,
an anti-involution A on X, i.e. 72 = —1, which preserves both forms, w and ( , ),, and
for which the pairing (z,z'), = S(z, zx') is positive definite (and symmetric as T preserves
w). Here again A @ ¢ — *A ® 7z is an involution on the middle dimensional X -valued
forms (now, recall, dimV = 4k 4+ 2 and * is an anti-involution on A2**+!) which extends
with a sign adjustment as earlier to an involution ¥ on all of A* ® X. We split A* ® X as
before according to + sign of the eigenvalues of ¥ and identify the signature o(V; X) with
the index of the resulting operator

ACX,S =dx + d} CCPAN X)), — C'oo(/\* ®X)-.

Finally, in order to compute the index of Ly 5, we complexify (X, 7), take the involution
V=17 on CX and split CX into XE +XC according to the +1-eigenvalues of v/—17. Then

ind Ly s = Ly ch(XE - XEyv),
by the index theorem.

Hermatian case. If we start with a flat Hermitian bundle X, for dimV = 4k, we

split it into X & X_ where the implied form is positive definite on X4 and negative on
X_ and obtain Lusztig’s formula

o(V:X) = Ly ch(Xy - X )[V].

If X is sqew-Hermitian (on V' of dimension 4k +2) we pass to a Hermitian form H(z,7) =
S(z,v/—17) and get the same formula with X, and X_ referring to H.

Application to the Novikov conjecture. Let Il be a group and HSY ¢ H®(BII; Q)
be the subspace spanned by the Chern characters ch(X, — X_) = ch X, — ch X_ for all
flat Hermitian and sqew-Hermitian flat bundles X over BII. Then every p € HEY satisfies
the Novikov conjecture, i.e. for every manifold V mapped to BII by a continuous map
B : V. — BII the p-signature of V, i.e. Ly — 3*(p)[V], is homotopy invariant being
equal the ordinary signature of V with coefficients in the flat bundle 8*(X) by the Lusztig
theorem.

Ezamples. (c) We saw earlier, that if BII is a Cartesian product of Riemann surfaces,
then the above applies to the fundamental class BII as well as for the classes multiplica-
tively generated by the 2-dimensional classes induced from the fundamental classes of
surfaces.

(a’) Let II be a discrete group freely acting on the Cartesian product B of k copies of

the hyperbolic plane (Poincaré disk) and B = BIl = B /I1. Each of these planes gives us a
Kahler form, call them w;,ws, -+, wy, and their cohomology classes as well as the products
of these sit in HY C H®Y(B; Q). In particular, if B is compact, then its fundamental class
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[B] is in HEY and hence satisfies the Novikov conjecture. (If II splits, this reduces to (a)
but not all groups II split).

(b) (See [Lus]). Let G be the real symplectic group Spl2p and II — G a homo-
morphism. Then the image of H*(BG; Q) in H*(BII; Q) is contained in H§". Further-

more if I C G = Spl2p is a discrete torsionfree subgroup, B = G/(mex.comp.), and
B = BII = I1\B, then the cohomology classes of G-invariant forms on B descended to B
are in Hg¥. In particular, if II is cocompact, then the fundamental class [B]*° is in HE".

(This generalizes (a) for surfaces).

(b’) The above, probably, generalizes to all semi-semisimple real algebraic groups
G as follows. Let ' C G be the maximal compact subgroup and B = G/K. Then
the (G-invariant) K-characteristic (Chern-Weil) forms on B , when they descend to II\B,
must have their classes in H i (where the relevant flat bundles must come from suitable
representations G — U(p,q) and/or G — Spl2p). In particular, if B = I\ B is compact
with x(B) # 0, then the fundamental class [B]°® should be in HSY according to our

conjecture (which, whether true or false, must be obvious to anyone with some experience
in the representation theory).*

Our interest in HEY is not so much be motivated by the Novikov conjecture (which
is known to be true for subgroups in Lie groups by the work of Kasparov anyway, see
[Kas]) but by the following stronger property of the homomorphism Heyen(B(I1; Q) —
Witteven C(IT) (which assigns to a homology class represented by a map §: V — B(I),
for a stably parallelizable manifold V, the Witt class of the algebraic Poincaré complex
associated to some triangulation of V). The norm on Heven 1nduced from the rank norm
on Witteven does not vanish on those h for which {(psh) # 0 for some p € HS".

This (cellular in nature) norm on H,(BII) is similar in spirit to the simplicial norm (see
[Gr]vec) and we shall investigate the relation between the two somewhere else. Here we
indicate several questions concerning the rank norm on Witt, C(II) and the corresponding

norm on H,(BII) and Brd BII.

Are there any lower bounds on these norms apart for the above Hg¥ ? In particular,
1s this norm ever non-trivial on Witt,qq ? Is this norm non-zero on the fundamental
classes of even dimensional manifolds of negative curvature ? (“Yes” for constant curvature
follows from Lusztig’s remark on O(n.1)). How does this norm extend from Witt, C(IT)
to Witt, C*(I1) = K,C*(IT) ? May this norm be non-zero on Witt, C(II) and vanish in
Witt, C*(IT) 7 Or is the rank norm always zero on C*(II) 7 What is a possible asymptotic
behaviour of rank(iw) for w € Witt, and ¢ — ~ in the case where the rank norm, i.e.

lim¢~! rank(w), vanishes ”
1—>0C

Dirac twisted with flat U(p.q)-bundles and Sc > 0. If V is spin and p € HFY,
l.e. a combination of ch(X 4 — X_) for flat U(p, q) bundles X over V. then we naturally

*

When I asked Lusztig, he instantaneously pointed out that the fundamental spin
representation settles the matter for G = O(n,1) and promised to look into the general
case at his leisure.
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expect that (A\v — p)[V] = 0. Indeed this is true as one can show that the (virtual)
bundle x = [X;] — [X_] is almost flat in the unitary sense, i.e., UAF] in the terminology
of 8-3— and, thus the Dirac operator twisted with « has index zero. Moreover, forget about

Sc > 0, and assume that (Ay — p)[V] # 0 for some p € HS'. Then the spectrum of
the Dirac operator D on the umversal covering V of V has 0 € spec D. Furthermore, if

plV] # 0, then V has infinite I\ -length,. All this is especially easy to see if the implied
representation of II = 7,(V) in U(p, q) is proper (discrete) where (at least for torsionless

M) one has a (classifying) map from V' to the manifold II\U(p, ¢)/U(p + ¢) of non-positive
curvature.

Next, every countable subgroup II C U(p, ¢) can be made act properly on a suitable
product of Bruhat-Tits buildings associated to U(p, ¢) which also have non-positive curva-

tures (in a generalized sense) and so the above claim extends to the general (non-proper)
case.

But the use of Bruhat-Tits is definitely an overkill (which may be necessary for the
Novikov conjecture for all cohomology of a subgroup II C U(p, ¢)) as we are concerned with
rather special cohomology classes in H*(II), namely those coming from BU(p, ¢) and one
may use another, more functorial approach due to Alain Connes. Namely, the (possibly
non-proper) action of II on the symmetric space Z = U(p, q)/U(p + ¢q) gives rize to a class
of Fredholm representations of Il defined, roughly, as follows (compare 92). Take some
natural U(p, q) invariant elliptic operator A over Z, e.g. the Dirac operator and let H be
the Hilbert space Ker A of A acting on the pertinent L,-space of sections and consider the
covector field du for the distance function p(z) = dist z(z, zo) regularized at zero (as in 82).
Then the Clifford multiplication of spinors in H by du (or by du/ ||du|| composed with the
orthogonal projection (Ly-space of section) — H is a Fredholm operator F : H — H (at
least if zero is isolated in the spectrum of A). Now, given a flat U(p, ¢)-bundle over V,
we take the associated Z-bundle and the corresponding Hilbert bundle H with the fibers
H, = H(Z,). Since the fibers Z,(= Z) are contractible, there is a section v — z, € Z, and
we get with p = dist(z,2,) in each fiber Zy . the Fredholm endomorphism F = H — H,
defining some K-class k € Ky(V). Then the Dirac operator on V' can be twisted with
this k and ind D, can be expressed in terms of the “universal” index of D with values in

Ko(C*(II)) so that
0 ¢ speeD = ind D, =0.

This can be used in conjunction with the index forimula
ind D, = (A — chr)[V]

which is pertinent since one can arrange the matters with A so that ch & is “sufficiently far”
from zero being non-trivially connected to ch([X4] — [X~]). Namely, there are sufficiently
many A’s (and one can, probably, gain extra mileage by using representations of U(p,q)
by isometries of symmetric spaces Z' # Z) to make the ring gnerated by ch x’s (at least) as
large as H§". (See the original paper [Conjccrc and also §II1.7 in the book [Con|ncg for
a wealth of ideas yet awaiting their full commutative geometric implementation, compare
the “non-proper” discussion in §III of {C-G-M]ccrLc).
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8%. Families of Hermitian bundles. Let py - I — U(p, ¢) be a family of representations
parametrized by a space B 5 b and X = { Ay = Xph} be the corresponding family of flat

Hermitian bundles over a (connected closed oriented) manifold V with (V) =II. We
want to define, following Lusztig, a (homotopy invariant !) signature o(V; A) € K.(B) and
then express it in term of the characteristic classes of V and X. To do this we interpret py
as a homomorphism p from II to the group of (p+¢)-matrices over the ring R = Cont B of
continuous functions B — C and then as carlier, we obtain a homomorphism Witt, C(IT) —
Witt, Mat,, R induced by the involutive homomorphism C(M) — Mat,, R associated to
p (where the involution in Mat,, R = Mat,, @R comes from the complex conjugation in R
and the U(p, ¢)-involution in Mat, ). Now, to avoid irrelevant technicalities, we assume B
is compact and use the natural homomorphism o : Witt, Mat,, R — K,(R) = K*(B) as
in example (c) of 7%—. In particular, we obtain with pp a family of chain C(II)-complexes
Cy of (some triangulation of ) V' with coefficients in Xy, b € B, which we view as a single
_E(H)—complex which then can be made “short” by algebraic surgeries reducing it, in the
case dim V even, to a single non-singular (sqew )-symmetric form over R, i.e. such a form in
some vector bundle Y — B, with o(V; X) becoming the difference [Y,]—[V_] € K (B) =
Kev(R). Tt is (more or less) obvious that this o(V") 1s a homotopy invariant of V (compare
71,

Next, we consider the family of the (differential) signature operators Ly, over V,
b € B, and recall that the index -

Ker Ly, — Rer LY, , be B,

(despite the fact that the dimensions of these kernels may vary with b) is defined as an

element of K°(B) and denoted ndLy € K*(B) = K. (R). Now we may state the
Lusztig signature theorem for flat famailies.

o(V;X)=ind Ly,
where, ind L x can be expressed according to the index theorem for families as

chindLy = Gys(Ly — ch(X; — X_)).

Here X is regarded as a bundle over V x B and Ly refers to the pull-back of the
L-class of V for the projection V x B — V while Gys denotes the Gysin push forward
homomorphism H*(V x B) — H*(B) for the projection V x B — B.

Remark. Since o(V; X )isa homotopy invariant of V, sois Gys(Ly — ch(X4y —X_))
which, for interesting X', provides non-trivial homotopy invariance properties of Ly .

Ezample. Let IT = 7" and B be the dual n-torus, ie. B = Hom(Z"™ — T'). We
recall that the group ring C(Z") is canonically isomorphic to the (dense) subring R, C
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R = Cont(T™") consisting of polynomial functions in the variables t; and ¢; ', i = 1,---,n
We view homomorphisms Z" — T! (parametrized by B) as one dimensional complex
representations and thus obtain a representation of Z" over the ring R = Cont B of rank 1,
i.e. an R-linear action of Z" on R. This action preserves R, = C(Z") where it coincides
with the ring group product {convolution) in C(Z") D Z™ and so our homomorphism
Witt, C(IT) — Witt, R for II = 7" and R = Cont(B = T") coincides with the one by the
inclusion C(IT) = Ry C R (compare Example (d) in 7%).

Now we are able to prove the Novikov conjecture for II = Z", by showing that the
composed homomorphism

Heo(BM;Q) — (H Brd., BM)© Q — (Witte, C(M) @ @ —» K%B)
|

ﬁ
is injective. If a class in H,i(BII; Q) is realized by a 2k-dimensional stably parallelizable

manifold V' mapped to B = T" then. by the above discussion, &([V]) = o(V;X) for our
bundle X — V x B (which is here of C-rank one) for B = T", and by the index theorem

cho(17.X) = Gys(ch X).

Evaluation of Gys(ch X). Recall that the bundle X is naturally associated to the
family of representations 7,(V) — #;(BZ") = 7" — T! parametrized by B = T" (where

P

we do not actually have to assume 7,(V) = 2", a homomorphism 7;(V) — Z™ will do),
such that X |V x b= X,,. Let us determine the first Chern class ¢;(X) € H?*(V x B) by
evaluating it on each 2-subtorus S{, x Sl C V x B for oriented circles in S}, in V and S}

in B. As b (parametrizing the representation py i L™ — T') turns SB the image of [Sl]

in T! under the composed map [S},] € 7 (V) — Z" -5 T! turns around T! an integer
Pb.

number of times and this integer (obviously) equals <cl(X), [S%, X Slﬁ] > It follows that

forn=1and V = §1
Gys(chX)=1e H(B=T"). (%)

Since 1 # 0 this is (essentially) equivalent to Novikov’s codim 1-theorem.

Next we observe that Gys(ch X') can be computed in terms of the homology class
[V] € H.(BZ™) where BZ" = (S')" is the dual torus to T". We project the product

(S1)™ x T™ to the two factors, (S1)" «— (S1)" x T" — T", and recall that Gys is
P P —
obtained by combining P, on homology with the Poincaré duality. Thus

ch(k([V]) = Gysch X = PD(B*(])_l[V] ~ PD(ch X,)))) (+)

where X,,) is the (universal) line bundle on (S')" x T" arising from our family B = T" of
representations 71(S!)* = 7" — T', and p~! = PDGys, i.e. PDp*PD.
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Notice that for every cohomology class h € H*(T") the equality (+) implies,

(ch(£[V]) ~ b, [T"]) = (p(p~'[V] ~ PD(ch X,), )
= (7] =~ PDeh X, p(R)) = (PD(p~'[V]) — ch X = p*(B). [(8)" x T"])
= <p*(h) — ch X, — 2*(&)’ [(S])” x Tn]> €Q

for h = PD[V] € H*((S')"). The latter formula, applied to arbitrary h aad h, defines a
pairing, denoted ®x_ : H*((S'):Q)® H*(T";Q) — Q, which is (by the above compu-
tation) non-singular iff the homomorphism chox : H,((S!)™: Q) — H*(T"; Q) is injective.
Since the bundle X, (obviously) equals the (Cartesian) tensor product of n copies of

X, — S'x T!, so chX,, =— ch X, and the pairing ®y_ equals the tensor product of
n

n-copies of ® x,, where

Qv ((hos ) @ (g hy) = holg + hahy
for  hoe HY(SYHY=7Z=HY(SY) > h
and  h, € HY(TYHY=7=HYT") 3 h,

as we saw earlier.

More precisely, we see by induction on n, that the pairing ® x, between the exterior

algebras H*((S1)") = A(xy,---,2,) and H*(T") = Ay, --,yn) is given by
(z+2' Aep)ena AT+, Ay ) Ay +yn AY'),

for z,2" € A{zy, - . an-1), v,y € Myi,---,yn—1) and ¢,,_; = ch X,,_;. This exterior
product developes to t Ay Acomi Aepn Ayn + 2" Acn_ i Aan Ayn Ayl = @x,._ (z,y) +
®x,._.(2',y"), (where, recall all components of ¢,_; have even degrees and so commute
with z,), which makes non-singularity of &y follow from that of ®x__,. This proves
Novikov’s conjecture for I[I = Z" modulo Lusztig’ssignature theorem ¢(V; X) = ind L x.

Idea of the proof of Lusztig’s theorem. First, we redefine the Wall-Mis¢enko
class WM([V]) C Witt, in differential terms without referring to any triangulation of
V by using, instead of chains, the de Rham complex of smooth forms on V with the
pairing given by the exterior product, (w,ws) — f\ w1 Awsq. This is, of course, an infinite
dimensional complex, but it is Fredholm (or elliptic) which allows a reduction to a finite
dimensional one. The Fredholm property can be seen, for example, with a smoothing
operator on forms given by w — [ a Diff :( w)dp where M 1s a compact connected family of
diffeomorphisms close to the identity with a probability measure dy on M. This smoothing
gives us a compact endomorphism of the de Rham complex homotopic to the identity and
commuting up-to (properly understood) homotopy with the above exterior product pairing,
which is sufficient for a de Rham definition of WA ([V]) € Witt, C(II). Alternatively, one
may use a Riemannian metric on V and restrict the de Rham complex to eigenforms of
the Hodge-Laplace operator belonging to eigenvalues below certain level. (The former
definition, being rather local. is better adjusted to infinite coverings V — V, while the

129



latter is good enough for our families of compact manifolds). Then one identifies the de
Rham version of WM with the combinatorial one by observing that the relevant algebraic
Poincaré complexes are homotopy eiquivalent by proceeding as in the usual de Rham
theorem. Both definitions perfectly work for families of compact manifolds V. Moreover,
for such families, one can use the second smooth definition of WM, which provides a
suitable context for bringing in the signature operator £ and its index. Actually, Luszuig’s
proof (see [Lus]) of the identity o(V; X) = ind £ x consists in a construction of a fiberwise
homotopy between relevant bundles of complexes over B built of eigenform in the fibers
V x b C V x B (rather than an individual isomorphism of the previously considered case

where B = {B,}).

Remarks.

(a) Lusztig’s proof extends to families over B which are not products and/or where
bundles X do not come from representations. All, one needs, is a smooth fiber bundle
A — B with smooth fibers V' and smooth U(p, ¢)-bundle X' — A with a flat structure
along the fibers. (Notice that the combinatorial definition of WM € Witt, R and/or
o € K*(B) becomes technically slightly more complicated since we must match Poincaré
complexes over different points b € B where the fibers A,, diffeomorphic to a fixed V', have

non-isomorphic triangulations. This, actually, may lead to an interesting signature even
for the trivial bundle X — A, see [At]spp ).

(b) The K-theoretic signature o(V;X) € K*(B) = K.(R = Cont B) can be brought
to an equal footing with the ordinary one with values in Z = K (C) (see (c) below) but
there is (at least for a casual eyve) an essential difference between the two due to the fact
that the K-valued signature is not ¢ homological invariant. In particular, it is much harder
to define it for topological manifolds (where there is no obvious class of associated Poincaré
complexes) and it seems impossible (7) to make sense of * I -signature of a homology class”
in V (but the A -signature for manifolds with boundary may stand a chance).

(c) C*-algebras. Whenever one has a representation of a group II in a free Hermitian
module M of a finite rank over some involutive algebra R, one defines, for each (V,f :
V — BII), a flat M-fibered bundle X over V and WM[V] € Witt, R. We dealt above
with the cases of R = C and R = Cont B. Another important class of examples is given
by the group algebra C(II) itself and its extensions, such as C*(II) D C(M) which is the
completion of C(II) in the operator norm topology. This C*(II), as well as B = Cont B,
is identified with an involutive (for taking adjoints) subalgebra of operators on a Hilbert
space closed in the operator norm topology (where continuous functions on B act by
multiplication on Lo(B) and the group ring acts on (»(II) by convolution). Such algebras
are called C*-algebras and they, albeit non-commutative, share many common properties
with algebra of continuous functions and may be thought of as algebras of continuous
functions on certain non-commutative or quantum “spaces”. For example, Hermitian forms
are diagonalizable over such algebras (by the spectral theorem) and one has a natural
homomorphism Witte(R) — Ko(R) defined by M — [Mi] — [M_] as in the case of
R = Cont B (see [Ros]anpt for a definition of Witt,, — K, for all n). Furthermore,
one can define the index of the signature operator £y with values in Ko(R) as well as
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of any other elliptic (pseudo)differential operator on V twisted with X, such as the Dirac
operator. (This, actually, can be done for not necessarily flat C*-algebra bundles over
V, see [Mi-Fo], [Kas]). Also non-trivial fibrations A — B with fibers A, diffeomorphic
to V (see above (a)) fit into this context as the spaces of the fiberwise differential forms
are R-moduli and the fiberwise elliptic operators are Fredholm over R which allows the
definition of the index € N, (R) = K*(B).

