
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 6, Number 3, Summer 1976 

POSITIVE DEFINITE FUNCTIONS AND GENERALIZATIONS, 
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JAMES STEWART 

1. Introduction. A complex-valued function / of a real variable is 
said to be positive definite (abbreviated as p.d.) if the inequality 

(i.i) i / ( X i - ^ â o 

holds for every choice of xx, • • -, xn G R(the real numbers) and f1? • • -, 
fn G. C(the complex numbers). In other words,the matrix 

(1.2) [f(Xi-Xj)]1J=1 

is positive definite (strictly speaking we should say positive semi-
definite or non-negative definite) for all n, no matter how the x/s are 
chosen. A synonym for positive definite function is function of positive 
type. 

For example, the function f(x) = cos x is p.d. because 

n 

X COSfo - Xj)Si^ 
i j = 1 n 

= X (COS Xi C O S XJ + S Ì n Xi S m Xj)&%j 
U = l 

I n I 2 j n i2 

2 fi COS Xi + i X 6 S i n Xi = °-
i = l ' ' i = l ' 

Likewise it is easily verified directly that eikx is p.d. for real \ , but it is 
not so straightforward to see that such functions as e~H e~*2, and 
(1 4- x2)"1 ? e p.d. These and other examples are discussed in § 3. 

Positive definite functions and their various analogues and gen-
eralizations have arisen in diverse parts of mathematics since the be-
ginning of this century. They occur naturally in Fourier analysis, 
probability theory, operator theory, complex function-theory, moment 
problems, integral equations, boundary-value problems for partial dif-
ferential equations, embedding problems, information theory, and 
other areas. Their history constitutes a good illustration of the words 
of Hobson [51, p. 290] : "Not only are special results, obtained inde-
pendently of one another, frequently seen to be really included in 
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some generalization, but branches of the subject which have developed 
quite independently of one another are sometimes found to have con-
nections which enable them to be synthesized in one single body of 
doctrine. The essential nature of mathematical thought manifests itself 
in the discernment of fundamental identity in the mathematical as-
pects of what are superficially very different domains/' Fourier [36] 
put it more succinctly: "[Mathematics] compares the most diverse 
phenomena and discovers the secret analogies which unite them." 

To cite a specific instance, Mathias and the other early workers with 
p.d. functions of a real variable were chiefly concerned with Fourier 
transforms and apparently did not realize that more than a decade 
previously Mercer and others had considered the more general con-
cept of positive definite kernels K(x,y) (satisfying (1.1) with/(Xj — Xj) 
replaced by K(X(, Xj)) in research on integral equations. I have likewise 
found that present-day mathematicians working with some of the 
manifestations of p.d. functions are unaware of other closely related 
ideas. Thus one of the purposes of this survey is to correlate some of 
the more important generalizations of p.d. functions with the hope of 
making them better known. For example, probabilists are acquainted 
on the one hand with p.d. functions (in the guise of characteristic 
functions) and on the other hand with the Kolmogorov or Lévy-
Khintchine formula for the logarithm of the characteristic function of 
an infinitely divisible random variable, but probably very few of them 
realize that the latter functions are examples of a significant generaliza-
tion of p.d. functions, namely functions with a finite number of nega-
tive squares, and that Krein's integral representation for such func-
tions may be of use to them. 

It is not possible to discuss all of the analogues and generalizations 
of p.d. functions in this article; there are simply too many of them. 
Those to which we devote an entire section are p.d. sequences (which 
arose first), p.d. functions on groups, integrally p.d. functions, p.d. dis-
tributions, p.d. kernels, functions with a finite number of negative 
squares, and Schoenberg's functions which are p.d. in metric spaces. 
Some other generalizations are mentioned in the final section. 

2. Positive definite sequences. The concept of a p.d. sequence was 
inspired by a problem of Carathéodory in complex function-theory. 
Contained in his paper [ 16], which appeared in 1907, was the follow-
ing problem: What are necessary and sufficient conditions on the co-
efficients of the power series representation 

w=f(z)=l+ ,Z(ak + ibk)z
k 

. k=l 
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of an analytic function fin order that it map the unit disk \z\ < 1 into 
the right half-plane Re(u>) > 0? Carathéodory's answer was that, for 
each n = 1,2, 3, • • -, the point (ai9 bu a2, b2,

 # * va„, bn) in R2n 

should lie in the smallest convex set containing the curve with para-
metric representation 

(2 cos 0, - 2 sin 0, 2 cos 2 0, - 2 sin 2 0, • • -, 2 cos n 0, 

- 2 s i n n 0 ) , O ^ 0 ^ 2 7 T . 

In 1911 Toeplitz [115] noticed that Carathéodory's conditions could 
be reformulated algebraically in terms of the non-negativity of certain 
Hermitian forms: 

(2.1) J c i _ i ^ ê 0 , f o r n = l , 2 , • •-, 

where c0 = 2, ck = ak — ibk, c__k = ak + ibk. Any sequence {cn} 
which satisfies (2.1) is called positive definite. 

Within a year several of tlie ablest mathematicians of the day pub-
lished papers offering alternative proofs of the Carathéodory-Toeplitz 
results and pointing out connections with other areas of mathematics. 
In particular F. Riesz [90] saw the application to systems of integral 
equations, Herglotz [46] established the connection with the trigono-
metric moment problem, Carathéodory himself [17] considered the 
series expansion of positive harmonic functions, and further related 
papers were written by Fischer [35], Schur [102], and Frobenius [37]. 
Of these, the paper of Herglotz has turned out to have the most far-
reaching consequences. The trigonometric moment problem can be 
stated as follows: Given a sequence {cn} *«, of complex numbers, what 
are necessary and sufficient conditions for the existence of a bounded 
non-decreasing function a on [— 7r, n] such that {cn} is the sequence 
of Fourier-Stieltjes coefficients of a, i.e., cn = iln eine da(6) for every 
integer n? Herglotz solved this problem by proving that a necessary 
and sufficient condition is the non-negativity of the Toeplitz forms 
(2.1), i.e., the positive-definiteness of {cn}. We shall see that this 
theorem of Herglotz has many important analogues and generaliza-
tions. 

