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Positive-definite quadratic bundles over the plane

M.-A. Knus, M. Ojanguren and Raman Parimala

Introduction

Indécomposable, positive-definite quadratic spaces of ranks 3 and 4 over
!&quot;[*&gt; y] hâve been constructed in [5] and [13]. A natural question to ask is

whether there exist indécomposable quadratic spaces of rank &gt;4 over R[x, y] and

whether the theorem of Krull-Schmidt holds for orthogonal décompositions of

positive-definite quadratic spaces over R[x, y], (cf [9], p. 204.)
In §1 of this paper we prove a Krull-Schmidt theorem for orthogonal sums of

positive-definite quadratic spaces over U[x, y]. In view of [8], Thm. 2.1, it is

enough to prove a similar theorem for positive-definite quadratic bundles over

Pr. More generally, we prove that if X is a projective scheme over M and Xc the

complexification of X, then the theorem of Krull-Schmidt holds for positive-
definite (j-hermitian (resp. quadratic) bundles over Xc (resp. X). We also deduce

that Witt-cancellation holds for positive-definite quadratic spaces over U[x, y]. In

§2, we exhibit a class of vector-bundles of rank 3 and 4 over P£, associated to a

pair of projective ideals of H[x, y], and show, using results of §1, that thèse

bundles are stable. (The examples of rank 4 bundles over P£ constructed hère are

interesting, particularly in view of the fact that in gênerai it is not easy to décide

the stability of bundles of rank &gt;3.) In §3, we construct an example of a rank 6,

indécomposable quadratic space over U[x, y]. The idea of the construction is to

patch certain rank 3 and 4 quadratic spaces over U[x, y].

We are grateful to R. Sridharan for his contributions to this paper. We also

thank W. Scharlau for explaining to us the content of [15].

§1. Krull-Schmidt theorem for positive-definite bundles over projective schemes

Let X be a projective scheme over R and let Xc dénote the complexification
Spec CxX of X. Let &lt;x be the involution on Xc induced by the complex

conjugation on C and tt the projection of Xc onto X. For any vector bundle ^0
over X we hâve a natural isomorphism p : 7r*^0» cr*ir*&amp;0, since tt ° cr tt. For
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Positive-definite quadratic bundles over the plane 401

any vector bundle 9 over Xc we dénote by 9* the dual bundle and by ^* the

pull-back a* 9&apos; of 9&apos; through a. We define a natural isomorphism (cfr. [11])
r:(a*9)&apos;-^9* by

*9)&apos; *&lt;**»(&lt;r*9)&apos;

In [11] a cr-hermitian structure over 9 was defined as an isomorphism &lt;(&gt;:&amp;

a* 9&apos; such that the diagram

&lt;r*9&apos;

(a* 9)&apos;

is commutative. It is convenient to give an équivalent définition, using the termin-
ology of [15]. Let Wl be the category of vector bundles over Xc. Associating to

every 9 the bundle ^* we get a functor * :3W»2)ï. Let, for any 9&gt; \&amp; : 9-+ 9**
be the isomorphism defined by

It is easily checked that î is a natural transformation id-2»** satisfying
*îï$F* idp*. Hence * is a duality functor in the sensé of [15]. We identify each

bundle 9 with ^** and each morphism &lt;f&gt; of bundles with &lt;£**. For e ±1, we

define an e-hermitian structure on 9 as an isomorphism $:&amp; ^+9* such that
&lt;£* e&lt;£. A 1-hermitian structure on 9 turns out to be the same as a cr-hermitian
structure in the sensé defined above and in [11] or [8]. If x is a real closed point of

Xc, i.e. a closed point such that a(x) x, the fibre 9X at x of a cr-hermitian
bundle 9 carries a non-degenerate hermitian form. We say that 9 is positive
definite if the fibre at every real closed point is positive definite. Since the

signature of a hermitian form is locally constant, if XR is connected, 9 is positive
definite if and only if the induced form on the fibre of some real closed point of

Xc is positive definite.
We assume, from now on, that X has at least one real closed point.
For any bundle 9 we dénote by H(9) the hyperbolic bundle associated to 9.