(') The homotopy invariance of L. Lusztig’s argument generalizes to the
non-commutative C*-algebra context (see [Ka-Mi] and references therein) and shows that
ind L x € Ko(R) is a homotopy invariant of V. In fact, this index can be defined for quite
general Hermitian Fredholm complexes over C*-algebras where one can prove its invariance
under chain homotopy equivalences (see [[Ka-Mi]). However, this does not directly lead to
the Novikov conjecture as, for all we know, the group INo(R) can be too small to contain
sufficient information about the characteristic classes of V. But it suggests another version
of the Novikov conjecture, called strong, or C*-Novikov, which claims, essentially, that for
R = C*(IT), the group IV,(R)®Q is as big as H,(BII; Q), which is manifested by injectivity
of the composed map

H.(BIL; Q) — (Witt, C(I1)) & Q — (Witt, C*(11)) ® Q — K, (C*(I1)) @ Q
l A

fa

In fact, one can cast the construction of & in a purely I\-theoretic framework by replacing
H,(BII) by K,(BII) and defining corresponding homomorphism, call it & : K,(BII) —
K.(C*(I1)), operator theoretically without using H.(BII) and Brd,(BII) (see below).

8%. Index homomorphism « : Ko(BIT) — Ko(C*(IT)) and strong Novikov conjec-
ture. Recall the definitions.

Definition of Ky(R). This is defined for an arbitrary ring R as the ( Grothendieck)
group of isomorphism classes of projective moduli M over R of finite rank. In other words,
this is the Abelian group generated by these M’s with the relations

(1) of My 1somorphic to M, then [M,] = [M,], where [M] refers to the class of M in
I(O;
(2) of M = My & M, then [M] = [M;] + [M,].

Definition of “projective”. Here “projective of finite rank” signifies that M is a
direct summund of free module of finite rank, i.e. M embeds into RN = RGRP--- @ R,

where it admits a projection P : RY — M C R" fixing M. Thus every M is represented
by an idempotent in the matrix ring Mat R, i.e. an operator P C Mat R with P? = P. For
example, if R is a field, our M are just finite dimensional vector spaces. Relation (a) and
(b) turn them into the semigroup of positive integers but as we say “group” we complete
it to the group of integers. Another example is R = Cont B for a compact metric space
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B. Here free moduli RY correspond to trivial bundles TrivY — B and their projective
submoduli correspond to subbundles since the indempotents p : RY — RN appear as
bundle endomorphisms satisfying P? = P. Thus “projective moduli over R” translates to
“vector bundles over B” and IVo(Cont B) = K%(B). (I, is a covariant function while K°
is a contravariant one which fits with B~— Cont B being a contravariant functor).

The rings we care most are group rings such as C(M) and various completions of
C(M) for infinite groups II. The Ky-groups of group rings without completion tend to be
rather small. For example, K(C(Z") = 0 and there is a conjecture that Ko(C(II)) = 0 for
all torsionless finitely presented (finitely generated ?) groups II (related to the Kaplensky
conjecture claiming that the relation rir2 = 0 in the group ring of II without torsion
implies that either r; or ry is zero).

Definition of Ko(B). This is motivated by the following observation (due to Atiyah).
Let D be a pseudo-differential operator of order zero over a compact manifold V. Such a
D acts between the Lj-spaces of sections of the implied bundles, say D : Hy — H_, and
it 1s a bounded Fredholm operator between these Hilbert spaces of sections. Furthermore,
D almost commutes with multiplication by continuous functions f on V in the sense that
the commutator (Do f — foD): Hy — H_ is a compact operator for all f € Cont V. On
the other hand, one can twist D with an arbitrary vector bundle X over V and define the
index of the twisted operator, say ind Dy € Z, which gives one a homorphism K%(V)—1Z
for [X] + ind Dx. An appropriate general twisting procedure of D with X is as follows.
First, for X = TrivY we just take PV = DEH DG ---D and then we compress DV to

N

a given subbundle X C Triv" by composing with a projection P : Trivl — X, i.e.
by setting Dx = P o DN, (Recall that originally, D acts between sections of bundles, say
D:Hy =Ly(Sy) — H_ = Ly(S_). Then DV acts between sections of the tensor products
S+ ®TrivY and S_ @ Triv" while Dy acts from sections of S+ ®X C S4®@TrivY to those
of S_®X C S_@TrivY by Dx(s+@x) = PDn(s.2) where P applies to the sections of
S_®TrivY via the second component. This agrees with the twist for differential operators
D of the first order with (X, V) for the connection ¥V on X induced from the trivial one
on Triv¥ by the compression V1" with P, compare G]?)

Example. Suppose we start with a first order elliptic differential operator, say
D : C*(S4) — C(S_) such as the Dirac or signature operator. This can be directly
twisted with bundles X which defines the index homomorphism ind : K%V) — Z (for
indp[X] = ind Dx). Alternatively, we may first modify D in order to make it Lo-bounded
by taking its polar part, defined by

PPD =D on kerD

PPD = D(D*D)~! away from ker D.

Or, if one does not want to bother with ker D, one may take D = D(1+D*D)~ ! and observe

that this is a zero order pseudo-differential operator with the property ind Dx = ind Dx
for all vector bundles X over V.

Now we are psychologically prepared for the definition of K¢(B). This is done via
K°(R = Cont B) which, in fact, will be done now for all algebras R over C with involutions
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as follows. First we introduce K-cycles as Fredholm representations of R, i.e. pairs of
actions of R on Hilbert spaces, say on H, and H_ (i.e. involutive homomorphisms of R
into the algebras Bnd.oper (H,) and Bnd.oper (H,)) and a bounded Fredholm operator
D: Hy — H_ which almost commutes with these actions in the sense that the commutator
Do f — foDis a compact operator on H_ for all f € R (where “Fredholm” signifies
the existence of an “appropriate inverse” bounded operator D' : H_ — H_, such that
D'D — 1 and DD’ — 1 are compact operators). These cycles form a semigroup for the
direct (Cartesian) sum of underlying Hilbert spaces and representations. Then we add the
following (equivalence) relations between the I-cycles.

(1) Isomorphism. (Which means the existence of bounded linear isomorphisms
Hy & H and H_ < H' which commute with the operators on both sides).

(2) Homotopy. This refers to homotopies D, : Hy — H_, t € [0,1], which are
supposed to be norm continuous in t and almost commute, for all ¢ € [0,1] with implied
actions of R on Hy and H where these actions stay still with ¢ running over [0,1]. The
resulting K-cycles, for t = 0 and ¢ = 1 are declared equivalent (by this homotopy).

(3) Degeneration. A I-cycle is called degenerate if the corresponding operator D is
a bounded linear isomorphism between H, and H_ which commutes with the actions of
Ron Hy and H_. And the degenerate cycles are declared zero in K°(R).

Now we divide the semigroup of K-cycles by (1) + (2) + (3) and obtain K°(R).
(Notice that taking inverse in this group corresponds to Hy — H_ and D « D).

Observe that K'°(R) stands up to the notation being a contravariant functor from
algebras to Abelian groups and thus B~—IL'((B) = K°(Cont B) is covariant. [t takes
some effort to prove that Iy is a homology theory, e.g. it is a homotopy functor (which
amounts to showing that No(B x [0,1]) = Ko(B). Also one has to prove that Ko {point}
= Z for the homomorphism D] — IndD. (This follows from Kuiper’s theorem claiming
connectivity (and even, contractibility) of the group of bounded linear automorphism of an
infinite dimensional Hilbert space). But we shall not need all these properties of Ky(B),
but only the existence of a (index) pairing between Ky and I'° and of a homomorphism
ch’': Hoo(B; Q) — Ko(B) @ Q (defined later on with the signature operator) injective with
respect to this pairing, which means <ch' hev, ko> = 0 for all k° € K% B) implies hey = 0
and which yields the ordinary injectivity of ch’.

Indez pairing between Ky and K°. We define ([R],[D]) = ind D, where [R] €
Ko(R) is the (distinguished) element represented by the free 1-dimensional module over
R identified with R and [D] € K°(R) the class of a cycle D : H, — H_. Next, for a free
module RN we take DN =D& D@ ... D: HY = H,.orRY - HY = H_@pr R" and

N
set ({[RM],[D]) = ind D¥(= N - ind D). Finally for a projective submodule X C RY we
define Dy : Hy ®p X — H_ &% p X by using the embeddings Hy @ g X C Hiv =HiQrR"
and the projection P_ : HY — H_ 9z X corresponding to P : RN — X implied by the
definition of projectivity of X. Namely, Dy acts on h = (hy,---,hn) € Hy @ X C HY
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by ht +— P_DN(h) where P_ projects HY = H_ @p RN to H_ ®r X according to
h_®@r— h_ @ Pr. One checks casily that Dy is Fredholm (with the appropriate inverse
v = P4(D")V) and set

((X].[D]) = mdDy.

Index pairing between K°(R) and Ky(R© R) with values in Ky(R). The basic
example is where we have a family of elliptic operators on a manifold V of the form Dy,
where D is a fixed operator over V and X, is a variable bundle over V parametrized by
B 5 b. Or, we have a bundle X over VV x B and X, = X|V x b. The index of this family
lies in K°(B). Now, for general C*-algebras R and R, we imitate the construction of Dy,
and ind € K% B) as follows. Given a K-cycle D : H, — H_ over R and a projective
module X C (R® R)YN with P: (R®R)™ — X we take the tensor products H, = Hy @R
which are come along with the structures of Hilbert moduli over R which means they
possess besides the actual, say right, R moduli structures, scalar products with values
in R having the same formal properties as the usual scalar product and where the model
example is a Hilbert vector bundle X over a space B with the Cont B-valued scalar product
on the space H of its continuous sections corresponding to the point-wise scalar product
(hy,hy)y, b € B (see [Kas| for details). We tensor our D with R and obtain an R-Fredholm
operator D : H, — H_ which means, there exists an approzimate inverse over R that
is a bounded Hilbert module morphism D': H_ — H , such that DD’ — 1 and D'D — 1
are compact over R ie. lie in the operator norm closure of the span of the “rank-one
operators”, i.e. R-morphism of the form n4 : Hy — Rhy C Hy for hy :C H,. Finally,
one twists D with a projective module A" over R ® R as earlier(by composing with P)
and gets an operator Dy : H @ X — H_ © A where we tensor over R® R as R acts
on H, on the left and R acts on the right. The operator D, is R-Fredholm and can be
perturbed to another R-Fredholm morphisin D, having closed image and such that Ker D,
and CokerD; = H_ ® X/Im D, are projective moduli of finite rank over R. Then one

defines ([X],[D]) = [Ker D,] — [Coker D,] € Io(R) see [Kas] and [Ros|gxk for details and
references).

Construction of K : Ko(BII) — Ko(C*(IT)) . Suppose BII is compact and let
R = Cont BIT and R = C*(II). As the fundamental group II of BII (obviously) acts on
C*(I1) we have a flat R-fibered bundle X over BII associated to the universal covering
of BII. As the total space of X is acted upon by II, the space A" of continuous sections
BIl — X has an R-module structure as well as the (obvious) R-module structure and thus
an R® R-module structure. In fact this module is projective of finite rank over R® R since
X, being a locally trivial vector bundle, embeds into finite sum of trivial vector bundles
X, over BII where X; equals X over some neighborhood U; C BII with U;, 2z =1,--- N,
covering BII. Now we define our

K : Io(BIl) = K% R) — Ko(R = C*(I1))

by pairing K°(R) with [X] as described above. (One loosely can say that «([D]) equals
ind Dx € Ko(R) for the operator D twisted with X. In fact, if the K-class of D comes from
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that of the signature operator £ of a manifold V mapped to BII, then K([D]) = ind Lx,
for X' over V induced from X).

Ezample. Let I1 = Z" and BII be the torus (S')". Then the C*-algebra C*(IT = Z")
is 1somorphic to Cont T (for the torus T" dual to (S!)") and there is a canonical complex
line bundle X, over (S§')" x T™ (see the example following the Lusztig signature theorem
in 82). The space of sections of X, is a projective R © R-module for R = Cont(S*)™
and R = Cont T" = C*(Z") which can be easily identified with the above X and our K
applied to the signature operator £ on (S')” (or rather to £ = £(1 +£*£)‘% is exactly the
index of the family of the signature operators which we denoted earlier £[(S1)"] € K°(T™).
Moreover, for every V mapped to (S')" (according to a homomorphism 71(V) — Z"™) the
index £[V] € K°(T") of the induced family equals K(£(V)) where £ = £(1 + L*L)™7 for
the signature operator £ = £(V') and where K is defined via the induced line bundle over

V x T™. This follows from the Lusztig signature theorem as £ and £ have equal indices
over T™

Non-commutative generalization of the Lusztig theorem. (Compare Remark
(c') in 82). Observe that there is a natural homomorphism, say L Brd..(BII) — Ko(BII)

which assigns to each (V, 3 : V — BII) the F-image of the class [/3(\/)] € Ko(V). f Vis
stably parallelizable, then

(AL IXT) = (B(1V]).ch X)

for all vector bundles over BII by the index theorem. Thus L defines a monomorphism (in
fact, an isomorphism) called ch’, from H,,(BII; Q) to Ko(BII) ® Q) since ch : K° — He"

1s an epimorphism (in fact an isomorphism) over Q.

Theorem (See [Kas]). The homomorphism K o ch' : Hey(BIL; Q) — Ko(C*(I1)) @ @
equals our old o : Heo(BIL; Q) — (Witte, C(I1))@Q (see 7%) composed with Witte, C(II) —
Witte, C*(II) — Ko(C*(II)).

Corollary. If K s injective then so is a.

Thus the Novikov conjecture for He, (BIl) would follow from the injectivity of K (and

the odd case of the Novikov conjecture of II would follow from the mjectivity of K for
II'=1I x Z).

This motivates the following
Strong Novikov conjecture (according to Rosenberg). The homomorphism & is
injective for all countable groups II. (In general, BII is not compact but it can be obtained

as a union of compact polyhedra Py C P, C P, C ---P; C --- and Ko(BII) is defined as
the direct limit of Ky(P;)).

Groups where strong Novtkov is proved. (1) Lusztig’s argument proves strong

Novikov for II = Z™.
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(2) If I is the fundamental group of a complete manifold B of non-positive sectional
curvature, then strong Novikov is valide for IT (see [Mis], [Kas]).

(3) Strong Novikov is valid for the subgroup II of the linear group GL(N,R) for all
N =1,2,.. (see [Kas]). Notice that this gives an alternative proof of the Lusztig theorem
concerning flat Hermitian bundles but the two proofs seem to provide somewhat different
information. Namely, Lusztig’s argument does not apparently say anything about strong
Novikov, but it gives a non-trivial lower bound on the rank-norm on Witt, which in way,
stronger than strong Novikov).

(4) If BII can be represented by a complete n-dimensional Riemannian manifold B
whose universal covering B admits a proper (uniformly) Lipschitz map B — R™ of non-
zero degree, then II satisfies strong Novikov. In fact, for more general II, strong Novikov is
valid for the Lipschitz (hyper-Euclidean) part of the co-homology of I see [C-G-M]gcLc-

How strong Nowvtkov is proved. One has to show non-vanishing of somebody in
Ko(C*(II)) ® Q, namely, of x = K([L(V)]) for a suitable manifold V, and this can be
done by finding a K-cycle A over C*(II) (representing an element in K°(C*(II)) such that
our “somebody” does not vanish on A. This A, according to the definition of K°(R)
specialized to R = C*(II), must be a Fredholm representation of II, ie. a Fredholm
operator between two unitary representations of II, say A : Hy — H_ where II unitary
acts on Hy and, most importantly, A almost commutes with these actions, 1.e. commutes,
modulo compact operators.

Now let II = =7;(B) where B is a complete manifold with (non-strictly) negative
sectional curvature and B be the universal covering of B acted upon by II. The distance
function p(d') = py(d') = distp(bh,b') is smooth for each b € B and all b # b and its
differential du(b') has |[du(b')|| = 1 for all b’ # b. The key property of du, where the

negative curvature enters is a weak dependence of y; on b for b’ — co. Namely

gy, (8') = dpp, ()] — 0

for every fixed pair (b1, b2) and b’ — oco. In fact ||dus, (b') — dus, (8')]] < 2dist(b, by)/ dist(by,b'),

136



see Fig. 14 below, where ¢; denotes ||dp,, (b)) — dpy, (02)]].

b,

€

Fig. 14

It follows that
ldp(d') — du(xd")|| - 0 for b — oo

for each p = py and every = € II. Thus the operator § = 8, : A*(B) — A*(B) defined
by A +—= AAdu for p = py(d'), alsmost commutes in the Ly-sense with the action of II if
we 1&nore what happens near b. To make it cleaner we take a single II-orbit, say Ib € B
be B, missing a given point b € B, and consider the Hilbert space Hy of square summable

(I)(B ). Now, clearly,
the above operator § = & restricted to H~ does have the almost commutation property

(for the same reason as the multiplication operator on €y(IT) for () — (7 )¢(7) where
6(m) is a function on II which converges to a constant for 7 — o0) ; yet it is not Fredholm.
But A, = 6y + ¢; is Fredholm since 8, + é; at each space A*(‘b')(B) = AR" 7 €1l is

an invertible (selfadjoint) operator. The required A can be eventually built of these A,
(by suitably “integrating” over b € B) and then non-vanishing of (x,[A]) is obtained by a

cohomological computation (similar to the one for B = (S')" in 81) rendered possible by
a suitable index theorem.

forms on the tangent spaces of B along this orbit, i.e. Hy = = Py A*

This unexpected intervention of negative curvature in the infinite dimensional realm
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was brought about by Misséenko in 1974 who also proved the releveant index theorem
for the signature operator twisted with Fredholm representations of II, replacing ordinary
representations used by Lusztig. Namely, the representation of IT on H4 define flat Hilbert
bundles over BII associated to the universal covering and A : Hy — H_ gives rise to a
fiberwise Fredholm homomorphism say, Ap between these bundles (at least for compact
BT'). Then X' = KerAp — Coker Ag defines a virtual bundle over BII and Mis¢enko
commutes the index of the signature operator twisted with X’. Thus Mis¢enko shows -hat
every cohomology class p € H*(BII) of the form p = ch X' satisfies Novikov’s conjecture,
(i.e. 0, is homotopy invariant).

Finally we recall that the universal covering B of a complete manifold B with non-
positive curvature is Hyper-Euclidean (see §4) i.e. it admits a proper Lipschitz map onto
R", n = dim B, of non-zero degree, say A : B — R® (for which we may take exp;l :
B — Ty(B) = R™) and such A suffices for the strong Novikov for I = 7,(B). Here one
builds up the relevant Fredholm representation of II out of (the Hilbert space of) maps

X: B — A*R™ and takes 6()\) = A\ A a(b) for a(b) = AD)/(1 + .A(E)H)- (It is slightly
more convenient to use spinors on R” with the Clifford multiplication by a(g) rather than
A* with the exterior product, see [C-G-M]icrLe. The Lipschitz property of A guarantees
the almost commuting of this 6 (and hence of A = § + 6*) with the group action while
“proper of positive degree” make the resulting I-cycle sufficiently non-trivial to detect

non vanishing of relevant « € Io(C*(II)). (Cohomological sufficiency of this construction
is explained in a slightly different situation in 9%).