For proofs, further details, and applications of p.d. sequences to 
problems in analysis and probability theory, we refer the reader to the 
books of Akhiezer and Krein [2], Akhiezer [1], and Grenander and 
Szegö [44]. Fan [33] has established various properties of p.d. se-
quences (without using Herglotz's Theorem) by representing them in 
terms of stationary sequences of vectors in a Hilbert space. 
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3. Positive definite functions of a real variable. Mathias, in 1923, 
[69], was the first person to define and study the properties of p.d. 
functions of a real variable. Motivated by the results of Carathéodory 
and Toeplitz he defined a complex-valued function / on R to be posi-
tive definite if 

(3.1) f(-x)=JWJorxGR, 

and the Hermitian form 

(3.2) È / ( x , - * ) 6 § ^ 0 , 

for every choice of xi9 * • *, xn G R and f 1? • • -, fn G C. 
Condition (3.1) is superfluous, as F. Riesz, [91], pointed out. To see 

this, set n = 2, xY = 0, x2 = x, ̂  = 1, and ij2
 = £ hi (3.2). Then 

(3.3) (1 + |!|2)/(0) + */(*) + f/(-x) è 0 

for every £ G C, and so f/(x) 4- £"/( — *) is real for every £ G C. Setting 
£ = 1, we have that /(x) + / ( — x) is real; setting f = i, we see that 
*(/(*) - / ( - * ) ) i s real. Thus (3.1) holds. 

Mathias [69] observed the following elementary properties of posi-
tive definite functions: 

I. Iff is p.d., then so isf. 
II. If/i, ' ' ',fn are p.d. and c{ = 0 then/(x) = 52*»=i c $ ( * ) i s P-d-

III. If each ̂  is p.d., then so is/(x) = \\mn^^jn(x). 
IV. Any p.d. function/is bounded, and in fact, |/(x)| = /(0). 
V. The product of p.d. functions is p.d. 

The first three properties are immediate consequences of the defini-
tion. The fourth follows from (3.3) by choosing £ so that £f(x) = 
— |/(x)|. The fifth is a consequence of Schur's theorem [101] that 
the product of p.d. matrices is p.d. 

The main theorem of Mathias, slightly rephrased, is that iff is p.d., 
then its Fourier transform f(t) = f_«>f(x)e-itx dx is non-negative (pro-
vided that it exists). Conversely iff satisfies the Fourier inversion 
formula and f(t) ^ 0, then / is p.d. His proof makes use of the analo-
gous result of Carathéodory and Toeplitz [115] for Fourier series. 

We can make use of part of this theorem of Mathias to give some 
examples of p.d. functions. The functions fx(x) = e~W,f2(x) = e~*2, 
f3(x) = (1 + x2)-i9 and/4(x) = 1 - |x| for |x| ̂  l , / 4 (*)= Ofor |x| > 1, 
are all p.d. because their Fourier transforms are positive and in-
tegrable. In fact it can be shown (see, e.g., Schoenberg [97] ) that^(x) 
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= exp [ — |x|a] is p.d. if and only if 0 ^ a = 2. (Further examples are 
provided by Pólya's criterion [84] : Any real, even, continuous func-
tion / which is convex on (0, oo)5 i.e., f(1Â(xl + x2))= 0*)[/(*i) + 
f(x2)], and satisfies limx_oo/(x) = 0, is p.d.) 

Mathias did not prove the analogue of the theorem of Herglotz. 
That had to wait until 1932 when Bochner [11] proved the cele-
brated theorem which bears his name: Iff is a continuous p.d. func-
tion on R, then there exists a bounded non-decreasing function V on R 
such that fis the Fourier-Stieltjes transform ofV, i.e., 

(3.4) / (* )= I"" eiaXdV(a) 
J — 00 

holds for all x. 
The converse of this theorem is easy to prove, for iff has this form, 

then 

n 

= Ê { J^expti^-*,)«] dV(a) Xtfj 

= H I Ê£exP(M \2dV(a)^0. 
J-°° l i = i • 

Bochner's Theorem itself is not so easy to establish, but in view of its 
great importance many, quite different, proofs have been given. (In 
particular, it can be deduced from the theorem of Herglotz. See, e.g., 
[54, p. 137].) The generalization to functions of several real variables 
was also given by Bochner [12]. 

In 1933, F. Riesz [91] extended Bochner's Theorem by proving that 
if we merely assume the measurability of a p.d. function / , then, for 
almost all x,f(x) is equal to the Fourier-Stieltjes transform of a bounded 
non-decreasing function. An interesting refinement of this theorem of 
Riesz was given in 1956 by Crum [24] who showed that iff is a mea-
surable p.d. function, t h e n / = p + r, where p is a Fourier-Stieltjes in-
tegral, and the remainder function r is equal to zero almost everywhere 
(as Riesz had shown) and is also positive definite itself. 

In order to indicate some of the many applications of Bochner's 
Theorem, we first mention that Bochner himself showed in 1933 [ 12] 
how it can be used to deduce and generalize much of the harmonic 
analysis of Wiener [120,121]. 

About the same time both Bochner [13] and F. Riesz [91] showed 
how Bochner's Theorem can be applied to prove another important 
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theorem of the same period, namely Stone's Theorem of 1930 [110, 
111] on one-parameter groups of unitary operators. Let Ut, — °° < 
t < oo, be a group of unitary operators on a Hilbert space H, i.e., U0 = 
7, the identity operator, and U8+t = UsUty and assume that (Utx,y) is 
a continuous function of t for every x,yŒH. Stone's Theorem as-
serts that there is a unique self-adjoint operator A on H with canonical 
resolution of the identity E such that Ut = / " » eitk dEk (= eitA) in the 
sense that (Utx,y) = / ! M eitx d(Ekx, y), for x,yEH. The proofs of 
Bochner and Riesz use the fact that for any x é H the function/(f) = 
(UfX, x) isp.d. Indeed 

î(l7f,-,/,*)63= ( J 6t7„x, 2 $t/,x) §0. 