This is the bundle &amp;@9* with the hermitian structure defined by the matrix

1 0

LEMMA 1.1. Let X be an indécomposable vector bundle over Xc such that
r ^T*. Then JV carries a cr-hermitian structure.
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Proof. By Proposition 2.5 of [15], X carries a (1)- or a (-l)-hermitian form. If

&lt;f&gt;:N-*Jf* is (-l)-hermitian, i&lt;t&gt; is hermitian.

THEOREM 1.2. Let (#, &lt;f&gt;) be a positive-definite a-hermitian bundle over Xc.
Then, there is a unique orthogonal décomposition

where #, are the isotypical components of the vector bundle t (Le. g*,-2» ©JV,, where

Jf, are indécomposable and for i^j, Jf^Jf,). Each tx carries a positive-definite
a-hermitian structure which is unique up to isometry.

Proof. Since X is a projective scheme, the category Wl with the duality functor *

defined above satisfies the assumptions (i)-(iii) of [15], page 272. Hence, by

Theorem 3.2 of [15],

(S, &lt;fr) s (tf^U &apos; ± (*»,*),

where each ^, is a direct sum of vector bundles isomorphic to a fixed indécompos¬
able J{t or to its &quot;dual&quot; Jf*t. By Theorem 3.3 of [15], if Jf&amp;X*, tx contains a

hyperbolic orthogonal summand. Since, by assumption, is positive definite, this

cannot happen and hence each t is isotypical. Since the orthogonal décomposi¬
tion written above is unique, it suffices to prove the uniqueness for an isotypical
vector bundle.

Let be an isotypical vector bundle of type N and let £ ^ © Jf. We show that

if carries a positive-definite cr-hermitian structure, then it is unique. Since Jf is

indécomposable, the ring E End Jf is a local finite-dimensional C-algebra. Let
É - E/rad E. Then £ is a finite-dimensional division algebra over C and hence

É-^C. One reduces the study of cr-hermitian structures on to the study of

hermitian-forms over a certain vector space M over É defined as follows (see

[15], 2.2, 2.4). Let $:#-»&lt;!£* be a cr-hermitian structure on t. Then,

©r jV^&gt;©r jV* and by the Krull-Schmidt theorem the vector bundles M and jV*

are isomorphic. Hence, by Lemma 1.1, there exists an isomorphism foiN^+Ji*
which defines a cr-hermitian structure on Jf. In what follows, we shall fix this

cr-hermitian structure &lt;\&gt;0 on Jf. The isomorphism c60 induces an involution t on

E End JV* defined as

The map / -&gt; f° satisfies (fg)° g°f°, (/°)° / and for A e C, (A/)0 A/0, A denot-
ing the complex conjugate of A. This involution passes down to an involution on
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Ë E/radE C which is just the complex conjugation on C. Let M-
Hom (Jf, &lt;g). Then M is a right E-module and the isomorphism &lt;f&gt; :#-» #* induces

an isomorphism &lt;f&gt;l:M-^ HomE (M, E) which is semilinear with respect to the

involution t. The map 4&gt;x is in fact defined as &lt;M/)(g) 4&gt;ZX ° /* ° g for /, g e M. It

is easily verified that &lt;\&gt;x defines a hermitian form on the E-module M with

respect to the involution r on E. Going modulo the radical of E, we obtain on

M M/(rad E)M a hermitian form over C.

Two cr-hermitian structures on t are isometric if and only if the corresponding
hermitian forms on M are isometric ([15], 2.2). If the form on t is positive-
definite, then the form on M is either positive or negative-definite. In fact, if M

represents zéro, then M contains a hyperbolic summand and so does # by [15], Prop.
2.4. If &lt;^ and &lt;f&gt;r are two positive definite forms on #, the corresponding forms on

M are either both positive-definite or both negative-definite: otherwise the form

corresponding to &lt;t&gt; _L 4&gt;&apos; on &lt;£ 1 would be isotropic. Since, up to isometry, there is

a unique positive or negative-definite hermitian form on M, it follows that there is

a unique positive definite cr-hermitian structure over g. This proves Theorem 1.2.