Spectral consequences of strong Novikov. The class KB, ([L(V)]) € Ko(C*(IT))
can be defined, for each closed oriented manifold V' with a continuous map g : V —
BM, more directly via the Il-covering V' — V (see [Ros]csaps, [Roe]cciT) and then
nonvanishing K8,([£(V)]) # 0 implies that the spectrum of the Hodge operator d + d, on
Ly-forms on V contains zero. Thus Specd+dy 3 0 whenever II satisfies the strong Novikov
and the map 3 is not Q-homologous to zero (i.e. 3,[V] € H,(BII) is not a torsion class).
If, furthermore, dim V is odd and x4, ([£(V)]) does not vanish in K, (C*(I)) (compare 63)

then the gaps in Specg+ d. are bounded. But in most (all 7) cases the relevant part of

the proof of strong Novikov reduces to the Vafa-Witten argument which is certainly easier
than the full strong Novikov (see 6-;— ).

8%. Twisting the signature operator with almost flat bundles. Let us slightly
change our view on the Novikov conjecture concerning the homotopy invariance of con-
cerning o,(V), p € H*(BII), by passing from cohomology of the (aspherical) classifying
space BII to K°(BII). Namely we take a vector bundle X over our manifold V induced
from some bundle over B(II) by a map 8 : V — BII and ask ourselves when the index
of the signature operator on V twisted with X is a homotopy invariant. As this index is
given by the Atiyah-Singer formula

(VY ind Ly = (Ly ch X))V ¥ 0 p—an x, (%)
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and ch : K°(BII) — H®(BII) is an isomorphism over @ we do not loose or gain in
generality by shifting from the cohomology to the I-theory but change the language for
the expected answer.

Model Ezample. (Lusztig’s theorem, see 8% ). Let X be a flat Hermitian bundle over
V split into X @ X_ (where the splitting does not have to agree with the flat connection)
so that the implied Hermitian form is positive definite on X and negative definite on X _.
Then the index of Lx/ for X' = [X;] — [X_] is a homotopy invariant of V being equal
to the signature of V" with coefficients in X. (Here [X;] — [X_] is the virtual difference,
ie. [Xi]—[X_] € K%V) and ind £ v/ = ind Lx, —ind Ly_ which, by additivity of the

ef
Chern character. satisfies (*) with X’ in place of X).

UAF! bundles. Let us explain how to extend Lusztig’s theorem from flat to almost

flat bundles.

Let V be a compact Riemannian manifold. If X is a unitary bundle with a unitary
connection V over V' we denote (as in §4) by |R(X)|| the operator norm of its curvature
R(X) = R(X,V) thought of as an operator valued 2-form on V. Thus, the inequality
IR(X)|| < e says in effect that the holonomy (or monodromy) transform, say M in X,
around each loop in V' which bounds a disk of area < & satisfies || Az — z|| < €6 ||| for
all vectors ¢ € X. Then we extend this curvature norm to the K-theory of V| namely
to Ko(V) ® Q, by representing each x € Ky(V) © Q by a (formal) rational combination
X = Zi r; X; of unitarily bundles X; = (X, Vi), and by setting

IR(X)| =max [RIX)| and Rya(s) =inf [R(X)]

for all representations of x by X. Then & is called unitarily almost flat if Run(x) =0 and
the subgroup of these  is denoted K0 4(V) € K%V)® Q. Clearly, this subgroup does
not depend on the Riemannian metric in V and is, moreover a homotopy invariant of V.
In fact, it can be easily defined for every finite polyhedron (and with a minor extra effort,
for an arbitrary compact metric space).

If V is connected and simply connected, then, L2 4 equals the (infinite cyclic) group
generated by the trivial line bundle as was essentially explained in 41. Furthermore, for
every V, the group A? o dies on the universal covering p : V- V, i.e. p*(k) vanishes in
KO(V) for all k € K (V). This means, for each arbitrarily large compact subset U C V,
there exists a representation of p*(x) by 3, r:X; where the bundles X;|U are all trivial.
In fact, if the fundamental group II = 71(V) is of finite type up to dimension n = dim V,
l.e. it admits a classifying space BII which is a cell complex with finitely many cells of
dimension < n = dim V', then there exists an ¢, = eo(V) > 0, such that every ey-flat
bundle X over V lifts to a triviel bundle X over V since triviality of X|U for a large (but
fixed) compact U makes X trivial on all of V for such a group II. Furthermore, if there
i1s a realization of BII by a finite cell complex, then every ¢o-flat bundle over V is induced

by the classifying (i.e. isomorphic on 7y) map V — B — BII from some bundle over BII
for some ¢g = €o(V) > 0.

139



Nowvikov for UAFI. The index of the signature operator with coefficients in a UAFI
bundle, i.e. in k i K2 o, 13 a homotopy invariant.

The proof will be explained somewhat later. Now we want to indicate some corol aries
and generalizations. First, the homotopy invariance here sigpifies that if V and V' are
homotopy equivalent, « hes in K2 4(V) and &' € K°V') corresponds to « under the
implied homotopy equivalence, then ind £, = ind £, which is equivalent to (Ly ch x)|V] =
(Lv' ch k")[V'] (where, recall, almost flatness of x implies that of x'). This yields the
homotopy invariance of the p-signature o, for p = ch k where k € K0 _o(B) for an arbitrary
finite polyhedron B. (The p-signature refers to manifolds V' mapped to B, say by 8: V —

B, and o, i (LvB*(p)[V]).

Ezample with infinite K-area. (Compare §4). Let B be a closed connected ori-
ented manifold of infinite K-area and p be the fundamental cohomology class [B]® €
H™(B), n = dim B. Then ¢, is a homotopy invariant for all (V, 3: V — B) (where, recall,
o, = signature (871(b)) for a regular value b € B of ). In fact, we know in this case that

M|[BJ]® = chp' for some p’' € K? ;(B) and M # 0.

uafl

Ezample with H*. Let p € H*(B) be an integer cohomology class which admits for
every integer dy > 1 a finite covering p : B — B for which the pull-back p*(p) is divisible
by d > do in H%(B; Z). Then o, is homotopy invariant for all (V,8: V — B). In fact,
p = ¢1(X) for some complex line bundle and the pull-back X of X to B admlts a d*"-root
(X)7 (whose d'™® tensor power equals X). Then the push-forward of X7 to X, say Xg
over V, is approximately 1/d-flat (this is a complex vector bundle of rank = deg p) with
ch Xq = degp(ch X)Tlt' (where deg p refers to the number of the sheets of B — B in the
case where B is non-orientable). It follows that ch K'0_,(B) C H*(B) contains p (as well
as p',1=1,2,---) and so o, (as well as ¢, for i > 7) 1s a homotopy invariant.

Generalization of the K -area example. Recall that the K-area is invariant under
finite Galois covering of B but not, with our present definition, under infinite ones. Thus
the following is a genuine generalization. If B admits a (possibly) infinite Galois covering
of infinite K-area, then o, for p = [B|, is a homotopy invariant for all V mapped to B.

Generalization of the H*-example. Let B be a (finite or infinite) polyhedron with
the universal covering B having HQ(E;Q) =0 (e.g. B = BII for Il = m1(B)). Then o,
18 a homotopy invariant for all p € H*(B; Q) in the subring generated by H*(B; Q). In
fact this remains true for the subring generated by H'(B; Q) and H*(B;Q). Thus the
Novikov conjecture is valid for the cohomology multiplicatively generated by the 1- and

2-dimensional classes in H*(BII; Q).

Idea of the proof. The lifted line bhundles X over B admit roots of all degrees d
which makes them arbitrarily «-flat with a possible descent back to B (see 9% for details).
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8%. On the proof of Novikov for UAFIL Let us look at the homotopy invariance of
the index of the untwisted signature operator L (sec 8% ). The operator £ is built out of
the exterior differential d (which behaves well under homotopies) and the Hodge operator
* which apparently badly nceds the Riemannian (and hence smooth) structure. But this
* is linked to the exterior product of form (which is a homotopy stable operation) by
||/\||L [w A #w. This, can be translated to a purely linearly algebraic (or operator
theoretlc) language along with other essential properties of d and * (such as (Lei) and
(Sto) of 82) where the homotopy equivalence between manifolds manifests itself by chain
homotopy equivalence of de Rhani complexes, and the homotopy invariance >f ind £ follows
by chasing a few diagrams. This equally works for £ twisted with a flat bundle which may
be Hermitian as in the Lusztig theorem or a bundle of finite projective moduli over a
C*-algebra R with ind Ly € Ig(R), (see Remark (¢') in 8%). Since the index is a rather
robust invariant, stable under small perturbations of our data, its homotopy invariance
survives the passage from “fHlat” to “z-flat” which analyticaly speaking corresponds to the
condition ||d2H < ¢ instead of d* = 0 (see [Hi-Sc]). The situation is quite similar here
to the homotopy invariance of the Novikov-Shubin invariants concerning the spectrum of
d + d* near zero on an infinite Il covering V of a compact manifold V' (see [Gr-Sh] and
631):

Direct definition of the signature of o(V:X) for almost flat bundles X via
almost homomorphism 7,(V) — U(p). Let X = (X,V) be an ¢-flat unitary bundle of
rank p over V, fix a base point vy € V and take a smooth loop ¥ at vy in each homotopy
class. The parallel transport in X along this loop v defines a map p : 7(V) — U(p) =
AutX,, which is close to being a homomorphism if ¢ is small. Namely if [yi][v2] = [73)
in w1 (V) then ||p(v1)v(p(72) — ¥(73)|| < As, where A the area of the minimal disk in V
spanning the loop v;v,v; " and || || refers to the operator norm in U(p) (compare Fig.
......... in 44) (For example, if X is flat, this p is a homomorphism. It is convenient always
to use the same loop with the opposite orientation in the reciprocal homotopy class of v,
i.e. such that [y]™! = [v7']. Then our p is symmetric, p(¢™!) = (p(g))™' = (p(g))* for
all ¢ € (V). In this case the linear extension of p to a linear map of the group ring
C(II) to the matrix ring Mat, is involutive and thus sends (sqew) Hermitian forms over
C(Il) to those over Mat,. In particular. let w be such a (non singular!) form (matrix)
over C(II) of rank r corresponding to the class [V] € Brd, BII, for II = 71(V') under the
Wall-Mis¢henko homomorphism Brd, BT — Witt C(II) where we assume dim V' is even,
and denote by p(w) € Mat,, the image of w under (the linear extension of) p. This p(w)
gives us a (sqew) Hermitian form over C whose signature we denote by o(V; X) or by
o,(V) (compare §8) which may depend. in general, upon our choice of w representing
WM[V] € Witt, C(IT) but for small ¢ — 0 this dependence disappears. Namely, for
every pair of forms wy and wy representing the same class in Witte, CII there exists an
g0 = o(wy,wq) > 0 such that for = < =y the Hermitian matrices p(wy) and p(ws) have
equal signatures.

Proof. Let us isolate the relevant property of our linear map of C(II) to Mat,,.
(F,8)-homomorphisms. Let p be a linear map of an algebra R over C to a Ba-
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nach algebra M and F be a subset in R. Then p is called an (F,&)-homomorphism if
llp(r1)p(r2) — p(riry)|| < 6 for all y and r, in F.

We observe, that if r is invertible in R and both » and r~! lie in F for some (F,§)-
homomorphisms p with 6 < 1, then p(r)p(r~!) and p(r~1')p(r) are invertible in M (being
6-close to 1). This implies invertibility of p(r) if, for example, M = Mat, or if M is a
C*-algebra and p(r) and p(r~!) are self adjoint.

Coming back to our p : C(II) — M, (which extends the map II — U(p) called
by the same name p) associated to an e-flat bundle, we notice that it becomes (F,é)-
homomorphism for arbitrary (large) finite set F and (small) § > 0 if ¢ > 0 is small enough
(i.e. VF,63¢---). This implies invertibility of p(w) for a fixed w and small e. Moreover,
every finite chain C of mutually equivalent non-singular matrices over C(II) transforms
under p to such a chain in Mat, with “equivalence” replaced by “é-equivalence” which is
good enough for preservation of the signature. Thus the equality [w;] = [ws] in Witt, C(II)
implies o(p(w1)) = o(p(ws)), provided e < £4(C) = go(wy,wz) > 0. Q.E.D.

Corollary. If X 1s an c-flat bundle over V with a sufficiently small ¢ > 0, then
o(V,X) is non-ambiguously defined and is o homotopy invariant of V where the smallness
of € depends on the implied homomotopy equivalence. (This means, given a homotopy
equivalence f': V' — V, then, for every sufficiently small ¢ > 0, the signature a(V'; f*(X))
equals o(V; X) for all e-flat bundles X over V).

Actually, one can formalize the above by defining o(V, X.) in the limit for ¢ — 0.
Namely, let p; : C(IT) — Mat,, be a sequence of involutive linear maps, such that for every
finite F' C C(IT) and € > 0 the maps p; are (F, ¢)-homomorphisms for all i > iy = io(F, ¢).
Of course, the sequence o(p;(w)) for a fixed form w over C(II) does not necessarily stabilize
for ©+ — oco. But we may fix a non-principal ultrafilter in N 3 ¢ and take the limit
(eventual value) of o(p;(w)) over this ultrafilter, (which may happen to be +00). Thus we
define a homomorphism from Witte, CM to Z U {£oo} (or, better, to the non-standard
integers). Furthermore, we may extend this definition to wvirtual almost homomorphism
which are formal rational combinations p = {ZJ iji]}ieN by o(p(w)) :il_iP;o rio(pi;(w))
where “lim” refers to our ultrafilter. This allows us to define o(V, ) for each kK € K0 g,
which is a well defined homotopy (!} iuvariant of V. Notice that a priori, this signature
o(V; k) depends on how & is represented by a sequence of virtual bundles as well as on our
ultrafilter, but in fact, it depends only on x itself thanks to the following.

UAF! signature formula. (See [C-G-M]pp) and [Ska)).
o(Vik) =ind L. (%)

(where, recall, ind L, = (Lv ch x)[V] by the index theorem for the signature operator £
on V twisted with «).

This formula (x) relates two rather different quantities, where the first, the signature
o(V; k), heavily (in fact too heavily) depends on 71(V) (in the way it was defined) while
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the essential ingradient of £ is the * operator (as £ = d + d* restricted to Ax C A*(V)).
In fact (%) can be used to obtain non-trivial information about both, ¢ and £, albeit our
primary purpose is the homotopy invariance of ind £,.. As for o(17; k). we can see with (%),
for example, that it is multiplicative under finite coverings of V' but this seems to follow
from the bordism theory (the Serre finiteness theorem) as well. What 1s more interesting
is the behaviour of o(V: x) under infinite Galois coverings as we shall explain later on.

™ - Free definition of o(V:X). If X is a flat bundle then the definition of o via the
almost representations p : (1) — Mat, is equivalent to the cohomological one, i.e. that
of the ordinary signature of 1" with coeflicients in X'. Let us indicate a similar definition of
o(V; X) where X is s-almost flat. We fix a triangulation of V' and trivialize X over each
simplex A by using sections A — X which are parallel along each straight segment issuing
from the baricenter of A. With this we have natural boundary operators sections (A) —
sections (face of A) for all faces of A\ and thus operators 9; : C; = Ci{(X) — Ci—1(X)
for Cyo(X) = P ,-sections (A) satisfying [|0,0,—1]] < cg where ¢ = ¢(V') equals, up to a
universal constant consf,,, the maximal number of neighbours a simplex A C V may have.
We shall assume ¢ is bounded in the course of our discussion and to save notations, pretend
it equals one. Now, our main object is an e-comples (C, = @1, Ci(V; X), 0. = Pl )
where C; are finite dimensional Hilbert spaces (over C) and ¢ refers to the bound H@2|| <eg
for the operator norm || ||. The signature of (¥, X') is defined in terms of the intersection
of chains in C, imitating the Miscenko definition for & = 0, where the intersection enters
via the Poincaré duality given by an s-homotopy equivalence between C, and C*. Here 1s

the full diagram.

J an—l a()
Cn ._—n_) Cn—l — — CO
< ~__ ~
hnAl hn‘2 ho /
P php, P! B r D)
ol l_, ol i._,. o ___6_"_> C,
- L N ~__
Al h* n

where (C*,6) is the cochain s-complex corresponding to ((',, ¢), where all square diagrams
(—1)'-commute up to ¢, where p;, = (=1)'p,_; and p' = (=1)'p"~" with P denoting the
Hermitian conjugate for our Hilbert structure (and where, recall we stick to n even).
Furthermore, p, and p* are mutually inverse ¢-homotopy equivalences with hA* and h.,
serving as the corresponding s-homotopies. This means ||p*p. — 1 — h*é — §h*|| < € and
lpsp* — 1 — h,0 — Oh,|| < z. For every (small) = > 0 and (big) b > 0 such e-diagrams
with all operators involved, i.e. 0,6, h, p bounded in the operator norm by b, form a
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semigroup under Cartesian sums, and one passes to the corresponding Grothendieck group,
say Dy(¢e,b). Then, again mimicking the case ¢ = 0, one introduces a subgroup of ¢'-trivial
e-diagrams, Tr,(e',b) C D,(¢, b) takes the quotient group Dple,b)/ Try(e’,b) goes to the
limit in the following order ¢ — 0, ¢’ — 0, b — oo and checks (if one is able to unravel this
mess of linear algebra, I hardly can do this myself), that the resulting group is isomorphic
to Wittey, C = Ko(C) = Z and so there is a well defined integer, called the signature o(D),
assigned to each diagram D where ¢ is (very) small compared to b~! which gives our

o(V;X) for C, = C(V; X).

Ezample. Imagine, we start with a flat bundle X, and then perturb it to an e-flat
X.. Suppose all non-zero eigenvalues of the operator (9y + ;)% in the middle dimension
i.e. on Cp, for m = n/2 are far away from zero, i.e. outside a fixed interval [0, 6] for 6
much greater than £. Then the spectrum of (9, + 87)* in the middle dimension has a well
defined part localized e-close to zero and the span H. of the corresponding eigenspaces is
1somorphic to H,,,(Cy|e=o). Furthermore, the intersection form on H, is isomorphic to that
on H,,(C.|:=0) being a small perturbation of the former and one can actually show that
the signature of C,|.xo equals the signature of the intersection form on H., whenever there
is such a well localized subspace H. C C,,. This is always the case if we keep the rank of
C. fixed for ¢ — 0, but in general, the spectrum of d + 9* may rather uniformly spread
over the interval [0, 6] for § >> ¢ and then the signature can not be recaptured without
looking on all of C, or at least on the eigenspaces belonging to the spectrum of (8/9*)* on
C close to zero. (We shall indicate later specific examples where the localization of the
spectrum does take place).

The m;-free definition of a(V; X) has a de Rham counterpart where the equivalence
with ind £ x becomes a matter of simple (and painful) diagram chasing. Furthermore, one
can generalize all this to cover the following.

(Non-unitary) Hermitian almost bundles X over V. These HAFI bundles are
meant to generalize Lusztig’s flat bundles as well as UAF] bundles. They come along with
a connection V preserving a Hermitian structure i.e. a Hermitian form h as well as a
unitary structure, denoted { , ) such that

1. The spectrum of & with respect to { , ) lies in an interval [b~!, ] for some (eventually
large) constant b > 0.

2. The covariant derivative of (. ) is < b. This means that the monodromy operator
X, — X, along every path of length < 1 has norm < b.

3. The curvature of V| as an operator valued 2-form on V, has norm < ¢ with respect
to { , ) (and a fixed Riemannian metric on V).

Then “HAF1” means a sequence of such bundles X' = X ., where first ¢ — 0 and then
b — oo, (in fact one could be more generous to b by just bounding it by something like b <
expe™!), and K} 4 is made of classes of rational linear combinations of [Xp ¢], —[Xs.]_.
Everything we have said about UAF] extends to HAFI (but I admit I did not check it line
by line), thus incorporating Lusztig into the AFl framework. In fact Connes’s construction
in [Con]cctr allows a reduction of HAFI to UAF! with the following application.
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Dirac twisted with HAF! bundles and Sc > 0. Every HAF! class k € K°(V)
can be made UAF!if one allows infinite dimensional unitary bundles as in 9 by applying
Connes’ construction indicated in the end of 81 It follows, that if V is a complete spin
manifold with ScV < £2 > 0, then the tw1sted Dirac operator has ind D, = 0, which
implies, as usual, that (chx — Ay )[V] = 0. (It would be interesting to find a geometric
approach similar to the use of the Bruhat-Tits building indicated in 9%).