Stone's Theorem, in turn, has applications to quantum mechanics and 
ergodic theory. (See Riesz and Sz.-Nagy [92, §§138-139] forBochner's 
proof of Stone's Theorem and applications.) 

It is perhaps true to say that the area of mathematics in which the 
largest number of people are familiar with p.d. functions and Boch-
ner's Theorem is that of probability theory. The Fourier-Stieltjes 
transform of the distribution function of a random variable is called a 
characteristic junction, and so, by virtue of Bochner's Theorem, / is a 
characteristic function if and only i f / i s continuous, p.d., and/(0) = 1. 
Although characteristic functions can be traced back as far as Laplace 
and Cauchy, it was Paul Levy [63, 64] who first exploited system-
atically the fact that characteristic functions are in general easier to 
work with than distribution functions. This is especially true in con-
nection with sums of independent random variables (which cor-
respond to products of characteristic functions) and convergence of 
sequences of random variables (in part because for sequences {fn} of 
p.d. functions, fn-+f a.e. if and only if fn-*f uniformly on every finite 
interval; see § 4). Thus it is not surprising that the Central Limit 
Problem (the problem of convergence of laws of sequences of sums of 
random variables) was solved with the aid of p.d. functions. 

Another occurrence of p.d. functions in probability theory is in the 
theory of stationary stochastic processes. Khintchine [55] used Boch-
ner's Theorem to show that R(t) is the correlation (covariance) function 
of a continuous stationary stochastic process if and only if it is of the 
form R(t) = J"» cos tadV(a) where V is bounded and non-decreas-
ing. See Fan [34] for this and other connections between p.d. func-
tions and probability theory. Further connections can be found in 
Yaglom [ 122] and Schreiber, Sun and Barucha-Reid [ 100]. 



POSITIVE DEFINITE FUNCTIONS 415 

4. Positive definite functions on groups. With the advent of har-
monic analysis on groups, and especially the Banach algebra approach 
to the subject in the 1940's, the central role of positive definite func-
tions in Fourier analysis became apparent. The classical treatises on 
Fourier series and integrals of Zygmund [125] and Titchmarsh [114] 
had certainly managed to thrive without ever mentioning such func-
tions. However in their present-day counterparts which deal with 
Fourier series and integrals, e.g., Edwards [27] and Katznelson [54], 
p.d. functions do have a role to play. Furthermore, virtually every 
book which treats harmonic analysis on groups gives prominence to 
p.d. functions. In some of these books, e.g., Loomis [67] and Rudin 
[93], p.d. functions play a very fundamental role indeed. The inver-
sion formulas for the Fourier transform are based on the analogue of 
Bochner's Theorem, and then the duality theorem and Plancherel's 
Theorem are deduced. Consequendy, in such treatments everything 
depends on p.d. functions. 

The definition given in § 1 generalizes easily. A complex-valued 
function / defined on an arbitrary group G is positive definite if the 
inequality 

(4.1) S /(s-^^âO 
ij-l 

holds for every choice of x{ G G and £ G C. Let P denote the set of 
all continuous p.d. functions on G. For the case where G is a locally 
compact abelian group (LCAG), Bochner's Theorem was generalized 
in 1940 (almost simultaneously) by Weil [118], Povzner [85], and 
Raikov [86] as follows. A character £ of G is a homomorphism of G 
into the circle group, i.e., it satisfies £(xy) = £(*)£((/) and \£(x)\ = 1 for 
oc, y €E G. The dual group Ù is the group of all continuous characters of 
G under pointwise multiplication with the topology of uniform con-
vergence on compact subsets of G. The Weil-Povzner-Raikov Theorem 
says that if / £ P, then there is a positive bounded measure /ut on Ù 
such tha t / i s the Fourier-Stieltjes transform of fi, i.e., 

(4.2) /(*) = f *(x)d».{*). 
J
 ô 

Let B(G) be the algebra of all finite linear combinations of functions 
in P. Then (4.2) in conjunction with the Jordan decomposition theorem 
shows that B(G) is precisely the set of all Fourier-Stieltjes transforms of 
bounded measures on Ù. 

Since every continuous character on R is of the form £(x) = eiaX for 
some a £ R , we can consider A = R, and (4.2) reduces to Bochner's 
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Theorem for G = R. Similarly if G = Z, the group of integers, then 
every continuous character is of the form £(n) = eine for some 6 G 
[ — 7T, ir], and (4.2) becomes Herglotz's Theorem. 

Just as for G= R, many proofs of (4.2) have since appeared. In 
addition to the proofs in current texts, most of which, like Raikov's, 
use Banach algebra techniques, we cite in particular the proof of Car-
tan and Godement [19] which uses the Krein-Milman Theorem, the 
proof of Bingham and Parthasarathy [9] which uses probabilistic 
methods, and the proof of Bucy and Maltese [15] which uses the 
Choquet Representation Theorem. See also Phelps [82] and Choquet 
[20]. 

The proofs of Weil and Raikov referred to above also generalized 
Riesz's extension of Bochner's Theorem, i.e., any measurable p.d. func-
tion on a LCAG can be written a s / = p + r where p is the Fourier-
Stieltjes transform of a positive measure and r = 0 locally almost 
everywhere. We have seen that for G = R, the residual function r is 
actually p.d. itself (Crum's Theorem, 1956). For an arbitrary LCAG 
this result is in fact a consequence of an earlier theorem (1950) of 
Segal and von Neumann [104, Thm. 2] on unitary representations, 
though they did not explicitly point this out. In 1960, Devinatz [26] 
made it explicit and gave a direct proof. A far-reaching generalization of 
this fact was given by de Leeuw and Glicksberg [62]. They showed that 
an arbitrary p.d. function (not necessarily measurable) on an arbitrary 
topological group G can be expressed a s / = p + r, where p E.P and 
r is a p.d. function which averages uniformly to 0 at e in the sense that 
0 E f ly G £(Rvr )> where Q/ is the set of all neighborhoods of the 
identity e of G, C denotes the closed convex hull in the set of all 
bounded functions on G, and the partial orbit Rvr = {Rgr : g EL V}, 
where Rgr(h) = r(hg). 