COROLLARY 1.3. A vector bundle over Xc carnes at the most one positive-
definite a-hermitian structure.

COROLLARY 1.4 (Krull-Schmidt theorem). Any a-hermitian positive-
definite bundle (, &lt;t&gt;) over Xc has a décomposition

into indécomposable a-hermitian bundles. The summands (Jfo vt) are unique up to

isometries and permutations.

COROLLARY 1.5. The Krull-Schmidt theorem holds for positive-definite
cr-hermitian spaces over C[x, y].

Proof. By (3.1) of [8] any positive-definite cr-hermitian space over C[x, y] has,

up to isometry, a unique extension to P£. Hence the assertion follows from 1.4.

The following theorem and corollaries give the corresponding results for

positive-definite quadratic bundles.

THEOREM 1.6. Let (g, $) be a positive-definite quadratic bundle over X.

Then, there is a unique orthogonal décomposition
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where gt are the isotypical components of the vector bundle t. The components #,

carry a positive-definite quadratic structure, unique up to isometry.

A proof on the same lines as of Theorem 1.2 can be given Let now Wl be the

category of real vector bundles over X and, for any such bundle # let #* &apos;

Vtvm (sf, 0x) be the dual of t. By Theorem 3.2 of [15] one reduces immediately to

the case of an isotypical bundle ^-2»©^, Jf indécomposable Since #^#*, we

hâve X^+N* and since End^T is local, J( carries either a quadratic or a

symplectic structure (froiJf-^Jf*. Then &lt;t&gt;0 gives rise to an involution t of

JE End Jf9 which passes down to an involution of É E/rad E. It is clear that

JB-^R, C, or H. If Ë=R, the involution is trivial. If Ë C, the involution must be

complex conjugation. And if JÊ^H, the involution on IH is either trivial or is a

conjugate of the canonical involution. The isometry classes of quadratic structures
on correspond to isometry classes of positive-definite or negative-definite forms

on M M/(rad E)M, where M Hom(^V, #). The existence of orthogonal bases

for hermitian forms shows that there is unique positive- or negative-definite
T-hermitian form on M. It follows that there is a unique positive-definite
quadratic structure over #.

COROLLARY 1.7. A vector bundle over X carries at the most one positive-
definite quadratic structure.

COROLLARY 1.8. The Krull-Schmidt theorem holds for positive-definite
quadratic bundles over X.

COROLLARY 1.9. The Krull-Schmidt theorem holds for positive-definite
quadratic spaces over U[x, y].

§2. Some stable bundles of rank 3 and 4 associated to projective ideals of H[x, y]

We recall that a bundle over Prc is said to be stable if, for every cohérent
subsheaf ^^0 of ^ such that £/&amp; is torsionfree we hâve c1(^)/rank &amp;&lt;

CiféO/rank t. In [8] to each non-free projective idéal P of H[x, y] was associated a

rank 2 stable bundle #(P) with a positive-definite o--hermitian structure. We recall

the construction of thèse bundles, which in [8] were called ^î-bundles. Let
&lt;j&gt; : C &lt;8&gt; IH &gt; M2(C) be the isomorphism given by

(f&gt;(s ® (m + vj)) s(_
&quot;

V)u, v e C.
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Let H H[jc,y] and C C[x, y]. For any projective idéal P of H, C&lt;8&gt;P is an

M2(C)-module via &lt;f&gt;. Hence, there is a &lt;£-semilinear isomorphism ^P:C&lt;S&gt;

P-2» M2(C). We shall call such a map a sphtting of P. By Galois cohomology, we

associate to the splitting ^P the cocycle

aP &lt;rVP(a ® D^HD e GL2(C)

where cr is the complex conjugation on C and the transported action &lt;f&gt;(cr ® l)&lt;t&gt;~1

on M2(C). The map tyP can be chosen such that aP is positive-definite hermitian
of déterminant one. Such a splitting is called a normalized splitting. Hence, aP

defines a cr-hermitian structure on A£. This structure can be uniquely extended to