8%‘-‘5—. Families of UAF! and HAF! bundles parametrized by a space B. In
this case the signature ranges in W(B) as well as the index of Lx (compare Lusztig’s
theorem for families in 8%) and the two are equal which implies the homotopy invariance
of ind Lx € K°(B) as the signature is homotopy invariant almost by definition. We shall
say more about it in the end of this section and now turn to the basic example where our
group II is realized by the fundamental group 7;(B) where B is a complete Riemannian
manifold with the following property stronger (at least in spirit) than K -area = oc.

A-area (B) = oo with A for “diagonal”. This means, by definition, the existence
of a real vector bundle ¥ — B of rank ¥ = dim B and a fiberwise proper map E of the

bundle BA ' B x B/II - B to Y (for the diagonal action of Il = 7;(B) on the universal

covering B of B so that the fibers of Ba are copies of B), such that F is of non-zero degree
(where both B and Y arc assumed oriented and where the basic example is Y = T(B))
and area contracting on each fiber of Ba (i.e. diminishing the areas of all smooth surfaces
in these fibers). Similar property with “Lipschitz” instead of “area contracting” appears
in [C-M]gere under the heading “Families with avariable target” (and implicitly in the
first paper by Miscenko [Mis]) where it is shown to imply the strong Novikov conjecture
for I = 7(B). (The basic example, already plesent in [Mig], is éxp~ ! : Ba — T(B)
for mamfolds B with negative curvature where exp at each point b € B exponentiates
Ty(B) to the fiber (Ba), = B which can be thought of as the space Ty(B) — B). “Area
contracting” is, a priori, less demanding than “Lipschitz” but no actual group IT is known
admitting B with A-area = oo but with no similar Lipschitz map. Also one should notice
that area contracting maps (albeit more general) are more capricious characters than their
Lipschitz counterparts (e.g. they do not stand convex combinations of maps and are harder
to express in the discrete language of nets) and the formalism developed in [C-G-M]gcLc
for Lipschitz map, does not extend (at least not directly) to the area contracting ones.

With these reservations in mind we state

Nouvikov conjecture for A-area = co. IfIl = n\(B) for a complete Riemannian
manifold B with A-area (B) = oo then II satisfies Novikov conjecture.

This is one of the main applications of the general UAFI-theorem in [C-G- M]ppl and
we now indicate the proof of it under the simplifying assumption (removed in 91 s) of 11
being a residually finite group. So we take a cohomology class p € H*(B) amap 3 : V — B
and look at the value (Ly3%(p))[V] which we want to express in terms of the (homotopy
invariant!) index of £ twisted with a family of UAFI bundles over V. This family will be
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induced from B where it is constructed with the map E : Ba — Y. To simplify the picture
we assume the bundle Y is trivial (which can always-be achieved by replacing B by the
total space of a bundle Y+ — B where Y+ @Y is trivial, (compare “ﬁmng the target” in
[C-G- M]GGLC) and then E reduces to a family of area contracting maps Eb B, o R be
B, where B, = (BA)I, is the universal covering of B with a marking b € B over b € B, and
where each map Eyis proper of positive degree and area contracting.

We compose these E, with an g-contracting map R"® — S" sending a neighbourhood
of the infinity in R™ to a fixed point sy € S™ and thus pass to the e-area contracting family
Sy : By — S™. Now, if Il = m;(B) is residually finite, one may limit these ¥ to certain
maps Zi\] : B,{V — 8™ where B} — B is some (marked) N-sheeted covering (with N < oo)
approximating B such that the supports of the maps S (where supp s def (974 ‘Zb_l(.so))

inject under the (covering) maps B, — gév If B is non-compact this may be impossible

for all b € B simultaneously but we shall need it only for 6 € (V) C B for compact
manifolds V).

Next we construct a family X of bundles X(0) over B parametrized by B itself in
three steps.

1. Take a unitary vector bundle Xy = (X, Vy) over the sphere S™ for n = 2m = dim B
with ¢ (Xo) # 0 (where for odd n we just stabilize to B x R as we often did).

2. Pull-back X, to Eév by the map EbN

3. Take the push-forward of the above (Eév)*(Xo) under the covering map Eév — B
and call it X (b) — B.

The bundles X (b), for all b € B, clearly are ¢'-flat with ¢’ — 0 for ¢ — 0 and we may
as well call them e-flat to save notations. What remains to do is to compute the index
of the signature operator £ on V' twisted with 3*(X). To make it visual let us pretend
that the maps f]b were actually defined over B itself. Namely, suppose we have maps
Yy : B — S™ each of Whlch sends the complement of a small neighbourhood Uy C B of b
to sg € S™ and X (b) = L} (Xg). The trouble with these ¥, is that they can not be (area)
contracting for small U, and if, for example, B is compact, U, can not be (arbitrarily)
large. To help this we enlarge Uy, not in B itself but in the universal covering B or in some
large but yet finite covering BYN. So. as U, grows, it becomes a “multivalued” set in B,
l.e. a subset in B mapped to B. (The simplest example is that of a flat n-torus T™ where
one starts with a small metric ball U7, C T" which grows to a large ball in R™ and then
is mapped finite-to-one back to T™ by the covering map R® — T"). The bundle X(b),
defined via a proper map U, — S", extends from Uy, to all fo B by declaring it trivial
ouside Uy in so far as Uy injects into B. But when U, outgrows B we have to take the
push-forward bundle which becomes infinite dimensional if we use the original (infinite)
covering map B — B and which has finite rank N rank X, for BY — B. Notice that for
small Uy (injected into B) the push-forward bundle on B for the map Eé\] — B is the same
thing as the extended bundle plus N — 1 copies of the trivial bundle of rank = rank X,
and as we enlarge Up in B)" the isomorphism class of this bundle does not change. Thus
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we can compute the index of Lx using the family X coming from £ = {E;},.5 as the
error equals the index of £ twisted with the above trivial bundle. So, let us compute this
index of Lx, X = {X(b)},cp which is an element « € K¢(B) (where for non-compact
B this Ky is made of bundles with compact supports) by invoking the index theorem for
families. Namely, we denote by X? — V x B the vector bundle corresponding to the
family B* (X = {X(b)}4cp) over V and observe that the Poincaré dual of ch X? equals a
non-zero multiple of the image of the fundamental class [V] under the gragh of 8, i.e. the
map v — (v, 8(v)) € V x B. Namely,

PDch X? = M(Tp).[V] (*5)

for M = dch Xy[S™] where d is the degree of E:Ba—Y or equivalently, the degree of the
maps Xp : B — S™. In fact, our family of bundles over B, viewed as a bundle X2 — Bx B
induced by the map ¥ : Bx B — S" for & = {Z4},ep has

PD(ch X?) = M[Ba] (*a)

for By = B diagonnaly imbedded into B x B since $*([S"]<°) clearly equals PD(d[B,])
and (xa) implies (*3) by functoriality. (Here we assume ch X equals a multiple of {S"]¢°
which is only possible for virtual bundles and in truth, we must use [Xo) — [Trive] where
rank Trivg = rank X;). New, we sce that the Chern character of x = ind L ys € Ko(B),
can be computed with the index theorem for the projection (family) p: V x B — B and
(*) as follows

chk = Cys,(Lych X?) = M - PDp(PDLy ~ (T3).[V])) = M - PD(8,(PDLy)).

Therefore, the homotopy invariance of k£ = ind £ ys implies that of 8.(PDLy) and hence of
the higher signatures o, as o, o (Lv Vv p*(p)[V]) = p(PDLvy) for all p € H*(B). Q.E.D.

(Recall the Novikov conjecture can be stated homologically as the homotopy invariance of

B PDLv) € H.(Br;Q) for the classifying map 3:V — BII for Il = =(V)).

On the proof of the homotopy invariance of ind Ly for UAFI (and HAFI)
famalies X. A family of bundles parametrized by b € B should be viewed as a single
bundle over the C*-algebra ContB and everything we said about UAFI (and HAFI) bun-
dles generalizes to the C'*-algebra framework (compare [Hi-Sc]). Notice, that despite the
appearance of C*-algebras, the strong Novikov conjecture remains problematic for A-area
= 00. The difficulty stems from the fact that our almost representation II — U(p) does
not extend to C*(II). Yet it extends to ¢;(II) and so the gap lies between KoC*(II) and
Kol (IT). (This circle of ideas was patiently explained to me by Henri Moscovici).

8%. On the classification of AF! bundles. What we want to know is the homotopy
type of the space of UAF! (and HAF1) bundles, not their bare existence.
Ezample. Let V' be an aspherical 4-dimensional manifold such that
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(1) The universal covering is hyper-Eucliean ;
(2) HY(V;Q) #0;

(3) the fundamental group II = 7,(V) is residually finite and, moreover there is a

class h € H*(V) with A% # 0 and a sequence of finite coverings p; : V; » V1 =1,2,...,
such that p¥(h) € HX(V;) is divisible by 1.

Then one can form two kinds of UAF!] bundles over V. The first group comes from
mapping large finite coverings Vx of V (unrelated to the above V;) to S™ by (area)
e-contacting maps of non-zero degree, pulling back a suitable X, — S™ to V and pushing
it down to X. on V. Another construction consists in taking a complex line bundle Y on
V with chy Y = h, pulling it to U; — V., taking the :-th root ()Z) " and pushing it down
to Y, with e &~ 77! on V. Then one can combine tensor products and exterior powers of X,
and Y, and find among these some representing equal elements in Ko(V). The question is
when these UAFl-bundles, say X! and Y/ with [X!] = [Y/] can be joined by a homotopy
of UAFI bundles after a suitable stabilization. One also can throw into the game HAFI

bundles, e.g. flat Hermitian bundles, (for example for V' = surface x surface and ask the
same question in the HAF? category.

Global almost homomorphisms. The above question can be reformulated in terms
of, say unitary, almost representations of an abstract group II and one may strengthen the
notion of an e-homomorphism p : II — U(p) by requizing the inequality

lip(m)p(me) — p(mima)|| < €

to hold for all 7y and 7 in II. (This is, in the terminology of 8%, an (F, £)-homomorphism
with F' = II which suggests intermediate classes where F is infinite but smaller than all of
IT). It may seem that for many groups I such a global unitary ¢-representation with small
¢ must be a small perturbation of an actual representation. In fact this is known, thanks
to D. Kazhdan, for the amenable groups by a non-linear overaging argument (used earlier
by Grove, Karcher and Ruh for compact groups). On the other hand if V is a compact
manifold with strictly negative sectional curvature K(V) < —62 and X is an e-flat bundle
over V of rank p, then the holonomy around geodesic loops at a given point vy € V is such
a global ¢'-representation of the fundamental group II of V to U(p) with ¢’ < Ce for some
constant C = C(V) < 7672 This follows from the fact that all geodesic triangles in the
universal covering V of V bound disks of area < 767 2. Then this generalizes to any compact
V with a hyperbolic fundamental group (where one can define a suitable substitute for
geodesics, see [Gro]ga) and one sees furthermore, that every unitary (F,§)-representation

of a hyperbolic group Il with F generating II gives rise to a global e-representation with
e < Cb for C = C(II; F).

Questions. Are there non-hyperbolic groups with this globalization property ? Are
there non-amenable groups where every global e-representation can be perturbed to an
actual representation 7 Here one may suspect irreducible lattices in semisimple groups
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of R-rank > 2 as they are full of Abelian (actual and virtual) subgroups where such
perturbations do exist by Kazhdan’s theorem.

A closely related globalization property is the existence of an ¢'-parallel frame in the
lift of an e-flat bundle X from V to the universal covering V of V. This is always possible
if 71(V') is hyperbolic (e.g. for K(V) < —é2) and also for some bundles over certain
non-hyperbolic manifolds, e.g. pushforwards of suitable line bundles over (finite covers of)
Kahler hyperbolic manifolds (see [Gro|ky).
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§ 9. Open manifolds and foliations.

We have been avoiding so far a direct encounter with non-compact manifolds and now
time has come to meet them face to face. We start by recalling

91, L,-index theorem for infinite coverings. Let V be a Galois II-covering of a
compact Riemannian manifold V', D be an elliptic operator over V (e.g. Dirac or the
signature operator £) and D be the lift of D to V. (Notice that one may lift to V also
pseudo-differential operator whose Schwartzian kernels are supported close to the diagonal
in V x V but, in general, such lift is impossible. For example, the projection operator on
Ker D admits no geometric lift to 1% .) The hfted operator D acts on the Ly-sections of the
relevant [I-invariant bundles (lifted from V'), say D:L, 5+ — Ly S_ (D is unbounded and
defined on a dense subspacc in L, S; but we write it as if it were globally defined) and
its kernel Ker D C Ly S; and cokernel Ly S_/C¢Im D are moduli over the von Neumann
algebra N'(I1) which is the algebra of bounded operators on ¢»(II) commuting with the (say
right) action of II. Every such operator is given by a function v on II which acts on £,-
functions ¢ by convolution o +— v * » and, in fact, A'(II) equals the weak operator closure
of the group ring C(II). The won Newmann dimension of Ker D, denoted dimp Ker D
can be intuitively thought of as the ordinary dimension divided by the cardinality of the
group II and this is the true definition for finite groups II. In the general case where II is
infinite one computes dimp Ker D as the II-trace of the (orthogonal) projection operator
P L, §+ — KerD. This P has C*-smooth [-invariant (Schwartzian) kernel, on 17,
denoted ﬁ(i?l, Up), where each value 13(751,52) is an operator from the fiber of the implied
vector bundle S, at ¥; to that at T,. (Strictly speaking P(7,,7,) is (operator) ® (volume
density) but as we assume V oriented with a Il-invariant Riemannian metric, densities
reduce to functions on V.) We consider trace P(%,7), a smooth function on V which is

[I-invariant and thus descends to a function on V' denoted trace ﬁ(v,v). Then we can
easily prove that

dimp Ker D = / trace ]3(1.’, v)dv (%)
Jv

or (if one resents the abstract definition of dimyy) take () for the definition of dimp (and

pay the price of checking that dimp Ker D depends only on the Hilbert space stucture of
ker D with the unitary I-action and not on the specific geometry attached to this space).

Next one introduces dimp coker D, which can be defined as dimp ker D* for the adjoint
operator D* : Lo S_— L, S+ and arrives at the notion of the Lo-indez,

indpg D= dimp ker D— dimp coker D.
Atiyah L,-index theorem. The above Ly-indez of D equals the ordinary indez of
the underlying operator D on the compact manifold V', 1.e.
indy D =ind D . (%)
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Corollary. If ind D > 0 (which is a topological condition on (V, D) by the Atiyah-
Singer theorem) then for every Galois covering V = V the space of D-harmonic L,-

sections on V, (i.e. the space ker D) is non-empty and therefore infinite dimensitonal for
infinite Galozs coverings.

Ezamples. (a) Let V be a Riemann surface of genus > 2 and D = d 4 d* acting
from AY(V) to A°(V) @ A%(V). Here ind D = —y(V) > 0 and so the universal covering
v supports an infinite dimensional space of harmonic 1-forms. Similarly, if V is a closed
4-dimensional manifold with strictly positive Euler characteristic, and II is infinite, then
1% supports non-trivial harmonic 2-forms. (There is no contribution to the index from
the dimensions 0 and 4 as every harmonic L,-function or 4-form vanish on nfinite 17)
Conversely, if x(V) > 0, then V supports harmonic 1-forms as well as 3-forms, since the

Hodge operator * :_ Al — A3 establishes a II-equivariant isomorphism between harmonic
1- and 3-forms on V.

(b) If V is a 4k-dimensional manifold with non-zero signature, then every Il-covering
of V supports a non-zero harmonic Ly-form of degree 2k, as follows from Atiyah’s theorem
for the lifted signature operator £ on V.

The Ly-signature of V can be defined combinatorially with some triangulation of V
lifted to V. Here one has & (and &* = 8) operating on (3-cochains on V and the [-invariant
quadratic form on the L,-cohomology Lo H“(f”) whose L,-signature is well defined over
N(II). In fact the L,-signature makes sense for the pairing h:L, H¥®L, H* — R defined
for each h € H4y(V') by composing the cup-product Ly H** @ Ly H* — Ly H* with the
evaluation of Li-cohomology of V on the homology of V. And also one can define the
L,-signature of V where V' is a compact 4k-dimensional manifold with boundary. These
signatures enjoy the same formal properties as their compact counterparts (see 7%) and
we invite the reader to look at this by him/herself. But the Ly-multiplicativity formula
on(V) = o(V), immediate with the Atiyah theorem applied to indg L, seems hard to prove
by a cobordism argument. Furthermore, the Ly-signature o(V) can be easily defined for
combinatorial and topological manifolds V' but the proof of the equality og = o becomes
more complicated (unless I am missing something obvious around here).

(c) Let V be a closed surface of ‘genus > 2 and X — V be a symplectic bundle with
o(V;X) # 0 as in 82. Then on(V:X) = o(V;X) # 0 for the universal covering VoV
(where IT = 71(V')) and consequently V supports nontrivial harmonic forms with coeffi-
cients in X. (Notice the X over Visa trzmal bundle but it admits no II-invariant unitary
structure. Yet the L,-Betti number L, b;(V;X) is non-ambigously defined and equals
—x(V) rank X as the corresponding L, by and L, by vanish.) In fact this UH(V X) can be
defined for all V in the purely topological category similarly to on(V: TI‘]V) considered in

(b) but these signatures, and non-unitarily twisted L,-Betti numbers in general, have not
been looked upon yet with due attention.

Ly-index from the point of view of Ko N(II). Let X be the (flat) £2(II)-fibered
bundle over V associated to the II-covering (principal II-bundle) V' — V for the left
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action of IT on ¢5(I1) and observe that the spaces L, Sy are the same as Lo-sections of the
underlying bundles S1 — V with coefficients in X and the lift of D from V to D on V
amounts to twisting D with X on V. The action of D on the twisted bundle is (obviously)
compatible with the (right) action of II, and hence of A (II), on the fibers and so one may
speak of the index of Dx with values in Iy A(I1). Observe that A(II) is a C*-algebra
(for example if IT = Z™ it is canonically isomorphic to the algebra of bounded measurable
functions on the torus T" = Hom(Z" — T!)) and one knows that Ko A(II) is isomorphic
to R where the Ky-class of each projective module M over AV(II) is determined by the
von Neumann dimension dimp M. of course, the I'-theoretic index ind Dx € Ko N(II) is

the same thing as the L,-index of D on V for the isomorphism I N (II) — R given by
k — dimy «, that is N
indyy D = dimyy ind Dy .

Generalization of Atiyah’s theorem. Let V be as earlier a complete Rieman-
nian manifold acted upon isometrically by a group II but now we somewhat relax our
assumptions on the action. We require that

1. The action is discrete (but not necessarily free, not even faithful. One could

even allow non-discrete Lie groups II properly acting on V but this is not needed for the
applications we have in mind).

2. The manifod V has locally bounded geometry, 1.e. the sectional curvatures of V are

bounded by |K(V)| < const and V has no geodesic loops shorter than (const)™' which
amounts to 2InjRad V > const ™!

3. The quotient space V/II has finite voluine (but not necessarily compact).

4. The action of II lifts to the actions on our bundles S4 over V and these commute

with D which is supposed to be here a geometric differential operator (e.g. Dirac or the
signature operator).