The importance of p.d. functions does not diminish when we turn 
our attention to non-abelian groups. The importance stems in part 
from the intimate connection among p.d. functions, unitary repre-
sentations of the group, and positive functionals on the group algebra. 

Let U be a unitary representation of a locally compact group G, i.e., 
each U(x) is a unitary operator on a Hilbert space H, U(e) = Z, and 
U(xy) = U(x)U(y)9 for x,y G G. Then, as in § 3, the function 

(4.3) f(x) = (U(x)t i) 

is p.d. for any € G H. Conversely iff is p.d. Gelfand and Raikov [38] 
showed how to construct a unitary representation U which satisfies 
(4.3). Let H0 be the set of functions <f> on G such that <f>(x) = 0 except 
for finitely many x. If (<f>, ^) = 2 ) M / ( * " 1S)<K*)*M*) then (<f>,<f>)^0. 
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Let H be the completion of H0IN, where N = {<f> : (fa fa = 0}, and 
define U via (U(x)<f>) (y) = faxy~l). Then U is a unitary representa-
tion of G, and if f corresponds to the function which is equal to 1 at e 
and is zero elsewhere, we have ([/(*)£ f) = ^s,tf(t~

is)^(xs)^(t) — 
f(x). Both halves of this correspondence between unitary representa-
tions and p.d. functions are useful. For example, Ambrose [4] and 
Godement [41] used the first half, together with the Weil-Povzner-
Raikov Theorem, to generalize Stone's Theorem to the situation where 
U is a continuous unitary representation of a LCAG. Conversely, the 
other half can be used to deduce (4.2) from the theorem of Ambrose 
and Godement. (See Nakano [79] for G= R and Nakamura and 
Umegaki [78] in general.) 

In order to describe another application, we introduce an ordering 
on F as follows: fa > fa <^ <£i — fa ^ P- A function ^ G P is said to 
be elementary if the only functions fa €E F with fa > fa are of the 
form fa = X<̂ !, where X Ë C , It was proved by Gelfand and Raikov in 
1943 [38], and independently by Godement [42], that <f> is elementary 
if and only if the corresponding unitary representation U is irreducible 
(i.e., if S is a closed subspace of H with U(x)S C S for all x G G, then 
S = H or S = {0}). Gelfand and Raikov expoited this correspondence 
to prove their famous theorem that every locally compact group ad-
mits "sufficiently many" irreducible unitary representations. Indeed it 
was Gelfand and Raikov who pointed out the full significance of the 
central role that p.d. functions play in analysis on locally compact 
groups. 

Let F0 = {<^£F: fae) = 1}, the set of normalized functions in F. 
(If G is abelian, then Ù is the set of all elementary functions in F0.) 
Then F0 is a compact convex subset of L^G) in the weak topology, 
and, by identifying the extreme points of F0 as precisely the elementary 
functions in P0, Gelfand and Raikov [38] used the Krein-Milman 
Theorem to show that a n y / G F is the weak limit in L00 of functions of 
the form ^ A ^ , where X{ i? 0, ^ K =/(e)> and the fa are elementary 
functions in P0. 

There have been various extensions of Bochner's Theorem to non-
abelian locally compact groups. For the details we refer the reader to 
Godement [42, p. 52] and, for a more explicit version in the case 
where G is compact, to Krein [60, § 7]. (See also Hewitt and Ross 
[49, p. 334] for Krein's version.) 

Convergence in F holds some surprises. Raikov [88] (and inde-
pendently Yoshizawa [123] ) proved that the mere assumption of point-
wise convergence of a sequence of functions^ G F to a function/G F 
implies thatfn —>/ uniformly on compact subsets of a locally compact 
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group. For an historical discussion of the relationship between such 
theorems and the various Cramér-Lévy convergence theorems of the 
1920's and 1930's see McKennon [70, p. 62]. 

Several authors have recently shown interest in p.d. functions and 
analogues of Bochner's Theorem on groups which are abelian but not 
locally compact. For instance, the underlying additive group of an 
infinite-dimensional Banach space is such a group. We cite in par-
ticular the papers of Minlos [74] who deals with nuclear spaces (see 
also Gelfand and Vilenkin [39, p. 350] ), Sazonov [96] and Gross [45] 
who deal with Hilbert spaces, and Waldenfels [117] who also deals 
with vector spaces. Shah [106] obtains a Bochner-type theorem for 
abelian groups on which the only restriction is the existence of a 
"quasi-invariant" measure. 

5. The extension problem. In 1940, M. Krein [57] posed the fol-
lowing problem. Suppose that f is continuous and p.d. on the finite 
interval [ — A, A], i.e., the inequality (1.1) holds whenever § £ C and 
0 ^ Xi < x2 < ' ' • < xn ^ A. Can / b e extended to a continuous p.d. 
function on R, i.e., does there exist g G F such that g(x) = f(x) for 
— A ^ x ^ A? Krein answered this question in the affirmative, and so 
by Bochner's Theorem, any such / is a Fourier-Stieltjes transform. In 
the same year, Raikov [87] proved this fact directly. 

In the same paper, Krein also showed that the extension need not be 
unique, and, by employing methods reminiscent of those used in the 
classical moment problems, he gave several criteria for uniqueness of 
the extension. An example is the following result. Let BA be the set of 
entire functions g which are bounded on the real axis and satisfy 

log Mir) 
lim sup^oo — ö ^ A, where M(r) = max{|g(z)| : \z\ ^ r}. 

r 

If / is p.d. on [ —A, A], it has a representation/^) = feitxdF(t), for 
\x\ ^ A, by the theorems of Krein and Bochner. The functional <I>y(g) 
= Î- oog(t) dF (t) on BA turns out to be independent of F. Krein 
proved that the p.d. extension o f / i s unique if there exists g £î BA, 
g ^ 0, g ^ 0, satisfying 4>y(g) = 0. He also gave the example f(x) = 1 
- |s|, |x| ^ A, which is p.d. on [ - A, A] if and only if 0 < A g 2 ; the 
extension is unique for A = 2 but not unique for 0 < A < 2. 

Many authors have since given other criteria for uniqueness and tried 
to classify all possible extensions in the case of non-uniqueness. For 
example, both Akutowicz [3] and Devinatz [25] gave criteria in terms 
of the self-adjointness of certain operators on Hilbert spaces. 

Part of the interest in such questions stems from probability theory. 
Several authors in the 1930's gave examples of distinct characteristic 
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functions which coincide on a finite interval, and this, of course, im-
plies the non-uniqueness of the extension problem for p.d. functions. 
Esseen [31] and Levy [65] treated the extension problem from the 
point of view of probability theory. See also Loève ( [66, p. 212]. 

Chover [21] has dealt with an application of the extension problem 
to information theory. He showed that under certain conditions there 
is a unique extension of a p.d. function/which maximizes the entropy 
of the extension measure, i.e., among all the measures p for which 
f(x) = feixt dfi(t), | x | = A, there is one which carries the minimum 
amount of additional information. 

The extension problem can be formulated in a more general context. 
If S is any subset of a group G, we say that/is positive definite on S_1S 
= {y~lx : x, y G S} if the inequality (4.1) holds whenever ^ELC and 
S iGS. 

Rudin [94] has shown that the analogue of Krein's Theorem (on the 
existence of an extension if S is an interval of the real line) is false in 
higher-dimensional Euclidean spaces. Specifically, if S is an n-dimen-
sional cube in Rn, where n i? 2, then there is a function which is p.d. 
on S_1S but has no p.d. extension to all of Rn. However, Rudin [95] 
has also shown that such extensions do exist in Rn if S is a ball instead 
of a cube and if the functions are radial. As far as the other classical 
groups are concerned, see Devinatz [25, § 7] for the non-existence of 
extensions when G is the circle group and Rudin [94] for the existence 
of extensions when G = Z and non-existence when G = Zn and n = 2. 

For more general groups the interest lies in the case where S is a 
subgroup of G (and so, S_1S = S). Actually it is not hard to see that 
any function which is p.d. on a subgroup G0 can be extended so as to 
be p.d. on G simply by defining it to be zero outside of G0. However 
the real interest lies in continuous p.d. extensions. Hewitt and Ross 
[49, p. 364] have shown that if G0 is closed and G is either compact or 
LCA, then the problem of extending continuous p.d. functions from 
G0 to G always has a solution. McMullen [71] has proved the same 
result for the case where G is locally compact and G0 is compact. 
McMullen's monograph may be consulted for further results in this 
direction. 

6. Integrally positive definite functions. The early workers in the 
field realized that for many purposes it is convenient to replace the 
inequality (1.1) by its integral analogue 

where the function <f> ranges over L1 or Cc (the continuous functions 
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with compact support). Indeed iff is continuous, then (1.1) is equiva-
lent to (6.1). (See Bochner [11] and also § 8.) 

In view of this situation, Cooper [23] proposed the following defini-
tion in 1960. Given a set F of complex-valued functions on R, he called 
a function / positive definite for F if the integral in (6.1) exists as a 
Lebesgue integral and is non-negative for every (f> Œ F. Let us denote 
by P( F) the class of all functions which are p.d. for F. Clearly Fx C F2 

implies that P( Fx) D F( F2). It turns out that P(Ll) is identical, up to 
sets of measure zero, with the class of ordinary continuous p.d. func-
tions. However, P(CC) is a much more extensive class of functions; 
ordinary p.d. functions are necessarily bounded, whereas the functions 
in P(CC) may be unbounded. 

Cooper showed that P(CC) = P(LC
P) for every p ^ 2, where Lc

p is 
the set of functions in Lp with compact support. Furthermore, if 1 ^ p 
^ 2 and q = pl2(p— 1), then any function in P(LC

2) which is locally in 
Lq is in P(LC

P). (The converse is false; see Stewart [108].) These 
results indicate that for all practical purposes the gamut of p.d. func-
tions is spanned by the classes P(LC

P), where 1 ^ p ^ 2; as p increases 
from 1 to 2, P(LC

P) increases from the smallest class of p.d. functions to 
the largest such class. (However the examples at the end of this sec-
tion and in § 9 show that F( F ) can be larger when F is substantially 
smaller than the usual function classes Cc, Cc °°, Lc

p, etc.) 
Cooper's principal result is a generalization of Bochner's Theorem 

for these integrally p.d. functions: if f G. P(CC), then there is a non-
decreasing function V, not necessarily bounded, such that the equation 
f(x) = Jeia* dV(a) holds in the sense of Cesàro summability almost 
everywhere. Furthermore the function V must satisfy V(a) = o(a) as 
a —> ± °° . For example, if we take V(a) = Va for a è 0, and V(a) = 0 
for a < 0, then 

("T VI-6">0 

/ ( * ) = r eiaXdV(a)= < 
• / — 

~~^~ \ / ~ 7 r > f o r : x : < ° 
2 \-2x 

is p.d. for Cc, but it is not an ordinary p.d. function, since it is un-
bounded. 

Functions of this wider class P(CC) had been studied earlier under 
certain restrictions. Weil [118] had considered those functions in 
P(CC) which belong to Lp for some p = 1, whereas Cooper [22] had 
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investigated the functions in P(CC) which satisfy the condition 
J5|/(x)| dx = 0(|fc|«) as h -> 0, where O â a â l . 

The notion of integrally p.d. functions makes sense on any locally 
compact group G. If integration with respect to left-invariant Haar 
measure on G is denoted by dx, then P(F) consists of those/for which 
nf{y~lx)4>(x)4>(y) dxdy exists and is non-negative for every <j> E F. 
In recent papers by Hewitt and Ross [48], Edwards [28], and Rickert 
[89], constructions have been given on non-discrete locally compact 
groups for functions in P(CC) which are not in L00 and, therefore, not 
almost everywhere equal to the ordinary continuous p.d. functions. A 
Bochner-type theorem, which generalizes Cooper's Theorem on the 
one hand and the Weil-Povzner-Raikov Theorem on the other hand, 
was proved by Stewart [107, Thm. 4.2]. A n y / E P(CC) on a LCAG is 
the Fourier-Stieltjes transform (in a suitable summability sense) of a 
positive measure fi, possibly unbounded, on Ù. Furthermore, /ut must 
satisfy /ut(£ + K) —> 0 as £ —» oo, where K is any compact subset of G. 