One can show that the Lo-index of ZND 1s well defined and finite in this case and can be
computed in terms of the curvature of V as follows. Denote I by Qp the Chern- Weil form
built out of the curvature of V and the bundles S, which is the case of compact V and

trivial I gives us the index of D = D by

ind D = /~QD.
v

Observe that in the presence of the Il-action this form is I-invariant, and the integral

f v {2 dv absolutely converges where V/ = V/II and where we assume the action of IT on V
1s orientation preserving.

Integral formula for L,-index.

indn f) = QD . (**)
‘//

p—
ot
[SV]



(This implies (%) as [|. Qp = ind D, whenever D is defined, by the very definition of Qp.)

Corollary. If f‘ Qp > 0 then there is a non-zero D-harmonic L,-section of §+.

References. Everything started with [At]pppg. The formula (xx) is proven (in a
slightly different setting) in [Ch-Gr]cn. Geometric and algebraic applications od (%) and
(%x) appear in the next section and in [Ch-Gr]gynp, [Ch-Gr]p, and [Gro]kg.

9-;—. L,-obstructions to positive scalar curvature. Our objective is the following
theorem.

Let V be a closed oriented n-dimensional manifold, such that the fundamental class

V]9 € H™(V,Q) is contained in the subring generated by HY(V;Q) and the kernel of
the homomorphism p* : H3(V:Q) — H2(V: Q) for the universal covering p : V - V.

Then V admits no metric with Sc > 0, provided V is spin. Moreover if Sc > 0, then
(A — p)[V] =0 for all p in the subring generated by H' and ker p* | H2.

We have already proven a similar result with an assumption concerning finite coverings
of V implying the relation I-area V' = oo and now we are ready to do the same for infinite

coverings (without working out at this stage the corresponding notion of the K -area with
infinite dimensional bundles).

Idea of the proof. (Compare Example with H? in 8%.) Every ¢ € H%(V) can be
realized as the first Chern class ¢,(XX') of a complete line bundle X — V and if p*(c) = 0
the lift X — V is topologically trivial. Hence, one may take the d-th root X; = (}:’)711‘
for all d = 1,..., and the curvatures of these are bounded by d~! (compare [Gr]kn). The
fundamental group 7,(V) does not naturally act on X4 but the obvious Z /dZ-extension,
say Hd of 71(V') does act there, and one can twist the lifted Dirac operator D on V with
(X) . Now we are in a position to apply () to D:\:d and bring it to a contradiction
with the assumption Sc¢ > ¢ > 0 via the twisted BL-formula (see §5). (One takes care
of non-strictly positive Sc as on page 140/352 of [G-L]psc by referring to a theorem of
Kazdan.) We leave details to the reader.

Ezample. Let (V,w) be a closed symplectic (e.g. Kéhler) manifold where the uni-
versal covering is contractible. Then V' admits no metric with Sc > 0.

Generalization. Our formula (xx) allows an application to non-compact complete
manifolds V' with Sc¢ > 6 > 0 provided the universal covering is spin and has locally
bounded geometry. For example every such V' necessarily has [, v $2p = 0 where Qp is the

n-form representing the E—genus of V. We suggest the reader would similarly extend the
above theorem to the general framework of the formula (%x).

9%. Novikov conjecture for H*(Il). Let V be a closed manifold and p € H*(V; Q) lie
in the subring generated by H'(V;Q) and the kernel of p* : H3(V;Q) — H*(V;Q) for
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the universal covering p: V — V. Then the p-signature o, = (p — Lv)[V] is homotopy
invariant.

Idea of the proof. (Compare Example with H? in 8%.) Everything boils down
to showing that the L,- index of the signature operator £ on V twisted with the above
(d~!-flat!) bundle Xy = (X )'}f (or a bundle built out of these) is homotopy invariant for
large d > dy (where dy depends on the homotopy in question) as this Lo-index equals
Ly — (ch X)7 [V] according to (+*) (where (ch X)7 = expd!¢;(X)). To prove this we
denote by X4 — V the pushforward of the bundle X, under the covering map p V V.
This X4 is an infinite dimensional (roughly) d~!-flat bundle over V' of which every fiber is
naturally acted upon by the group II; of the previous section. (To see it clearly, take the
covering S, of the unit circle bundle S associated to X, such that S, completely uncovers
V and covers each (circle) fiber of S exactly d times. Thls Sq equals the unit circle bundle
of X4 and the group II4 is the Galois group of the covering S; — S. Thus the group
T, acts on X4 and consequently on the space of sections of X4 | p~! (v) for each v € V.
But this space of sections is exactly the fiber (X4), by the definition of Ad.) This action
of II4 gives to X4 the structure of an N(I14) bundle and therefore ind Lx, € Ko N (L)
is a homotopy invariant for large d by the discussion in 82. The (sketch of the) proof is
concluded by observing that the desired L,-index of C twisted with X, satisfies

mndyy, L';d = dimy, md Lx,

similarly to the identity indp D = dimy ind Dy in 9— (The above expands the last claim
in section 6 of [C-G-M|pp,. More details and dppll(dtl()ns will eventually appear (I hope)
in our continuation of [C-G-M]pp;.)

9%. Novikov conjecture for A-area = oo revised and Fredholm K-area. We want
to remove the residual finiteness assumption on II (see 8% =). To warm up we start with
the case where our V, closed connected oriented Rlemanman manifold, admits a (possibly
infinite and non-Galois) covering p : V — V with an e-flat K%-class % on V with compact
support, and show that the p- mgnatme o, for the push-forward p = Gys(ch®) € H*(V) is
a homotopy invariant of V for small ¢ < 4 where ¢y > 0 depends on the implied homotopy
equivalence. Here our % is given by a pair of unitary ¢-flat bundles, K = = [X+] - (X,
where these bundles are connected by a homomorphism F:X*+ — X~ whichisa unitary
connection preserving isomorphism outside a compact subset in V. We push forward X=
to Hilbert bundles X* — V where the fiber of (X¥), equals the space of 3-sections of X*
on p~!(v) € V. These X* are as flat as X* and F descends to a Fredholm homomorphism
F: Xt - X~. (In fact F, is a unitary isometry between subspaces of finite codimensions,
say ;b € X and Y, C X7 . for each v € V.) This defines a K9%class on V, namely
k = ind F = [ker F — coker F] as usual, with chx = p. We fix some loops at a point vg € V
representing the elements of II = x;(V) and thus obtain two unitary e-representations
of II, say r%, in the Hilbert spaces H* = Xi Clearly (and most importantly) the
homomorphlsm F commutes with r1 modulo (ompact operators, i.e. F(r¥(x)) —r~(m)is
a compact operator in H~ for every = € II.
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One can equivalently express these properties in a II-free language by using two dia-
grams D% and D~ of chain-cochain complexes of V with coefficients in X* as (D) in 8%,
with a connecting homomorphism Dt — D~ which commute with the homomorphisms
in D* and D~ modulo compact operators, where our homomorphism Dt — D~ is nat-
urally associated to F and consists of F; : C;¥ — C for the chain spaces C :t in D* and
F':Cl — Ci dual to F;. Here is the schematic picture of the resulting raess (compare

(D) in 88).

g 0l o

If ¢ > 0 1s sufficiently small while the norms of the arrows in this diagram are not
too large, one can extract a numerical invariant, called o(Dp) = o(V; £) as in 82 (for flat
bundles this is done by Miscenko, see [Mis]) which is a homotopy invariant more or less by
definition.

Ezample. Suppose all C; and C* are zero for i # m (for n = 2m) and our diagram
reduces to
cr — C
at | A-

C‘ _l{zl C' m

where A* are invertible (by A4 which are not notationally needed and which appear as
pT in the diagram (D) in 82) and the diagram commutes modulo compact operators. To
be specific, we assume the bilinear forms corresponding to A* are Hermitian (the sqew-
Hermitian case is similar) and identify C* = C}} with (its dual) CT* as well as C~ = C;,
with C™ using the Hilbert structures in CE. This simplifies our diagram to

At ot St o oa-
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where A% are bounded invertible Hermitian operators and F is a Fredholm operator almost
(i.e. modulo compact operators) commuting with A%*. We orthogonally split C *and C~
according to the sign of the spectrum of A%,
Ct=Cf{®CT and CT=Cy&C_.
If C* and C~ were finite dimensional we would define the signature of this diagram as
oc=0(A%)—0o(A7) = dim C'i —dimCY — dim Cy+dimCZ

which 1s the same as

(dim C'i —dimC} ) — (dim ct-co) (—)
where the latter makes sense in the infinite dimensional case as well since F' : Ct — C~
(obviously) provides a Fredholm relation between the negative and positive subspaces,
Ct ~- C; and CY ~— CZ. That is, the composition of ¢ | CI with the orthogonal
projection C~ — C7 is Fredholm, say F} : C'i — C, and similarly F_ : Ct - CZis
also Fredholm. Now (—) makes sense and we define

oc=ind Fy —ind F_.

Next we define

Signature operator on V twisted with ~. We twist £ on V with the Hilbert
bundles X* and consider the diagram

Lyt
C=(AL o XT) > C®(ALeXT)
l P+ l L2

X -

Co(AL @ XT) — C®A~©X7)

where the vertical arrows @4 are given by F and where A% = A%L(V) are the bundles
splitting A*(V) by A* = A% @ A* making £ out of d + d* (see 83). Actually, it is slightly
more convenient to use bounded (pseudodifferential of zero order operators) L* instead
of (differential operators) Lx+ defined by LE = (Lx+)o(1+ AF)"1/2 where A* denotes
the composition of Lxz with the adjoint operator (compare 8%) Now we can use (Hilbert
spaces) L instead of C'"*° and rewrite our diagram as

c+
Hf — H?

v+l lﬁP— (DC)
H, — H_.
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If the above operators were Fredholm we would define the index of (Dz) by
index = ind £ —ind £~ = ind wy —indp_ .

Although neither £* nor ¢+ are Fredholm, they are “Fredholm modulo each other”. In
particular, (D) is commutative modulo compact operators and ¢, nearly establishes

a Fredholm relation between harmonic sections in H+ and H}, i.e. between ker LY =

Ker Lx+ and ker £~ = ker Lx-. In fact the situation here can be reduced to the relative
framework of 6% since (spaces of) sections of the Hilbert bundles X* over V can be

identified with (the spaces of) Ly-sections of X over the [I-covering V of V and ind L,
l.e. the index of the diagram (D) can be defined as in the Excision proposition of 6%,

with the twisted signature operators on V, namely E:\v.+ substituting for D, in 6% and

~

E}_ for D!, .

What remains to do (which makes the bulk of work) is identifying

o(Vin) € o(D,)=ind(D,)

which is done in the spirit of the discussion in 82 =) and then expressing ind(D,) by the
Atiyah-Singer formula,

ind(Dg) =(Ly ch x)[V].

Remark. The logic of the K-theory has inevitably brought us into this tangle of
“not quite Fredholm” diagrams where [ can hardly grope my way. Fortunately, there is a
simpler and more general approach to this case of the Novikov conjecture indicated in 97 1
On the other hand the above discussion leads us to the promised land of

K -area via infinite dimensional bundles. This is defined for every Riemannian
manifold V' with a pair of e-flat Hilbert bundles X+ and X~ over V connected by a
Fredholm homomorphism F : X+t — X~ such that

(a) F almost commutes (i.e. commutes modulo compact operators) with the parallel
transport in X+ and X~ along each smooth path (e.g. loop) in V;

(b) F is a connection preserving unitary isomorphism outside a compact subset in V.

The minimal ¢ for which a compactly supported x € K Veomp (V) can be represented as ind F
for the above X* and F is denoted |[FR(x)|]. Then the corresponding Fredholm K -area
of V is defined as sup || FR(«)|| ™! over all x with a non-zero Chern number. Now, clearly,
this K-area is monotone increasing under all (finite or infinite) coverings of V trivial at
infinity as the push-forward inequality from 4% applies in the present Fredholm framework
to infinite coverings.

Ezercise. We invite the reader to check the basic properties of the Fredholm K-area

similar to what is done in §4 (e.g. finiteness for simply connected manifolds, compare 41 1)
and also in §5 (e.g. the K-area inequality for Sc V > ¢2, see 51 i)
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Remark. The above notion of the c-flatness for x € K°(V) and the corresponding
almost flatness (for ¢ — 0) appears in [Co-Hi} under the name of “nearly flat”, where the
authors raise the problem of finding examples of k¥ which are nearly flat but not representat-
ble almost flatly by finite dimensional bundles. (One can generalize further by admirting
Hermitian rather than unitary flat Hilbert bundles X* in the spirit of KJ,pp anc try

to extend Connes’ construction indicated in the end of 8—12- to some infinite dimensional
symmetric spaces Z).

Idea of the proof of the Novikov conjecture for A-area B = co and non-
restdually finite groups II. We proceed essentially as in 8% but now our families are
build of x(b), b € B, for the above x(b) = ind(XT(b) — X ~(b).) Here again it is useful
to work in the language of C*-algebras to avoid an explicite mentioning of B (encoded
into the relevant C*-algebra, 1.e. Cont B), as we may consider almost flat Hilbertian R-
bundles X* — V (for any C*-algebra R, not only R = Cont B), with an R-Fredholm
homomorphism F : X+ — X7, twist £ with x = Indr F and define ind L, € Ko(R).
We claim that this index of £, is a homotopy invariant and equal to the Ky(R)-valued
signature o(V; k) (in accordance with section 6 in [C-G-M|ppp where we had more infinite
dimensional aspirations) and we indicate a possibility of a HAFl-version of this claim.
Unfortunately, it is unclear if we significantly (if at all) enlarge the class of group II to
which these more and more general homotopy invariance theorems apply.

Ezercise. Define Fredholm RK-area with the above bundles X* over C*-algebras
R and & = ind F where the non-triviality condition on « (replacing non-vanishing of a
Chern number) is expressed in terms of the index pairing (with values in Ko(R)) of the
fundamental K-homology class of V' with the A-subring generated by x. Then extend the
results of §84 and 5 to this Fredholm C*-K-area.

9%. Novikov conjecture for open Riemannian manifolds. Let f : V' — V be a
proper homotopy equivalence between such manifolds and take a pair of cohomology classes

p € H:o(ViQ) and p' = f*(p) with compact supports. We seek geometric conditions on
V, V' f and p which would imply the equality

(Lv = p)[V] =Ly — pH[V']. (NC)

This “open” NC sometimes implies the “closed” one, namely when V and V' are freely
acted upon by II and then NC for the push-forward Gysp € H*(V/II) (obviously) follows
from that for p. In particular, NC for the fundamental cohomology class of a closed
aspherical manifold B (pulled back to V by a map 3 : V — B) follows from a suitable
“open” NC but for the rest of H*(B) one needs the “open” framework of a differential

kind (see 92 and 93).

Ezample. Let V = W x R™ for a closed manifold W of dimension 4k and
pE Hc't;n“pk(V) be the Poincaré dual to [W] € Hy (V). Then

(Ly — p)[V] = signature (W)
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and we ask whether a subinanifold W' C V' with trivial normal bundle which is homologous
to f7I(W) has the same signature as W. We know it is false in general by the Serre
finiteness theorem but we shall prove this below under the following three assumptions.

1. V is the Riemannian product, of W with R™.
2. The map f and the implied homotopy inverse, say g : V — V' are Lipschitz.

3. The implied homotopies V' x [0,1] - V and V' x [0,1] — V' joining fog:V — V
and go f: V' — V' with the identity maps are Lipschitz.

Notice that these assumptions are satisfied if f covers a (smooth) homotopy equiva-
lence between V = W x T™ and some V', thus the “open geometrlc” NCforV =W xR™
implies Novikov’s original homotopy e qulvalence theorem.

Our proof of NC under the assumptions 1, 2, 3 will follow the “quick proof” in 81 and
8— We assume m = 2{ 41 and take a (non-tubular) neighbourhood U of W = W x 0 cV
of the form U = W x U where U C R™ is a tubular neighbourhood of the Cartesian
product Bf of ¢ copies of a closed surface of genus > 2 imbedded into R™. We know, this

U = B! x R comes with a certain flat (symplectic or orthogonal) bundle X — U such that
the lift of this bundle to U, call it X — U, satisfies

o o([W x BY; X) = so(W) (+)

for some s # 0, where o([W x B‘]; X) denotes the signature of the cup-product on
H*+YU; X) evaluated on the class [W x BY] € H,_(U)forn =4k +2({+1 = dimV.
We know, this oy is (obviously) a proper homotopy invariant of U. Furthermore, if we
pertube U to some U; C V such that the intersection of the two contains the support
(of some realization of ) the homology class h = [W x BY], then oy, def o(h; X) = oy.

Furthermore, if we scale U C R™ by a large )\, and take (large) U = W x AU then the
pull-back U' = f~Y(U) C V' satisfies

oy =a(h; X") = oy

where the class h' is the image of h = [W x AB‘| under g, = H,(U) — H,(U"). Infact if X is
sufficiently large compared to the implied Lipschitz constants of the maps and homotopies
in question, then U’ is homotopy equivalent to U modulo small (relative to \) wiggling
near the boundary which does not affect o(h; X) and o(h'; X') for homology classes h
and h’ having their supports A-far from the boundaries of U and U’ correspondingly. But
we know on the other hand that o(h'; X') = o(W') for a suitable W' imbedded into U’
with trivial normal bundle (see 81, 8%) which implies the desired equality o(W') = a(W).
Q.E.D.

92, A macroscopic criterion for vanishing of Pontryagin classes. Let now V be
(the total space of) a vector bundle of rank m over a closed manifold W with a complete
Riemannian metric ¢ on V such that
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(1) The restriction of g to each fiber V, of V. — W is flat.

(2) The distance function of ¢ | V,, is equivalent to disty | V,, for all fibers V,, C V.
This means that the minimal path in V,, between a pair of points has

length < const -length (the minimal path in V D V,,.),

for some const > 0 independent of the points.

(3) The diameters of the r-spheres S(r) C V around a fixed point vy € V satisfy
r~ U diamy S(r) — 0 for r — oo.
Then, we claim, the rational Pontryagin classes of the bundle V.— W wvanish.

Proof. There obviously exists a (proper) retraction fy of V on a fiber, say on Vi,
which moves each point v € S(r) C V' by at most ¢(r) for some function ¢(r) satisfying
r~1y(r) — 0 for r — oco. This retraction maps all fibers of V. — W onto V,,, properly
with degree one and hence onto. It follows, there is a fiberwise map f' of the trivial bundle
V=W x R™ to V, where R™ is identified with the fiber V,,,, mapping w x R™ onto V,,
properly with degree one such that this map is roughly inverse to fo, i.e.

max (distgm (z, fo o f'(z)) . disty(v, f' o fo(v))) < (r)

for all z € R™ and v € V with r denoting the distance from z to the origin or from v
to vg, and where ¢ stands again for a sublinear function in r. Now, the argument of the
previous section shows that if W is stably parallelizable of dimension 4k, then L (V) = 0.
Since every 4i-dimensional homology class in W can be realized by a stably parallelizable
manifold W** — V, we conclude, by looking at the induced bundle over W*, that L;(V)
vanish for every 1 = 1,2,.... Q.E.D.

Ezercises. Fill in the details in the above proof. Show that the Euler class of the
above V also vanishes. Relax (1) by allowing fibers with non-positive curvature. Find a
metric on an arbitrary V satisfying (1) and (2) but not (3). See what happens to metrics
on V of the form gyert B gnor associated to a Euclidean metric ¢yery in the fibers and a
metric g on W lifted to gy, with some Euclidean connection.

9;15. NC for bounded homotopies of multiply large manifolds. Let B be a locally
compact metric space where all closed bounded subsets are compact. A homotopy h :
V x [0,1] — B is called bounded, or just B, if lengthg (v x [0,1]) < const for some
const = const(h) independent of v € V. (This is essentially the same as h being Lipschitz
for some product metric in V' x [0,1].) Then two manifolds over B i.e. V and V' coming
along with proper maps § and 3’ into B are called B-homotopy equivalent if there exist
maps f: V' = Vand ¢ : V — V' such that f o g and g o f are both B-homotopic to the
identities in the above sense. (If V' and V' are compact then B-homotpy equivalence is the
same as the ordinary homotopy equivalence, provided one has sufficiently many curves of
finite length, e.g. if V and V' are Riemannian manifolds.)
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BN- Problem Take a cohomology class p on B with compact support. When is
£) f p PI
= (Ly — B*(p))[V] B-homotopy invariant?