It would be interesting to find integral representation theorems for 
functions in P(F) which would reflect any kind of symmetry that the 
class F might possess. For instance, if G = R and E denotes the even 
functions in Cc, then any even continuous func t ion /E P(E) is of the 
form 

ç oo r oo 

(6.2) /"(*)— cosXacdu1(X) + cosh Ax du2(X), 
Jo Jo 

where ^ and /LI2 are positive measures, fix is finite, and fi2 *s such that 
the second integral converges. (See Gelfand and Vilenkin [39, p. 197] 
where the result is attributed to Krein.) More generally, if G = Rn 

and F is symmetric with respect to a group of rotations (or more 
general linear transformations), is there an analogue of the formula 
(6.2) for functions in P(F) which conveys the symmetry of F? Partial 
answers have been given by Nussbaum [81] (for the orthogonal group) 
and Tang [113]. 

7. Distributions. Schwartz [103] has extended the theory of p.d. 
functions to distributions. Let Cc °° be the space of infinitely differentia-
ble functions with compact support on R, and give Cc °° the topology 
usual for the theory of distributions, i.e., 0 n —• 0 in Cc °° ^> the supports 
of all the <f>n's lie in a common compact set, and <f*n and all its deriva-
tives converge uniformly to 0. It T is a distribution, i.e., a continuous 
linear functional on Cc °°, then T is called positive definite if T(<f> * <£*) 
US 0 for all <f> G Cc, where <£*(x) = <£( — x) and <f> * i/r denotes convolu-
tion: <f> * ifß(x) = Jroo< (̂x — y)*}f(y) dy. In order to see why this defini-
tion can be considered as a generalization of p.d. functions, let us 
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consider the distribution Tf which is associated with any locally inte-
grable function/: 

Tf(4>)= \[j{xft(x)dx. 

Iff is p.d., or more generally is in P(CC °°), then the associated distribu-
tion 7} is p.d. according to Schwartz's definition, because 

2X****)= \[mf(x)4,*4>*(x)dx 

= | " _ f(x)dx \[^(x + yWy)dy 

= r f" f(x-y)<KxW)dxdyiZO. 
J — oo J — oo 

The analogue of Bochner's Theorem is Schwartz's representation for a 
p.d. distribution as the Fourier transform of a positive tempered mea-
sure /x, i.e., T(<f>) = f™oo<j>(x) dfi(x) where <f> is the Fourier transform 
of fa and, for some p ̂  0, J*» d/x(*)/(l + \x\2)^ < <». This Bochner-
Schwartz Theorem has been extended to distributions on LCA groups 
by Maurin and Wawrzynczyk [ 116]. 

Positive definite distributions have found applications in the theory 
of generalized random processes. See Gelfand and Vilenkin [39, Ch. 
3] . 

8. Kernels. We can generalize the notion of a p.d. function by re-
p l a c i n g / ^ — Xj) in (1.1) by K(xi9 Xj). If K(x, y) is any complex-valued 
function on R2, we call K a positive definite kernel if 

(8.1) J K(xhXj)C£j^0 

holds whenever x{ G R and £ G C. Although this concept is, of course, 
more general than that of p.d. functions, it appeared earlier. In fact 
p.d. kernels, as defined by (8.1), seem to have arisen first in 1909 in a 
paper by Mercer [72] on integral equations, and, although several 
other authors made use of this concept in the following two decades, 
none of them explicitly considered kernels of the form K(x, y) = 
f(x —t/), i.e., p.d. functions. Indeed Mathias and Bochner seem not to 
have been aware of the study of p.d. kernels. 

Mercer's work arose from Hubert's paper of 1904 [50] on Fredholm 
integral equations of the second kind: 
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(8.2) f(s) = (f>(s) - X fb K(s, t)4>{t) dt. 
J a 

In particular, Hilbert had shown that 

(8.3) £ £ K(sJ)x(s)x(t)dsdt='Z-j [ £ *„(*)*(*) * ] \ 

where K is a continuous real symmetric [K(s, t) = K(t, s] kernel, x is 
continuous, {i/*n} is a complete system of orthonormal eigenfunctions, 
and the An's are the corresponding eigenvalues of (8.2), i.e., i/*n(s) = 
Xn ft K(s, t)tyn(t) dt Hilbert defined a "definite" kernel as one for 
which the double integral J(x) = /J /J K(s, t)x(s)x(t) dsdt satisfies 
J(x) > 0 except for x(s) = 0. 

The original object of Mercer's paper [72] was to characterize the 
kernels which are definite in the sense of Hilbert, but Mercer soon 
found that the class of such functions was too restrictive to characterize 
in terms of determinants. He therefore defined a continuous real sym-
metric kernel K(s, t) to be of positive type ifj(x) â 0 for all real con-
tinuous functions x on [a, b], and he proved that (8.1) is a necessary 
and sufficient condition for a kernel to be of positive type. (In view of 
(8.3) a necessary and sufficient condition for a kernel to be p.d. is that 
all its eigenvalues be positive.) Mercer then proved that for any con-
tinuous p.d. kernel the expansion 

K(M) = SM)M) 

holds absolutely and uniformly. 
At about the same time, W. H. Young [124], motivated by a different 

question in the theory of integral equations, showed that for continuous 
kernels (8.1) is equivalent to J (x) ̂  0 for all x in Ll[a, b]. In a later 
paper, Mercer [73] considered unbounded kernels of positive type, 
thereby anticipating the integrally p.d. functions considered in § 6. 

E. H. Moore [75, 76] initiated the study of a very general kind of 
p.d. kernel. If E is an abstract set, he called functions K(x, y) defined 
on E X E "positive Hermitian matrices" if they satisfy (8.1) for all 
X{ G E. Moore was interested in a generalization of integral equations 
and showed that to each such K there is a Hilbert space H of functions 
such that, for each f€zH, f(y)= (f(x),K(xyy)). This property is 
called the reproducing property of the kernel and turns out to have 
importance in the solution of boundary-value problems for elliptic 
partial differential equations. For an account of reproducing kernels, 
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with further indications of their applications, see Aronszajn [6], es-
pecially the historical introduction. 

Another Une of development in which p.d. kernels played a large 
role was the theory of harmonics on homogeneous spaces as begun by 
E. Cartan [18] in 1929 and continued by Weyl [119] and Ito [53]. 
The most comprehensive theory of p.d. kernels on homogeneous 
spaces is that of Krein [60] which includes as special cases not only 
the work of the above three authors but also the work of Gelfand and 
Raikov (described in § 4) on p.d. functions and irreducible unitary 
representations of locally compact groups. Krein was able to repre-
sent a broad class of kernels on homogeneous spaces in the form 
K(x, y) = JY Z(x, y; t) dcr(t), where a is bounded and positive on a 
certain space T, and each Z(x, y; t) is a "zonal" kernel (analogous to the 
elementary p.d. functions). As special cases of this very comprehensive 
representation we can mention the Weil-Povzner-Raikov Theorem and 
Schoenberg's results described in § 10, specifically equations (10.1) and 
(10.2). See Hewitt [47; pp. 145-149] for an exposition of this work of 
Krein. 

In probability theory p.d. kernels arise as covariance kernels of 
stochastic processes. (See Loève [66, p. 466].) 

9. Functions with a finite number of negative squares. In this sec-
tion we discuss a generalization of p.d. functions which is due to M. 
Krein. Although certain special cases had been dealt with earlier, 
it was in 1959 [61] that Krein formulated the concept of functions with 
k negative squares. These are the complex-valued functions which are 
Hermitian, in the sense that f(( — x) = f(x), and such that the form (1.1) 
has at most k negative squares (when reduced to diagonal form) for 
every choice of n and JC1? • • -, xn G R, and at least one of these forms 
has exactly k negative squares. In other words the matrix (1.2) has at 
most k negative eigenvalues no matter how the x{s are chosen, and has 
exactly k negative eigenvalues for some choice of the x/s. For ex-
ample, the function/(JC) = cosh x has one negative square because 

E coshfo - x^èiìj = E £ c o s n xi\2~ E 6 s i n h xi\2-

Krein proved that if / is a continuous function with k negative 
squares, then there is a positive measure [i and a polynomial Q of 
degree k such that 

(9.1) /(*) = h(x) + J " M ̂ y dM 

where h is a solution of the differential equation 
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Q (~ÌÌc)Q ( _ i ic )h{x) = °'iQ(k) = Ç{X))' 
and S(x, X) is a regularizing correction (compensating for the real zeros 
of Ç). Notice that in the case k = 0 the definition reduces to that of a 
p.d. function, and Krein's integral representation (9.1) becomes Boch-
ner's Theorem. The proof makes use of Pontryagin's Theorem on in-
variant subspaces associated with self-adjoint operators in spaces with 
indefinite scalar product. 

Krein had earlier given an integral representation for continuous 
functions with one negative square in connection with the problem of 
the continuation of screw lines in infinite-dimensional Lobachevski 
space. See [59] or [52, Theorem 6.2] for a simplified version of (9.1) 
in the case k = 1. The generalization of (9.1) to functions of several 
variables appears in Gorbachuk [43]. 

Iohvidov and Krein [52, Theorem 5.2] proved an integral repre-
sentation analogous to (9.1) for sequences with k negative squares 
which reduces to the theorem of Herglotz when k = 0. 

Functions with a finite number of negative squares have applications 
to probability theory, in particular to infinitely divisible distribution 
laws and, therefore, to stochastic processes with stationary increments. 
A random variable is said to be infinitely divisible if for every positive 
integer n it can be expressed as the sum of n independent and identi-
cally distributed random variables. We shall show that the logarithm 
f(x) of the characteristic function g(x) of such a random variable has at 
most one negative square. For any n, g(x) = [g„(x)] n, where gn is a 
characteristic function, and hence is p.d., i.e., exp[/(x)/n] is p.d. But 
the product of p.d. functions is p.d., and so exp [ (mln)f(x)] is p.d. 
Since the limit of p.d. functions is p.d., it follows that exp [tf (x)] is p.d. 
whenever t^ 0. Thus for any xl9 • • -, xn G R and ti^ 0, we have 

= E6I2+ tifiti -*»)6'5 

+ y 2 «p[*„tf(x, - xj)]f(Xi - xj)téj, 

where 0 < 0̂  < 1. By letting t -» 0, we see from this that 2 / ( x * "" xj) 
€i£j s= 0 whenever 2) ft = 0, and so / h a s at most one negative square. 
If we apply Krein's formula (9.1) with k = 1, we obtain Kolmogorov's 
formula 
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(9.2) logg(x) = vyx + J " _ ehX ^ iXx dM(X) 

for the logarithm of the characteristic function of an infinitely divisible 
distribution with finite variance. Formula (9.2) was first proved by 
Kolmogorov [56] in 1932, but, of course, not by the above method. 

One can attempt to generalize the concept of functions with a finite 
number of negative squares in the same manner as described in §§ 4,6, 
7, and 8 for p.d. functions. There is no problem in formulating the 
definition and elementary properties of such functions on general 
groups (see [ 109] ), but no one seems to have found an analogue of 
Krein's integral representation for groups. However the results of 
§§ 6, 7, 8 do have analogues. Shah Tao-Shing [105] has characterized 
distributions with k negative squares by a formula which generalizes 
both Krein's formula (9.1) and the Bochner-Schwartz Theorem. (Such 
distributions are useful in generalized random processes. See [39, 
chapters 2, 3].) Gorbachuk [83, 43] has generalized Krein's work by 
considering kernels K(x9 y) with k negative squares. Stewart [109] has 
enlarged Krein's class of functions with k negative squares and gen-
eralized (9.1) in a sense similar to that in which Cooper's results (§ 6) 
on integrally p.d. functions extend those of Bochner. 