The positive answer is given in [Pe-Ro-We] for B = R™ and p € Hlgmp(R™) the
fundamental class. This (obviously) implies the positive answer for all in-dimensional
hyper-Euclidean Riemannian manifolds B (i.e. admitting proper Lipschitz :naps B — R™
of positive degrees). On the other hand, the above argument positively solves BNP for a
somewhat more general class of manifolds B called multiply large and defined as follows.
For every ¢ > 0 there exists a multi-domain U over B i.e. a manifold U equidimensionally
immersed into B and an e-contracting proper map of positive degree of U onto the open
unit Euclidean m-ball. For example, every B admitting a hyper-Euclidean covering is
multiply large. A less obvious example comes from a metric g on S which has K(g.) < ¢
and Diam(S?,g.) <1 (see [Gro]apm, [Bu-Gr] and [Bav]). Such a (5%, g.) admits a A-large
multi-domain U for A = %5_1 (namely, the exponentiated ¢~!-ball from T5(S?)) and a
geometric connected sum (homeomorphic to R*) of these spheres (53, ¢..) with ¢; — 0,
v = 1,2,..., is multiply large, albeit it is very far from being hyper-Euclidean. A similar
geometric phenomenon where a simply connected manifold has a large “partial covering”
(Whlch 1s not a part of an actual covering) may be observed in the universal coverlngs
V — V whenever the fundamental group (V') is logically complicated and so V contains
many relatively short loops which must be stretched a lot in the process of contraction
(see [Gro]a and references therein).

BN for the fundamental classes p € HZ\p(B) of multiply large manifolds B.
To prove the B-homotopy invariance of o, for 3: V' — B we must express o, = o(871(b))
in B-stable terms. Here it is. Assume m = dim B odd (if even, multiply B and V by R)
and take the tubular neighbourhood of the product of surfaces in R™ as earlier contained
in the unit ball. This U is pulled back to U c U = U by our e-contracting proper map
U — (unit ball in R™) and is & ¢~ -large in size. The U is pulled back by 3 (via the fiber
product construction) to a multidomain say V over V. Our flat bundle also lifts to V say to
X — V and we see as earlier that o, = a(h ‘\) where T € H,_ 1(V) 1s the homology class

corresponding to the hypersurface in V obtained by pulling back the product of surfaces in
U by the composed map V' — U — U. If ¢7! is large compared to the (bounded) size of
implied B-homotopies. then o(h; X) is invariant under the B-homotopy equivalence and

so1s 0,. Q.E.D.

Terminological remark. If B is uniformly contractible then our B-inequality
length g h(z x [0, 1]) < const follows from a weaker condition namely Diamp h(v x [0, 1])
< const which truly expresses boundedness rather than shortness of the paths h(v x[0,1]) C
B. The shortness is, in general, stronger than the boundedness as seen in our example
of the connected sum of the spheres (53, ¢). (Our “length” really serves as shorthand for
“the supremum of the diameters of the lifts of our paths to all possible multidomains over

B” ).

% Multiply large examples. Start with dim = 2 and observe that
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A surface B with a complete Riemannian metric is multiply large iff the universal
covering of B is infinite.

In fact we may pass to the universal covering and assume B is homeomorphic to Ri.
Take away a small topological disk D from B and observe that the universal covering U

of the complement U = B — D is large; it admits e-contracting maps of degree one onto
the unit ball in R? for all ¢ > 0. Q.E.D.

Dim = 3. Let B be a complete non-compact Riemannian manifold of dimension 3.
Say that B is uniformly connected at infinity if for each r > 0 there exists R = R(r) > 0,
such that every two points in B R-far from a metric r-ball in B can be joined by a path
missing this ball.

If Hy(B) = 0 then “uniformly connected at infinity” implies “multiply large” for
dim B = 3.

Proof. Take a minimizing geometric segment v in B of length 3R, i.e. an isometric
copy of [0,3R] and the ball D, around the center of this segment. Then a short loop ¢
around v near the center of D, remains non-homologous to zero in D, — ~ since the ends
of v can be joined by a path in B — D, and so D, — v admits an infinite cyclic covering
U — D, — v delooping £. This U is roughly r-large where the relevant map to the (unit
ball in) R® is made out of the following three functions, distance (function) to the one
of the ends of v, distance to 5. the cyclic parameter of the covering (i.e. we use here a

continuous map D, —+ — S' non-contractible on ¢ and the corresponding function from
U to R covering S!).

Corollary. Let a closed 3-manifold B admits an infinite Galois covering with Hy = 0.
Then the fundamental class p = [B]° € H3(B) satisfies NC, i.e. for every V. — B the
p-signature o,(V') 1 @ homotopy invariant of V.

This is equivalent, by the 3-inanifold theory, to NC for the fundamental group of every
closed aspherical 3-manifold. (On the other hand, the universal coverings of these have
infinite stable K-areas. In fact, every uniformly contractible 3-manifold B of bounded
local geometry has K-areay, B = oo (by an easy argument) and it is not impossible these
B are hyper-Euclidean. This would follow if for every metric on S' with filling radius > R
this S' had an e-contracting map of degree # 0 to the unit circle with ¢ — 0 for R — 00.)

Codim 1-reduction. Let B and B’ be complete uniformly contractible manifolds of
dimensions n and n+1 and ¢ : B — B’ be a quasi-isometric embeddingi.e. a Lipschitz map,
such that dist(o(b1), ¢(b2)) > R(dist(b1, b2)) for some function R(d) satisfying R(d) — oo
for d — co. Then if B is large in some sense then B’ is comparably large in the same sense.
For example +f B is multiply large then so is B' and the same is true for “hyper-Euclidean”
in the place of “multiply large”.

Idea of the proof. We may pretend ¢ is a topological embedding and ¢(B) C B’
divides B’ into two halves, say B! and B’ and we denote by é : B’ — R the function
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dist(b', o(B)) on B!, and —dist(#',B) on B’ . Next, every map from B or a domain U
over B into R™ which is e-Lipschitz for the Riemannian metric in B can be modified to an
¢'-Lipschitz map for the (non-Riemannian) metric induced from B’ with ¢’ — 0 for € — 0.
Such a map can be ¢"-Lipschitz extended to B’ with ¢” < ne’ and together with & (scaled
by a small €) we obtain the required map B’ — R"+1.

Ezample. If the fundamental group of an (n + 1)-dimensional aspherical manifold
contains Z" as a subgroup then the universal covering of this manifold is hyper-Euclidean.

codim 2-reduction. Now let dimB' = dim B + 2. We claim that if B is multiply
large then so is B'.

Idea of the proof. Use the infinite cyclic covering U of B — »(B) and the cyclic
parameter there besides § = dist(b’, (B)) as in the 3-dimensional case where we leave the
actual proof to the (justifiably dissatisfied) reader who may consult §§7-12 in [G-L]psc and
[Yau] for similar results in the framework of Se > 0.

Ezample. If the fundamental group of a closed (n + 2)-dimensional aspherical ma-
nifold V' contains Z" as a subgroup, then this manifold is multiply large and, hence, its
fundamental class satisfies the Novikov conjecture (and V admits no metric with Sc > 0).

The above makes plausable some largeness of uniformly contractible 4-manifolds (i.e.
universal coverings of aspherical manifolds) as they may contain suitable surfaces (in agree-
ment with the non-existence of metrics with Sc¢ > 0 on closed aspherical 4-manifolds an-
nounced in [Sch]).

On the other hand, there are examples of non-hyper-Euclidean uniformly contractible
manifolds (see [Fe-We]), but these examples need non-bounded local geometry.

9%. BN for multiply large families. We want to extend the above to more general
(non-fundamental) classes p with compact supports which is done by using families as in
[C-G-M]gcrc (also see 92). Namely let p: C — B be a topological submersion with locally
compact (sometimes smooth oriented) m-dimensional fibers, (1.e. each point ¢ € C admits
a split neighbourhood U, x R™ ¢ C for some neighbourhood U, C B of b = p(c) € B, such
that the coordinate changes are smooth and orientation preserving in the fiber direction
with the derivatives continuously depending on b € B if C is assumed fiberwise smooth
and oriented).

Ezamples. (a) A vector bundle p : Y — B is an essential example. This carries
a distinguished cohomology class TomY € H™(B), where m = rankY and “vc” means
“with vertically compact supports”, i.c. (supp Tom) N Y}, is compact for all fibers ¥, C V.
If B is a manifold, then Tom Y is the Poincaré dual of the zero section Y i~ B; if Y admits

a fiberwise proper map ¥ — R™ with degree d on the fibers, then TomY = d~! (pull-back
of the fundamental class p € HJ2, (R™)). Notice, that if B is finite dimentional then
Y often admits such maps to R™ with degree d # 0 by Serre’s finiteness theorem. For

example such a map exists if m is odd, or if dim B < rank Y.
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Now we recall the Gysin push-forward homomorphism H} (Y) — H*~™(B) which is,
in fact, defined for all fiberwise smooth submersions C — B, and observe that

Gys(p*(¢) — TomY) =c¢ ,for all c € H*(B).

This agrees with the wrong way fonctoriality of the Thom class: if Y’ — Y is a surjective
homomorphism, then Tom} = Gys Tom ¥"'.

(a') All the above applies to an arbitrary submersion C — B with contractible m-
manifold fibers.

(b) Let B be a manifold and ¢ = Ba — B ie. Ba = B x B projected to the
second component. If we embed B to Ba by the diagonal (section) A : B — Ba then
the Tom class of the normal bundle of the so embedded B C Ba realized by a tubular

neighbourhood Ux C Ba equals the Poincaré dual of the homology class of the diagonal
in B x B. That is,

Push-forward ((Tom Ua) — H*(B x B)) = PD(A[B]).

(b") Now suppose the universal covering of B is contractible and let Ba be obtained
from B by taking the universal coveringq of the fibers such that By = (E’ X E)/H for the
dlagonal action of IT = m1(B) on B x B. We denote by p: B — B the prOJectlon and by
A : B — B, the diagonal section and observe that Tom B is Poincaré dual to A[B] and
the push-forward of Tom B equals PD A[B] as earlier.

Next, let V be a compact manifold, 3 : V' — B a continuous map and V — V denote
the covering induced by the universal covering B — B. If we take V in each fiber of the
(trivial) filtration Vg = V x B — B mapped to By = Bx B by xid, we obtain a V-fibered
bundle, say ¢ : Vg — B naturally fiberwise mapped to Bx. Denote by Tomy By the pull-

back of Tom BA to VB and take the cup-product of this Tomy with some characteristic

%
(cohomology) class X of the vertical tangent bundle Tien(VB) — V.

Push-forward formula.

Gvb~(\ — Tomy Ba) = Gysz \ € H B)

comp(

for the corresponding class x = \(T(V')) € H*(V).

Pmof The class Tom B is supportec :d near the dlagonal section A(B) C Ba and so
Tomg; B sits near the diagonal A(V) C Va mapped to By = V x B where we picture V
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imbedded to B by 3, see Fig. 15 below.

B /Z(B)
vV AW) E By
1 ﬁ‘: B
Vv
Fig. 15

Since the vertical and horizontal tangent bundles of Vi (which is the fiberwise covering of

Va =V xV — V) are equal on the diagonal A(V) C Va, the above cup-product after
dualization satisfies,

(B xid), PD(Y — Tomy, Ba) = ((5 x id), PDY) ~ A[B] = p~}(8.(PD X)) —~ A[B]
for the pull-back (dual to Gys) homomorphism
' H,(B)— H.Ba)

for the fibration p : Ba — B and where ﬂ xid: By — B is the obvious map. Now the
pushforward formula follows from the following general (and obvious) relation

A(p7'(h) ~ A[B]) =
for all h € H.(B). Q.E.D.

Thus the Novikov conjecture for 4 : V — B, claiming the homotopy invariance of

B«(PD Ly) € H,(B) (which is Poincaré dual, if B is a manifold, to Gysg Lv € H,\,p(B))

can be expressed in terms of the vertical tangent bundle Tyer VB, namely, as an invariance

of GyS~(L — Tomy; Ba) for L = L(Tvert V).

This motivates the following BN problem for submersions. Let our submersion C—B
be given a fiberwise metric and let V — B be a fiberwise smooth and oriented submersion
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coming along with a proper morphism (i.e. a fiberwise proper map) to C over B. We
want to express as much as possible of the Pontryagin (or L) classes of the vertical tangent
bundle of V in B-homotopy stable terms, where “B” now refers to “fiberwise bounded”.

Short cohomology. A cohomology class § € H.(C) is called e-short if there 1s a
fiberwise proper and fiberwise -contracting map of C onto the open unit ball in R™ such

that the fundamental cohomology class [Ball]*® € HT, (Ball) pulls back to § under this
map.

Ezample. Let B be an m-dimensional parallelizable manifold with a complete metric
of non-positive sectional curvature. Then the Thom class Tom Ba € H™(B) of the bundle
Ba — B s e-short for all = > 0. In fact, the inverse exponential map gives us a contracting

map of Ba to T(B) = B x R™ where the Thom class comes by the projection to (the unit
ball in) R™.

Next, 6 is called multiply =-short, if it equals the push-forward of an e-short class in
some multl domain U over (. i.e. a fiber-smooth submersion U — B with a given locally
homeomorphic fiberwise smooth morphism to C over B where the implied (by the notion
of shortness) fiberwise metric in U is the one induced from .

Ezample. For the above parallelizable B with I’ < 0 the (trivial) fibration By =
B x B — B has the class PD A[B] € H(B) multiply e-short for all ¢ > 0 as is seen with
domains U C Ba viewed as multi-domains over B.

Finally, call 8 stably multip ly shortor sms, if there is a Euclidean vector bundle Y’ — B
and a class §' in H}.(C' = C @ Y') such that the push-forward of 6’ to C equals 8 and such
that 6’ is multiply e-short for all ¢ > 0. (Here one could generalize by allowing Y’ and/or

6" to depend on & but this does not seem to bring in something new and interesting in
specific cases.)

Ezample. For every complete manifold B with K(B) < 0 the class PD A[B] in
H™(Bjp) is sms. Indeed one can make B parallelizable by taking the total space B' of
some vector bundle over B complementary to T(B). The curvature of this B’ may be
somewhere positive, but E'A — B remains fiberwise hyper-Euclidean.

9%. Short cohomology, B-homotopy invariant Pontryagin classes and an ele-
mentary proof of NC for &' < 0. Let C — B be a submersion with a fiberwise metric
as earlier and 8 € H*.(B) be an sms (stably multiply short and where “vc” stands for
vertically (or fiberwise) compact support). Then for every fiberwise smooth submersion
q: VYV — B with a fiberwise proper morphism 3 :V — C the push-forward class

LH - Gysq(L(T\'er((V)) ~ 3*(8)) € H*(B)

is a fiberwise B-homotopy invariant.

Proof. Let us give a B-stable expression of the value of Ly on a homology class
h € H*(B). We assume (which is no big deal) that B is a polyhedron, realize h by a map
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of a stably parallelizable manifold, say W — B, and denote by Vi — B the submersion
induced from V — B by the map W — B. This V¢ is mapped to C by the composition
of maps Vi — V — C and we may pull-back U from C to Vi where it is called Viy over
Vw. In fact, as we must work “stably’ we first (Whitney) add a vector bundle Y’ — B to
V — B as well as to C — B thus passing to the corresponding Vi, — V'C’ « U’ and ]7{4/
over Vy. Since adding V' changes the Pontryagin (and L) classes of all ¥ — B in the same
way it suffices to prove our theorem for 8’ € H?.(C') and we may as well keep our notations
Q , V, Vw and 9W. Now this 1~JW is mapped to the unit m-ball by the composition of maps
Vw — U — m-ball and, after slightly perturbing this composition, we may pull-back a
regular value in the > ball to a 4i-dimensional submanifold, say W in VW with trivial normal
bundle. Clearly U(W) = Lg(h) and this signature rf(IV) admits a B-stable expression by
means of our interesting neighbourhood U in the m-ball (i.e. the tubular neighbourhood
of the product of surfaces) and a symplectic bundle over U exactly as in the above proof
of BN for the fundamental class. Q.E.D.

Ezamples and corollaries. (a) Let V and V' be smooth fibrations (or just sub-
mersions) over B with fiberwise Riemannian metrics where V is fiberwise hyper-Euclidean
l.e. it admits a fiberwise proper Lipschitz morphism onto some Euclidean vector bundle
over B with fiberwise positive degree. Suppose that ¥V and V' have contractible fibers and
hence have well defined rational Pontryagin classes p; and p! in H*(B).

If V and V' are fiberwise homotopy Lipschitz equivalent (i.e. homotopy equivalent in
the category of fiberwise Lipschitz maps and homotopies, compare 7%), then p; = pl.

A particular example is where the fibers of V are complete manifolds with non-positive
curvatures.

Proof. Lipschitz homotopies are bounded (where V serves here for C as well).

(b) Let B be a Riemannian manifold where the dual to the diagonal, § = PD A[B] for
the diagonal embedding A : B — B x B = By — B is sms. Then for every smooth V

and a proper map B : V — B the push-forward L-class Gysz(Lv) € H*(B) is B-homotopy
invariant.

This follows from the push-forward formula in 92 applied to the fibration ¢ : Vg — B
which shows that

Gys/j(LV) = Gysq(_L(T\'el’L(‘/B)) ~ 9*)

where Vg = V x B — B and 6* is the pull-back of # under 3 x id. (Notice that here

V' is non-compact and that we do not (have to) pass to Ba and Vg as we did in the
push-forward formula, but this causes no problems.)

(b’) The above B satisfies the ordinary Novikov conjecture, that if for every closed
manifold V with a continuous map 5:V — B the class 3.(PD Ly) € H.(B) s a homotopy
invariant of (V, ).

In fact, if V' is compact, then all homotopies are bounded.
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Notice that the class 6 is sms for complete manifolds B with K(B) < 0 and so we
obtain yet another (and the siimplest of all) proof of NC for these manifolds.

On flatness and shortness. The present notion of (multiple!) shortness of cocycles
is parallel to the e-flatness of I -classes although the latter concerns area while the former
belongs with length. Yet, the two notions do not seem to absorb one another; a manifold
V" with short fundamental class does not secem alwavs to to have (at least not superficially )
infinite K-area as K-classes are more choosy for maps suitable for push-forwards. (We
indicate in the next section a notion of a “flat cocycle” generalizing both, shortness of
cohomology classes and almost flatness of corresponding IV -classes, that should imply the
(bounded) Novikov conjecture as well as a bound on the scalar curvature.) Notice that
e-shortness of [V]°® € H™(V) prohibits Sc(V) > ¢? by a minimal surface argument applied
to (non-complete!) U which, unfortunately, needs the unpublished result by Schoen-Yau
to bypass the singularities for dim V" > 8.

However, if V (or at least U) is spin and has uniformly bounded local geometry
(JK(V)| < const , InjRad V' > const™'). Then one can extend U (or rather U x S? for
a large 2-sphere S?) to a complete manifold with comparably large scalar curvature and
follow the twisted Dirac operator approach. For example, if 3:V — B is a Lipschitz map
where B as in (b) and ScV > = > 0. then Gysy, Ay =0.

9—;—. Almost flat bundles on open manifolds. We indicate here how to extend the
results of 8—2— and 8% to open manifolds which would allow an alternative more elementary
approach to the results in 9% avoiding appearance of infinite dimensional bundles. However,
as 1 did not check all this in detail. the statements in this section should be regarded as
conjectures.