In this connection we mention that although functions with k nega-
tive squares are clearly a generalization of p.d. functions, in another 
sense they can be regarded as a special case of p.d. functions. The 
explanation of this paradox lies in the fact that if / has k negative 
squares, then it satisfies the inequality 

///(*-y)Q( * £)*<*>£ ( * £)*(y)dxdy^o 

for every </> G Cc °°, the infinitely differentiate functions with compact 
support, where Q is the polynomial in (9.1), and so, in the notation of 
§ 6,f G P( F), where F = Q(idldx)Cc °°. 

10. Metric spaces. In 1938 Schoenberg published a certain gen-
eralization of real p.d. functions which arose from the problem of 
isometrically embedding metric spaces in Hilbert space [97, 98, 99] 
and the related problem of determining the screw lines and screw 
functions of Hilbert space [80]. 

Schoenberg calls a set S a quasi-metric space if it has a distance 
function d with the following two properties: (i) d(P, P ') = d(P ', P) = 
0, (ii) d(P, P) = 0, where F, Pf G S. A real, continuous, even function 
/ , defined in the range of values of ± d(P, P '), is called positive definite 
in S if for any P{ G S and fi G R, we have 2 V i / ( d ( P i > PjMtj = 0-
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(Notice that, for S = R, this agrees with the definition of the ordinary 
continuous real p.d. functions.) For example, the equation 

exp(-S */) 
N 1 

= J • • • J exp( - -j J uj2 J exp ( i J£ XjUj JduY • • • dum 

shows that the function f(t) = e~f2 is p.d. in Rm, and, hence, in a real 
Hilbert space. One connection between these p.d. functions and the 
embedding problem is Schoenberg's result [97] that a separable 
quasi-metric space is isometrically embeddable in a real Hilbert space 
if and only if the function f(t) = e~kt is p.d. in S for every X > 0. 

Schoenberg has proved a number of interesting integral representa-
tion theorems for such functions. For example, in [98] any function 
p.d. in Rm was shown to be of the form 

(10.1) / ( * ) = Jo" njfi*)dc4M), 

where a is bounded and non-decreasing, and flm is essentially a Bessel 
function: 

< W * ) - r ( f ) (f)(,/2)<m"2>/(.„(m-2,W. 

In particular Cix(t) = cos ty Q^i) = J0(t), ß3(f) = (sin t)lt, and so (10.1) 
reduces to Bochner's Theorem for real functions when m = 1. By 
letting m —• oo in (10.1), the representation 

(10.2) f(t) = J* e-<2«2 da(u) 

is deduced for functions p.d. in Hilbert space. 
Let Sm denote the unit sphere in Rm+1 and d(P9P') denote spherical 

distance. Schoenberg's representation for functions p.d. in S2 [99] is 
/(*) = S n=o 0nPn(cos t)9 where a n ^ 0 , 2 a n < ° ° > and Fn is a 
Legendre polynomial. A similar formula, in terms of ultraspherical 
polynomials, holds for functions p.d. in Sm and was extended by Boch-
ner [14] from spheres to compact spaces with transitive groups of 
transformations using the generalized spherical harmonics of Cartan 
and Weyl. Again, letting m —* oo gives the general form of functions 
p.d. in the unit sphere in Hilbert space: f(t) = ^ = 0 a f l cosn£, where 
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an = 0, 5] ön < °°. For recent extensions of Schoenberg's work, see 
Bingham [ 10] and the references therein. 

Finally we note Einhorn's discovery [29, 30] of the extreme paucity 
of functions p.d. in C[0 ,1] , the space of continuous functions on [0,1] 
with the supremum metric. The only such functions are the positive 
constants. 

11. Other generalizations. A complete list of the current generaliza-
tions of p.d. functions would be very long and exhibit great variety. 
In this final section we give brief mention to some of the more in-
teresting ideas in this list which have not already been covered. 

(i) Krein [58] and Berezanski [8] have constructed a theory which 
generalizes Bochner's in that eiaX is replaced by eigenfunctions of dif-
ferential (and more general) operators. Their integral representation 
theorem includes as special cases not only Bochner's Theorem but also 
Bernstein's Theorem on the representation of completely monotone 
functions as Laplace-Stieltjes integrals. 

(ii) Positive functionals on Banach algebras with involution (see, 
e.g., Loomis [67, p. 96] ) can be considered as a generalization of p.d. 
functions in view of the 1-1 correspondence established by Gelfand 
and Raikov [38] between P and the positive functionals on the group 
algebra L1 (G). Any functional of the form L(<f>) = Sf{x)4>(x) dx, 
where/ EL P, and dx denotes integration with respect to Haar measure, 
is a positive functional (cf. § 7), and, conversely, any positive func-
tional on Ll (G) is of this form. Furthermore there is a version of the 
Weil-Povzner-Raikov Theorem which is valid for positive functionals 
on certain algebras. See [67, Thm. 261] and Lumer [68]. 

(iii) There is a natural generalization from p.d. functions to p.d. 
measures. The inequality (6.1) can be rewritten as / 0 *<£* (x)f(x) dx 
i? 0, for all <f> E Cc (cf. § 7). In view of this, a measure is said to be 
positive definite if J(f> * <f>*(x) dfi(x) è 0 for all </> E Cc. Such mea-
sures have been studied by Godement [42] and Argabright and Gil 
deLamadrid [5]. 

(iv) So far all the generalizations that we have discussed have been 
numerical-valued functions, but several authors have considered func-
tions with more general range. Falb and Haussmann [32] have given 
a representation like Bochner's for p.d. functions with values in a 
Banach space. Of particular interest are p.d. functions on a group 
whose values are operators in a Hilbert space, and such functions 
have been studied by Naimark [77] and Sz.-Nagy [112]. There are 
two possible ways of defining such functions. For the connection be-
tween the definitions and further references see the exposition in § 2 of 
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Berberian [7]. In the appendix to [92], Sz.-Nagy considers p.d. 
operator-valued functions on semigroups with involution and gives 
applications to contraction operators and extensions of operators. 
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