Combinatorial formula for L-classes. Just to start, let V be a closed combina-
‘orial (or rational homology) manifold and let us define the L-class Ly by a formula for
the values (Ly — ch X)[V] for all complex vector bundles X — V. Such a bundle X over
V" will be given a piecewise smooth uuitary counection so that we may speak of simplicial
cochains with coefficients in X as w1 the 7y-free discussion in 8%. We make a priori no
assumptions on the flatniess of X, but then we rescale 1 by a large constant which makes
Y - flat for small € > 0. Tlis amonnt to subdivising Vinto small simplices of size about €
{s1:d then regarding them as ronghly of unit size). We allow only those subdivisions, where
tie maximal number ¢ of neighbours & simplex 1oy have remains bounded for e-getting
suadler and smaller. Thue the cochain “complex™ of our s-subdivision, say C*(V,. X ), has
~71 < ¢ while operators involved (see dingrams (D) 8%) are hounded by ¢. Thus for
-/ sufficiently small, one can cexrract the signature of the corresponding diagram D(¢),
satisfying

DG Ly e ANV (%)
which is invariant under subdivisions with controlled . (If Vi is an e-triangulation of a
sisooth manifolds, o(D(g)) appears as a combinatorial approximation to the index of the

wienature operator £ twisted with X This makes one ponder over a similar approximation
of the Connes-Moscovici formula for £ twisted with a straight cocycle.)
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Next, let us allow a non-compact V' and let x be a K°-class on V with compact
support. Then instead of a single diagram D(e) we have a Fredholm pair of these as in 9%
and again the signature of this pair Dp(¢) satisfies

o(Dp(e)) = (Ly — chr)[V]. (%)

Notice that (%) can be reduced to (x) once we know the excision property for o(Dr(€)),
namely its independence of V outside the support of k. For example let x be given
by [X] — [Triv] where X is trivialized outside the interior of a compact eguidimensional
submanifold V5 C V with boundary. Then we may take the double V" = V, + Vo (where
V, denotes Vy with the reversed orientation) with X extended to X* on V{* trivially on
Vo. Then o(V{;«') for x* = [X*] — [Triv], equals o(Vp;x) = o(V; x) by excision, while
a(Vg;&*) = o(Vy X) as oV Triv) = rank(Triv) o(Vy*) = 0 since V' is a double.

On the B-homotopy invariance of o(V;x). Here we assume V and V' are properly
homotopy equivalent Riemannian manifolds where the implied maps V < V' as well as the
homotopies V x [0, 1] — V and V'x[0, 1] are A-Lipschitz for some A > 0. Then we take some
e-flat K%-class k on V with compact support and we want to show that o(V; k) = o(V;&')
for k' corresponding to » whenever ¢ is small compared to A. Notice, that by scaling V
and V' large we can make ~ and x' as flat as we want, but this would correspondingly
enlarge the Lipschitz constants of the homotopies as we do not scale the segment {0,1]. In
fact, in order to prove the homotopy invariance of the signature of a diagram, the norms
of the algebraic homotopy operators must be kept rather small compared to e~1. Taking
all this into account we arrive at the following (not quite proven).

e-flat B-invariance theorem. Let B be a complete Riemannian manifold and « be a
K°-class on B with compact support admitting an ¢-flat representation with an arbitrarily
small e > 0. Then for every proper map 3 :V — B the value

(Lv — 3" (chw)[V] = (chr, 8.(PD Ly)) (+)

18 a B-homotopy invariant of (V. 3).

Application to NC. Take a closed manifold B whose universal covering B = B
has infinite K-area. Then the above applied to B yields the Novikov conjecture for the
fundamental class of B (without resorting to infinite dimensional bundles as in 93 ). Sim-
ilarly one can approach manifolds with A-area = oo by extending the above theorem to

families of bundles. More generally, one may work with e-flat C'*-algebra bundles and
corresponding « over B and V.

Multiply flat cocycles. Let us indicate a generalization involving (non-covering)
multi-domains U over B. Call a cohomology class p € HZ,,,(B) (€, R)-flat if there exists

such a U with a compactly supported -class x on U such that

(1) the push-forward of ch x to B equals p;
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(2) x admits an e-flat representative, i.e. & = [X;] — [X3] for e-flat bundles over U
with a connection preserving unitary isomorphism in the R-neighbourhood of the boundary
(infinity) of U (i.e. every path of length < R starting in supp « stays in U).

Take the subgroup H*(R.c) € HC*Omp(B) generated by these classes and define ﬁ”(B)

as the intersection ﬂI—NI*(R =) first over all ¢ > 0 and then over R > 0. Notice that this
multiply flat cohomology generalizes the multiply short ones in 97 when the pararaeter
space in B in 92 reduces to a single point (and the corresponding “flat notion” for farailies
1s suggested to the reader to work out by him/herself).

Now it seems, the e-flat B invariance theorem remains true for the multiply flat classes
p € HZ,,,,(B) in the place of cli &, since all constructions in V can be limited to V over V

Wthh is the pull-back of U. This, extended to families, appears the most general version
of BN (and, for compact V', of NC) available with our macroscopic geometric techniques.
One may also approach the problem of Sc¢ > 0 with such flat cocycles where it seems likely,
for example, that the fundamental class of a spin manifold V' with Sc(V) > £? > 0 can
not be multiply flat, but I feel less certain as the Dirac operator appears to me having less
inclination to excision than L.

9%. Connes’ index theorems for foliations and scalar curvature. Consider a space
V foliated into leaves V which are smooth manifolds. Typically, V is a compact metric
space but the essential structure is a transversal measure (or a measure class), so that the
topological structure in V (but not in 17’s) is not indispensible.

Example. Start with a compact manifold Vy and let Vo be a Galois covering of
Vo with Galois group II. If IT acts on some space S one has the associated fiber space
V = (V() x §)/T — V4 which is naturally foliated into leaves isomorphic to Covermgs of
Vo below VO In particular if the action of II is free then all leaves are isomorphic to VO

Furthermore, if the action of II on S preserves a measure one has a natural transversal
measure on V.

Observe, that every Il admits a non-trivial measure preserving action, for instance
the action on the space of functions I — F where a F is a finite measure space. This

space, called FI! topologically is the Cantor set and so the above V is locally R®x Cantor
forn =dimV.

In what follows, the leaves V' are endowed with smooth complete Riemannian metrics
which are continuous (or at least measurable) on V and we are interested in geometric
differential operators along the leaves, naniely Dirac, Hodge and Dolbeault which may be
twisted with vector bundles X — V with leafwise connections. Connes assigns to such an
operator D its index £ = ind D which is an clement of I{j of a suitable algebra of operators
associated to the foliation F in question. In the simplest case when the foliation has a
transversal measure dyu this index gives rise to a real valued index (associated to the trace on
the von Neumann algebra of ]:) which admits a snuple independent description as follows.

Take the holonomy covering V of aleaf V and let D denote the differential operator over 1%
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corresponding to D. Denote by P the orthogonal projection of the pertinent space of Lo-
sections over V to Ker D and observe that the trace function trace P(v v) is monodromy

invariant and thus gives us a measurable function trace P(v,v) on V (compare 91 5)- Then
we define

indD = / trace ]5(1.', v)dvdu,
1%

where dv denotes the leafwise Riemannian measure. This index, can be expressed, accord-
ing to Connes, as the integral of the differential n-form corresponding to 7. Namely, the
Atiyah-Singer theorem expresses D = D | V as a certain characteristic number of T(V')
and X which can be represented by a differential n-form Qp on each V', expressed at each
point v € V by some ( Chern-Weil) polynomial of the curvatures of V and X at v. Thus we
obtain a leafwise form Qp on V which integrates with dyu to a number denoted fv Qp dp.

The first Connes indez theorem claims the equality

indD-——/QD du (%)
vV

under certain conditions on the foliation F on V. Here is a suitable condition which makes
both sides of () well defined via absolutely convergent integrals,

The Riemannian curvatures of the leaves and the (leafwise) curvatures of X are
bounded by a constant C > 0; furthermore the Riemannian metrics in the leaves are
complete and the injectivity radii of the holonomy coverings of the leaves are bounded from
below by C~1; and the total mass of the measure dv du 1s finite.

Now (*) extends the Atiyah L,-index theorem in 9% (including the generalized version
for manifolds of finite volume with the universal covering with bounded local geometry).
In fact (*), applied to the above example with the atomic measure at a fixed point of the
action of II on the space F'' amounts to (+*) in 93.

K-area and Sc > 0 for foliations. We define the Chern numbers of an X with a
leafwise connection by integrating the corresponding Chern-Weil forms as in (*) and we can
also speak of the leafwise norm of the curvature, || R(X)||. With this we define K-area V or
rather K-area F for the implied foliation F. The Bochner-Lichnerowicz vanishing theorem
extends without any problem to foliations and, in particular, we have the following twisted
foliated version of the Lichnerowicz theorem, concerning the leafwise scalar curvature of

V,
(%) if Scy 2 cn||Ro(X)|| for allv €V then fv AyAchy dp = 0, provided the holonomy

coverings of the leaves are spin, where Ay and chy denote the Chern-Weil forms corre-

sponding to the A-genus of the leaves and the Chern character of X (along the leaves)
respectively.

Remarks and corollaries. (a) One can replace everywhere the holonomy coverings

by the universal coverings of the leaves which makes the spin requirement somewhat less
demanding.
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(b) If Sc > &2 > 0 the above (%) shows that the I-area of V (or F) is finite. This is
already interesting for the above example where V = (V x §)/II — V} as the condition K-
area V = oo is, a priori, less restrictive than I -area V = co while Sc Vy > €% = ScV > ¢2.
For example, if the universal covering 170 has I -arca \70 = oo then, (almost) obviously,
K-area V = oo for this V = (V) x S)/IT and S = F' which gives us an alternative approach
to the K-area inequality in this case, where the foliated space (Vo x S)/II — Vp plays the
role of finite coverings Vi — Vg needed in our first proof employing the residual finiteness
of I1, (see §5). Similarly, one may simplify (or at least, modify) the arguments concerning
the homotopy invariance of the “almost flat™ signature where II is not residually finite

1

(compare 8%, 91).

c) (x) suggests a new definition of the N-area of a manifold Vy appealing to the
curvatures of bundles over V = (V; x S)/II for all S acted upon by II but probably, this
can be reduced to the K -area defined with almost flat bundles over C'*-algebras over Vg
itself. Yet, bringing in V’s may be useful in specific examples for getting a lower bound on
a (generalized) K-area of V5.

d) It seems one can set up the Plateau problem for transversally measurable leaf-
wise Riemannian foliations and construct stable minimal subfoliations V' C V of leaf-wise
codimension one under suitable conditions on V. This would lead to Schoen-Yau style
theorems without the spin requirement on the leaves.

Connes’ vanishing theorem. Let V be a smooth closed manifold with a smooth
foliation F. Then if F admits a Riemannian metric with (leaf-wise) positive scalar curva-
ture then A\(V) = 0 provided T(F) is spin (where V does not have to be spin). Moreover,
(Ax — chv)[V] = 0 for every complex bundle associated to the normal bundle T(V)/T(F).
Furthermore if p is the Chern character of an almost flat bundle over V (in fact the a.f.
condition is only needed along the leaves) then (p — Ar —ch v)[V] = 0. In particular, if
K-areaV = oo then V admits no smooth spin foliation with Sc > 0, (where the simplest
ezample of such a V is a torus). And much of this extends to open manifolds V. For
example, R™ admits no (automatically spin) foliation with the induced metric in the leaves
having Sc > € > 0, (where moreover, instead of the original Euclidean metric on R™ one
may use any hyper-Euclidean metric).

Let us indicate an approach to these theorems using the space V* introduced in 1%
(where our geometric picture of V* in 1—;— mimicks Connes’ analysis). The simplest case is
where F is coorientable and codim F = 1 and then V* is obtained from V x R by rescaling
the metric in the direction to F by the factor expt, t € R, and so V* is essentially as large
as V. For example, if V has infinite A -area then so does V*. But since V* can be arranged
with Sc > 0, we conclude, for example. that Sc F > 0 = L-area V < 0o, at least if F is
spin and the rest of Connes’ theorem (as we stated it) follows. Furthermore, one can use
here the techniques of minimal varicties aud show. for example, that ScF > 0 prevents
every (e.g. universal) covering V of V from being hyper-Euclidean (where for dimV > 7
one should appeal to an unpublished result by Schoen and Yau while the case dimV < 7,
and hence, dim V* < 7 is covered by [G-L]psc). In fact, one can prove here that V* admits
a hypersurface Vo homologous to V C V* and carrying a metric with Sc > 0 (again with
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extra troubles for dim V > 7 due to possible singularities of minimal hypersurfaces). Then,
if dimV > 5, one can apply surgery to Vg of codimension > 3 and modify it back to V but
now with a metric with positive scalar curvature on V.

Foliations of codimension > 2. The major difficulty with V* is the (non-Abelian)
holonomy which makes the Lipschitz geometry of V* quite far from the product V x M
(while the problem of &* # V* is a minor one). This difficulty disappears, for example, if
the lift of the foliation F to the universal covering V has neglegible holonomy, e.g. this lift
is non-recurrent, (which is very restrictive and so not truly interesting) or if the holonomy
is proper on some transversal jet bundle which corresponds to the rigidity in the sense of
[GrojrTG. In any case, what one needs (to witness the largeness of the manifold V* in the
M-directions) is a foliated UAFI (virtual) bundle £* over V*, where “foliated” indicates
that the implied flatness is required only along the leaves of F*, such that a pertinent
Chern number of « does not vanish. In fact, it is more logical, to look for such a bundle &
over V starting from another bundle, say v over V which has the required flatness along F
but which is not unitary. For example, the normal bundle v = T(V)/T(F) is flat along F
and we want to unitarize it, i.e. find a unitary bundle s flat along F with the same Chern
number as v. The construction of Connes (already explained in 8%) goes as follows. Take
some action of the structure group G of v on some symmetric space Z of non-compact
type and let Z — V be the associated Z-fibered bundle. For example, if v = T(V)/T(F)
and G = GLi(k) for k = rank v, then G acts on the space M so that Z = V* in this case.
(Notice that M is nmot a symmetric space but it is M? x R where M° = SL;R/O(k) is
symmetric, and, in general, one must allow some non-symmetric spaces Z as well.) We take
some Hilbert bundles H associated to Z where each fiber H = H, consists of Ls-sections
on Z = Z, of a suitable bundle over Z satisfying some elliptic system, say Az = 0, 1.e.
H = ker A. (In fact, one needs a pair of such bundles H; and H_ but we are being rather
sketchy here anyway.) Finally, we take some continuous section v — z(v) € Z, and use
the differentials of the fiberwise distance functions d, dist z,(z, 2(v)) to construct a family
F ={F,}: H, —» H, of Fredholm operators almost commuting with G, so that Ind F may
serve for k (compare 8% and see [Conjcorr and [Conlncg for the actual proof which also
catches secondary characteristic classes). Once we have k, over V we may pass it over to
V* and apply a suitable index theorem there, or, which is more logical, we may stay (as
Connes does) on V but then we need a longitudinal (i.e. leaf-wise) index theorem for F
more powerful than the first Connes theorem and such is proven in [Co-Sk].

Remark and open question. (a) The above construction of x can be performed
for more general bundles Z — V where the fibers Z, do not have to be symmetric or
homogeneous, just complete Riemannian manifolds large in a suitable sense (e.g. being
simply connected of & < 0 or hyper-Euclidean as in [C-G-M]gcrc). Then one “unitarizes”
Z by taking a suitable Hilbert bundle H of L,-objects over the fibers Z, with k being the
index of some Fredholm endomorphism of H (for which the largeness is needed). The
important features of such construction are (a) the “bundle” « is (at least) as flat (over
all of V or along a given foliation) as the original Z, (b) by choosing A one can arrange
to have ch « as rich as that of Z. This gives a different view on the similar construction of
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Fredholn representations in 82 and explain anew why strong Novikov forces 0 € spec Ay
for natural operators A, on Z,.

(a') Ezample. Let V be a closed manifold and Z — V be a flat Riemannian bundle
where the fibers Z, are complete simply connected with non-positive curvatures. (An
instance of that is the bundle Vo — V. for Vo = (V x V)/II for a manifold V with
K(V) < 0, compare 92.) Then the Fredholm I -area of V (defined in 91 ) 1s infinite
provided, Z has a non-zero Pontryagin number. Furthermore, both, the Dirac and the

signature operators on the universal covering V have 0 € spec (where V should be spin if
we speak of Dirac).

Here one can separate two cases.

(1) The implied action of Il = 7;(V) on Z is proper. (Notice that we assume all fibers
Z, being mutually isometric.) In fact, we may rather assume the image of Il in Isom Z is
a discrete subgroup without torsion and then W = Z/Im1I is a complete manifold with
K(W) < 0. The homomorphisin IT - ImII = 71(W) defines a (homotopy class of a) map
VY — W which sends [V] to a non-zero class in H,(W;Q), n = dimV (where V is assumed
oriented) and so the above statement can be derived from the corresponding properties of

w.

(2) The action of II is non-proper, which implies that the closure of ImII C Isom Z
has positive dimension. Thus the essence of the problem becomes Lie theoretic (since
Closure Im1I is a Lie group) and one, probably, can derive the general case from the two
extremal ones, where either ImII is discrete, or on the contrary has C¢ImII connected.

Now, look at a more general situation where the separation into two cases seems
impossible. Namely suppose Z is almost flat rather than flat, which means, the fibers Z,
do not have to be mutually isometric anymore but the monodromies should not distort
the metric too much. (One may take. for instance, a small perturbation of the metrics in
the fibers of the previous flat Z — V but more convincing examples are yet to be found.)
Then the corresponding « will be also almost flat (as flat as Z) and we get a lower bound
on the Fredholm K-area of V again.

(b) Fredholm K -area of foliated spaces and related invariants. Let V be a
foliated manifold as earlier. Then one can define the (Fredholm) K-area of V (or rather of
the implied foliation F) with bundles X over V having non-trivial Chern numbers where
the flatness of X is measured only along F. Similarly, one may define various “norms” on
homotopy classes of maps from V into standard spaces (spheres, Grassmannians etc.) by
minimizing the dilation of these maps along the leaves (where “dilation” may refer to the
norm of the differential on A? T'(F), for example. And if F has a transversal measure dy

one may take integral norms such as ( [, [|A? df||¢ dvdu) but this is another story). For
example, the above discussion shows (borowmg from Connes) that if the normal bundle
= T(V)/T(F) has a non-zero Pontryagin number, then the Fredholm K-area of F 13

inﬁnite and this K -area 1s also infinite if F has a metric with non-positive curvature.

Question. What are relations between
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(1) the (Fredholm) N -area of V disregarding F,
(2) the (Fredholm) K -area of F,
(3) the (Fredholm) K-area of the leaves V' of F7?

And one may ask similar question for more general size characteristics of F using
maps V — standard spaces, such as RadV/S", maxdeg ¢V /S™, maxchern, :tc.

Intuitively, one expects the following implications.

The leaves V' of F are “small” = F is “small” = V is “small”, (where “small” may
refer to the universal covering of the spaces in question) and some of these are obvious,
such as

K-arca F < oo = IL-area V < oo.

But one may look deeper, for example, let the leaves V' of F have (Fredholm) K -area <
const. Is then the (Fredholm) I-area of V finite? (Compare "3, where similar questions
were raised for the macroscopic dimension of (some coverings of the leaves).

Finally, observe, that the opposite implication is also plausible,
the leaves are “large” = the universal covering of V is “large”.

For instance if the leaves have negative curvatures, then it seems the fundamental group
71(V) must be large (may be under extra assumptions such as the existence of a smooth
ergodic transversal measure, smallness of codim F against largeness of dim F, extra data
on the geometry of the leaves etc.)

9%. Foliated max deg, Novikov-Shubin and related invariants. Consider a closed
Riemannian manifold V, a Dirac-type operator D on V and an infinite Galois Il-covering
V — V. We look for lower bounds on the von Neumann spectral density of the lift D to
V, i.e. for estimates

dimp; spec f)[a,b] > oy(a,b) (%)

for some function o expressible in terms of topology and macroscopic geometry of V (where,
recall, spec D[a b) denotes the subspace belonglng to the spectrum of D in the interval [a, b],

so that dimp spec D[a, b] = Tracey; 1[4 ) (D), where 1y, 4) is the characteristic function of
the segment [a, b]).

If D is Hodge’s d + d*, then the spectral density of D near zero, i.e. in small intervals
[—a, a] with a — 0 is a topological (even homotopical) invariant of V' (see [No-Sh}], [Gr-Sh])
and in standard examples dimy; spec lN)[—a, al =~ a® for some a > 0 which 1s a homotopy
(Novikov-Shubin) invariant a(V). In general, one may look for the maximal (open or
closed) segment I, = [0,a] or I, = [0, «f, depending on topolegy of V and (possibly) on a
particular type of D, such that

dimy, spec D[—a,a] > consta® | for all 8 € I, (xx)

where const may depend on the geometry of V. Thus every geometric operator D on
V (not only d + d*) gives us a topological invariant I, = I(V, D) but, probably, this is
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independent of D for most geometric operators D. (In fact, it seems logical to turn (o
of) I, into a (spin) bordism invariant of II, say I, = I(¢), ¢ € Brd BII, by taking all V
mapped to BII in the class of » and maximizing the segements I, satisfying (**) for all

these V.)

If the group II is residually finite, one can first estimate the spectra of finite co-
verings Vi -V approximating V — V in terms of geometric invariants of V; (such as
max deg AV/S™ and maxch AV, see Gg) and then go to the limit V, — Vifori — oo
since the spectra are semi-continuous in the limit. Now, we indicate a similar geometric
estimate using foliations over V' rather than finite covering where we do not have the
residual finiteness assumption. Namely, we make I act on some probability space S
preserving the probability measure (e.g. on the space F!I of F-valued functions II — F' for
a finite set F') and take the obvious foliation, say F, on the space Vg = (V x §)/II where II
acts diagonally on the product V x S. Now. for every measurable leaf-wise Lipschitz map
f:Vs = S n=dimV (where S™ is the n-sphere unrelated to S) one may speak of the
degree defined with the leaf-wise Jacobian by deg f = f\ﬂ Jac f dv ds (this extends to more
general space V measurably foliated into n-dimensional oriented (pseudo)manifolds V,
where there is the fundamental foliated n-dimensional class [V]po functorial in a suitable
category and behaving as an n-dimensional real homology class for certain maps V —
topological spaces, (compare [Sul], [Gro|ppp) and then one defines max deg((’Vg/S" as
the supremum of these over all ¢-Lipschitz maps. Finally, one can vary S and maximize
max deg also over all possible probability spaces S with measure preserving I'-actions thus
arriving at what is called max deg({Vro1/S"). Similarly, one defines max ch({Vgou; N)
and observes that the foliation of the Vafa-Witten argument leads to the following lower
spectral bound on the spectrum of the hLift D of a geometric Dirac type operator D on V
to the II-covering V — V (compare §6 and [Hur]grrr)-

dimp spec D[——a, a] > &, N~ max ch(y, a Vor; V) (%)

for every N = 1,2,..., and some positive constants ¢, and vy,. Consequently
dimy spec D[—a,a] > ¢!, max deg(v, a Ve /S™) . (k)

Furthermore, if n = dim V is odd, one has similar bounds on the spectrum at all points
(#0), eg.

dimpy specﬁ[a, bl > &/, max deg(v,(b — a)Vrarr/S™) (% % %)
for all segments [a,b] C R and some universal ~;, > 0.

Unfortunately, the known lower bounds on this foliated max deg are far from what
is expected. For example, one does not know for manifolds V' with non-positive sectional
curvature whether max deg(¢Vgo/S™) 2 (" for small £ — 0 (where II = 7;(V')), and even
the weaker bound max deg 2 ¢ for some a > 0 is unavailable at the present moment.

On the positive side, let us indicate a lower bound on the foliated max deg by max deg
(¢B(R)/S™), where the implied maps of the R-balls B(R) C V to S™ are assumed constant
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on the boundary. We take a maximal foliated system of R-balls in 17'5~where the implied
action of I on S is a.e. free, so that the concentric 2R-balls cover all Vg. Then, clearly

inf max deg(fﬁ(R)/S")
sup Vol B(2R)

rnaxdeg(ﬂN/s/S") < (+)

where “inf” and “sup” are taken over all positions of the (centers of) the balls and where

we may use arbitrary R > 0 and { > 0. Also observe, that for large R, max deg and Vol
are essentially independent of the positions of the balls and Vol2B(R) < exp cR for some

¢ =¢c(V) > 0. So the key invariant here is max deg ¢(B(R )/5" as the function of R and ¢
which has been already evaluated in some examples (see 6% < ). Here we notice, that if V

has non-positive sectional curvature and I = 7 (V), 1e. V= Vumv, then the R-balls in V
are (at least) as large as the Euclidean balls and so

max deg((B(R)/S™) > const (R ()" (Eu)

This implies, together with the exponential bound on Vol B(2R), that

max deg(¢Vs/S") 2 (R ()" exp —cR, (ex)

and, consequently, N
dimmp spec D[—a, a] > const,, exp(—ca™") (ex")

for a < 1, some const, > 0 and ¢ = (V) > 0.

All three estimates (Eu), (ex) and (ex’) appear highly non-efficient for non-flat ma-
nifolds V' with (V) < 0. Probably, (ex) and (ex’) can be freed of “exp” but (Eu) may
admit only an insignificant improvement since for every non-amenable group II

max deg(¢B(R)/S™) < const’, (™ Vol B(R)/exp~ ¢~ (-)

for some v = y(V) > 0. (To see this, look at the pull-back f~(S}) C E(R) of the hemi-

sphere opposite to the f-image of the boundary OB and observe, using the non-amenability
in the form of the linear isoperimetric inequality, that Vol f~(S%) < Vol B(R) expy ¢~1
since

dist(f~Y(ST),0B(R)) > 7/4().

Packing V by large balls and maxdeg(V/S"; Ar < €%). One could slightly improve

(+) by using more efficient packing of V by R-balls so that Vol B(2R) in the denominator
of (+) could be replaced by Vol B(R + const).

Observation. Let V be a complete simply connected manifold with K(V) < —x?
< 0. Then, for every (arbitrarily large) R > 0, there exist disjoint R-balls B; C V,

t =1,2,..., such that the concentric balls of radii R + r cover 17, where r = r(k) > 0 is a
constant independent of R.
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Proof. Start with some El C V and then add E,- with ¢ > 2 layer after layer around
El' Namely, first take a maximal system of disjoint balls with the centers on the sphere
S(2R) concentric to B,. Then add a maximal possible number of disjoint balls with centers
on S(2R + 1) so that the new balls do not intersect the old ones. Next use the balls with
the centers on S(2R + 2), etc. Then the é-hyperbolicity of V' (in the sense of [Grolug)
shows that all gaps will be of the size <r = r(é) = r(x). Q.E.D.

Corollary. If V has pinched curvature —oc < —x? < K(V) < —k?% < 0, thken it
admits a packing by R-balls, for every R > 0, which cover a definite percentage cf the
total volume of V' (as is also true for flat manifolds).

Questions. (a) Does the above corollary extends to manifolds with non-strictly
negative curvature, e.g. to symmetric spaces? (Here one may allow not only balls, but
other “ball-like” bodies, such as product of balls in manifolds V = V; x V;.)

(b) If V is acted upon by II, can one find a II-quasiperiodic efficient packing? This
means a [l-invariant measure in the space of such packings. If such exists, we obtain an
efficient packing of some foliation Vs with a transversal measure by R-balls (or rather by

R-plaques).
Let us modify the notion of max deg(£V/S™) by replacing ¢-Lipschitz maps V — 5"
by ¢?-area contracting ones (compare §4), denote this by maxdeg(V/S™ar < €?) and

recall (see §4) that the balls B = B(R) in the complete simply connected manifolds V
with ——FC% < K < —k?% < 0 have

max deg(B/S"; ar < %) > const (O™ Vol B — 1

for some const > 0 and o > 0 depending on x, k; and n = dim IN/, where a = 1 for
& = k1 = 1. Then the area version of (4) above implies that

max deg(Vrom /5™ ar < (%) > const £°

where 8 = B(x,x1,n) > 0 and where we apply (the arca version of) (+) to R-balls with
R ~ log £7 with a suitable v (unpleasantly loosing in precision because of the doubling of
the radius in the denominator of (+) which could have been avoided with a quasiperiodic
efficient packing discussed above). This gives us II-quasiperiodic e-flat bundles X over V
with ind ﬁ;( ~ ¢# and since K (V) < —«k? < 0, the e-flatness of X implies ¢'-straightness
for ¢’ ~ ke. This suggests an approach to the lower bound of dimp spec ﬁ[—a,a] by a?,
but, unfortunately the implied &’-straight structure in X, ie. an ¢'-parallel frame, is by
no means II-periodic or quasiperiodic. (One can recapture with such aperiodic frame our
earlier exponetially non-efficient estimate but I failed to make it work for a® facing the same
difficulty as in the quasiisometry invariance problem of the Novikov-Shubin invariants, see

8As in [Groar.)

On mes-invariance of the foliated max deg. Two groups II and II' are called
mes-equivalent if they admit mutually orbit equivalent ergodic actions on a probability
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space (see §4 in [Gro|grrg for an elementary introduction and further references) and one
can show that the foliated max deg is invariant under such equivalence. In fact, we shall
only use a very special case of this, namely, where we have discrete subgroups II and
II' in the full isometry group G = IsomV and we claim that max deg({Vran /S™) =
max deg(£Vg i, /S™) and the same remains true with S” replaced by another n-dimensional
manifold, e.g. the n-torus. To see this, we use a “foliated correspondence” between
V =V/Mland V' = V/II' (where we assume II' acts on V fixed point free to avoid a minor
inconvenience), i.e. a foliated space V (with transversal measure) with projections V — V
and V — V' such that the leaves of the implied foliation F on V cover V and V'. Such a
correspondence can be made with V fibered over V x V' where the fiber at (v,v') equals the
set of local isometries V — V' sending v — v’ (e.g. if V is G-homogeneous, then this fiber
can be identified with the isotropy subgroup G, C G consisting of the isometries fixing v).
This V naturally foliates into leaves which are graphs of the isometric immersions of V to
V' and this foliation is exactly what we need.

Ezample. Suppose V' admits a map to the n-torus with positive degree. Then so
does the foliation F on V over V and so max deg(Vyon/T™) > 0 which implies that

max deg( Vo /T™) > const ("

and hence,

max deg({Vroir /S™) > const’ (™.
Consequently,

dimng spec D[—a,a] > const” a”,
for a < 1.

To make it interesting, observe (following J. Millson) that the hyperbolic space H™,
for each n > 2, admits a cocompact lattice II' for which V' = H™/II' admits the above map
V' — T™ with deg > 0 and so every compact manifold V admitting a metric of constant
negative curvature (or just a map of deg > 0 to a manifold with K = —1 which may be
quite different from V') has, for a < 1,

dimp spec 5[—(1,(1] > consty a™ (++)
for IT = 71 (V).

The inequality (4++) generalizes to manifolds V mapped to quotients of products of
hyperbolic spaces. Furthermore, since we need at the initial stage only a “virtual map”
(or mes-map in the language of [Gro|grrg) V' — T one, probably, may extend the above
to the complex hyperbolic spaces (and, possibly, to more general a-T-menable groups, see
[Gro]a1). On the other hand, this can not work for other non-compact symmetric spaces
where Kazhdan’s property T prohibits virtual homomorphisms into Abelian groups.

Ezercises. (a) Generalize the above to non-compact complete manifolds V with
VolV < oo and with V having bounded local geometry.
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(b) Extend the (ex')-bound to manifolds V admitting maps f to complete manifold
W with K(W) <0, such that f.[V] #0in H,(W:Q).

Problems. (a) It is, probably. not hard to compute the spectral von Neumann
densities of invariant geometric operators D on symmetric spaces V of non-compact type.
Then one may ask if such density near zero (or at any point if n is odd) can be significantly

diminished by a II-periodic (or more general quasiperiodic) perturbation of the metric (with
the expected answer “No”).

(b) Find examples of manifolds V', where dimp spec D[—a,a) > 0 for all @ > 0 and
all metrics on V, but yet, for some metric this dimy decays, for a — 0, faster than af
for all 8 > 0, or, even better, faster than exB——ca_l. In fact, nothing is known about
the possible shape of the function dimp spec D[—a,a] near zero apart from a few simple
examples. Probably, such examples are easier to construct if one drops the II-periodicity (or
quasiperiodicity) assumption and allows all complete manifolds 1% (possibly, required to be
uniformly contractible and/or to have bounded local geometry). The spectral information
concerning such (aperiodic) geometric operator D can be expressed with the Schwartzian
kernel K (1, V2) of the operators ¢(ﬁ), e.g. for ¢ being the characteristic function ¥[_g 4]
of the interval [—a,a], by the function Try(v) = Trace K (v,?). For example, one may
integrate Tr, = Try,_, ., over the R-balls, look at

Tro(¥) v

o~

B(R)

sup(VolE(R))_] /

with “sup” taken over all R-balls, and then go to the limit for R — oo thus obtaining
a function o(a) replacing the von Neumann spectral density for a — 0. In particular,
one may try this for the uniformly contractible example in [Fe-We| where some caution is
needed as this has unbounded geometry. (Instead of Tr, one may study maximal systems

of sections ¢;(?), ¢ = 1,2,..., with mutually disjoint supports satisfying Dyl < allwill-)

Inflated manifolds. A horosphere H in a complete manifold V with K(V') <0 can
be indefinitely compressed by equidistant interior motion, see Fig. 16 below

t— —oo

Fig. 16
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and so it can be thought of as the result of an infinite time inflating evolution. The strongest
“inflated” condition (corresponding to the pinching —oo < —x? < K(V) € —k? < 0) is
as follows. A Riemannian manifold (H,¢) is called inflated if there exists a sequence of
Riemannian metrics g9 = ¢, g_;,¢_2,..., on H, such that

2,1 <9 <Cgq_,_, foralli=0,1,2,...

and some C > 2, where the local geometries of (H,g-:) are uniformly bounded (i.e.
|K(g-;)| < const and InjRad g; > (const)™1).

Such inflated manifolds have “parabolic” geometry (compare [Gro]ccs) mediating
between K < 0 and K > 0. It is not hard to show that the R-balls B in such H
have maxdeg¢B/S™ > ({R)* for o > 0 and consequently, the geometric differential
operators on H have the spectral density in [—a,a] of order > a® (where one can de-
fine the von Neumann dimension by averaging over the balls B(R) C H as these have
Vol,_1 8B(R)/ Vol,, B(R) — 0 for R — o0). One may expect (but can not prove) that
the above should hold true with a = n = dim H (as for R™) but this is not quite known
even for the (standard) examples of nilpotent groups with expanding maps (compare 63).
Also one may think that all (or most) inflated H have Vol B(R) > R™ and inf Sc H < 0,
but this (though known for the nilpotent case) remains unclear even for horospheres in
compact manifolds with K < 0.

The above notion of “inflated” can be generalized in a variety of ways (e.g. the growth
of g_; may be less uniform, instead of g—; on the same H one may have

(Hoygo) = (H_yg_1)— - = (H_j,g_;) — -

b

where the implied maps are contracting, etc.) and much of the above discussion generalizes
as well thus leaving us with more conjectures on our hands.

91;-. Perspectives, problems, omissions. Let us try to summarize what we were doing.
We looked at a (typically) non-compact Riemannian manifold ¥ which (in interesting cases)
was rather symmetric. For example, it could be a covering of a compact manifold or a leaf of
a compact foliation. This “large symmetry” was accompanied by some “homological large-
ness” of V which appears, for instance, if V' Galois II-covers a compact manifold V for which
the classifying map

B :V — BIl is “essential”, e.g. B.[V] # 0 in H,(BII; Q), n = dimV. Then we per-

sued the following implications
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symmetry large
+
homoiogicly large

geometricly large

macroscopic dimension,
uniform contractibility,
hyper-Euclidean,

Scalar curvature
is small

spectrally large

Dirac and the signature
operators have large

spectra

where much remained conjectural.

A-T-menability and related properties. The largeness of spaces and groups can
be sometimes extracted somewhat paradoxally, from a possibility to “embed” such a space,
say V, into another (relatively standard) space W where “embedding” means a Lipschitz
map f : V — W such that f(3;,7;) > ¢(d) for d = dist(v1,02) and where ¢ = c(d)is a
function satisfying c(d) — oo for d — oo. If V is acted upon by a group II, e.g. if V =1,
then one distinguishes equivariant “embeddings” for some isometric action of I on W.

Examples. (a) Suppose V = II and W is a Hilbert spaces. Then such an equivariant
embedding II — W amounts to an affine isometric action of Il on W which is metrically
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proper, i.e. for every bounded subset B C W there are at most finitely many = € II for
which the intersection 7(B) N B is non-empty. The groups II admitting such actions on a
Hilbert space are called a-T-menable (as they strongly violate the T-property of Kazhdan
claiming that every affine isometric action of II on a Hilbert space has a fixed point) and
one knows (see [B-C-V]) that amenable groups are a-T-menable. Yet we do not know if
the a-T-menable groups satisfy NC or the related analytic property of approaching zero by
the spectra of geometric operators D on V provided V is isometrically and cocompactly
acted upon by such II (where one may additionally assume that 1% /11 is “homologically II-
essential”, e.g. Vis contractible). All we can say in this regard is the inclusion 0 € specA

for II amenable and A acting on functions, which is one of the many equivalent definitions
of the amenability.

(b) Let W be a complete simply connected manifold of non-positive curvature. Then
one can show (see [G-L]psc and compare 8%) that every V “embeddable” in W is stably

hyperspherical which means the existence of e-contracting maps V xR¥ = SN of nON-Z€ro
degree for some N and k = N — dimV and all ¢ > 0. In particular, K-areas; V = oo.
This can be generalized (by allowing st to stand for co) to the situation where W is an
infinite dimensional manifold of non-positive curvature (e.g. the Hilbert space R*) but it

remains unclear at the moment how to carry over our analytic discussion to the infinite
dimensional framework.

(c) The above suggests a classification of spaces (and/or groups) in some category
where injections are “embedings” (with some equivariance assumption for groups) and

where we may stabilize X ~— %X A\ X with some \; > 0 and the Pythagorean (i.e. Lj)
i=1
or more genera,l L,-metric on the products. (Thus the Hilbert space quasi-isometrically

appears as o A; Z for some \; — 0.) But we do not even know where the Lie group stand
1=1

in this classification (compare 7.E in [Gro]ar).

Our presentation of the ideas around NC by no means covered the whole research area.
We said nothing about the cyclic cohomology and the Connes-Moscovici index theorem
for differential operators twisted with straight (Alexander Spanier) cocycles (rather than
with vector bundles). This was extended to general open manifolds by Roe and applied
to the problems of Sc > 0 by Yu who manage to solve it for V where the contractibility
radius and the volume have polynomial growths (see [Con]nca, [Co-Mo], [Roe], [Yu]).
Also we had said very little about the ideal boundaries and coronas of large manifolds 14
introduced by Higson and studied further by Roe and Hurder (see {Hig], [Roe|, [Hur]). And
we barely touched the topological and algebraic approaches to NC and BC, i.e. the Borel
conjecture claiming that the homotopy equivalence implies homeomorphism for closed

aspherical manifolds V" (see [Fa-Hi], [Fa-Jo], [Ran], [Wein], [NC+] and references therein).

Finally, just recently, a new (Seiberg-Witten) equation sprang up to life providing an
analytic key to the three basic “soft” structures in dimension four: the smooth structure,
the symplectic one and Sc > 0 and suggesting a new jorney in a direction rather different
from what we have taken in the present paper.
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