^c ([8]) and the extension is the complex bundle #(P). Notice that by (1.2) (P)
carries a unique positive-definite cr-hermitian structure. Let now P and Q be two

projective ideals in H. The reduced norm Nr introduced in [6] defines a quadratic
form on the R[x, y]-module of rank 4 HomH (P, Q). If ^P:C(g&gt;P=-M2(C) and

^o :C&lt;8&gt; QS*M2(C) are normalized splittings of P and Q, then, for any fe
HomH (P, Q), Nr (/) det ^Q(l &lt;g&gt; f)9p\l). This quadratic space is indécomposa¬
ble if P and Q are non-free and not isomorphic. If P Q and P is non-free, then

this space décomposes as (l)±q, where q is the orthogonal complément of the

submodule U[x, y] of EndH (P) for the reduced norm on the algebra EndH (P). It

is shown in [6] that q is indécomposable. Thèse indécomposable quadratic spaces
of ranks 3 and 4 extend uniquely to indécomposable quadratic bundles over Pj,
denoted respectively by ^(P, Q) and ^(P). Let tt :Pc -&gt;Pr be the projection and

let ir*&amp;(P, Q) &lt;&amp;(P, Q) and tt*^(P) ^(P). We shall show that thèse bundles

are stable.

THEOREM 2.1. The bundle &lt;&amp;(P, Q) is isomorphic to #(P)®tf(Q).

COROLLARY 2.2. We hâve c2(&lt;ê(P, Q) 2(c2(#(P) + c2(#(Q)) and

4c2(S(P)).

Proof. For 2-bundles and 9 on Pi, if c1() c1(9) 09 then c2(^®^) is

givenby

Theorem (2.1) is a conséquence of the following results. The first one is

implicitly contained in [7], (1.12).

LEMMA 2.3. Let P be a projective idéal of H, VP a normalized splitting of P

and aPeGL2(C) the corresponding cocycle. Then there is a basis el9 e2 of P as a
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C-module such that the matrix of the cr-hermitian form aP on P defined by

aP(ex, ex) (^P(et), VP{ex)) i 1, 2

aP(eu e2) (*&apos;p(61), ^P(e2))-i(^P(e1), ¥P(iej)

where, for u, v e M2(C), (u, v) è(det (m + v) -det u det v), is aP.

Let aP=a + ip with a, |3 eM2(R[x, y]). Then the symmetric matrix
\-(3 a/

represents the reduced norm on P with respect to the basis eu e2, e3 ieu e4 ie2 of
P over R[jc, y].

The next lemma is an immédiate conséquence of (2.3) and of the définition of

the reduced norm on HomH (P, Q) by means of the splittings ^P and tyQ.

LEMMA 2.4. Let fe¥LomH(P,Q) and aP,aQ the hermitian forms given in

(2.1). Then, for any u,veP

The module P&apos; Homc (P, C) is a projective right H-module (with the action

/(Àx),ÀeH). We now compute its cocycle.

LEMMA 2.5. Let ^P be a splitting of P with cocycle aP. Then, there is a

splitting *Pp&apos; of P&apos; with cocycle ap^a?1.

Proof Let T : M2(C)-1» Homc (M2(C), C) be the isomorphism given by the

trace, i.e. Ta(b) Tr(ab), a,beM2(C). Let P^ HomR[x,y](P,IR[jc, y]). Then the

map #V= T^iWpf (where
&quot;

means dualization with respect to U[x, y]) is a

splitting of P&quot; and one computes that the corresponding cocycle is aPx. Let now
t : F -^ P&quot; be the isomorphism (of H-modules) induced by the trace C -&gt; R. Then

the map #&gt; WP~ ° (1 ® t) is a splitting of P&apos; such that aP=aP=aP1.
Let now aP&gt; be the hermitian structure on P&apos; given by

where e[, î 1,2 is the dual basis of the basis ex, i 1,2 given in (2.3). Let S be

the a -hermitian space obtained by extending the reduced norm Nr on

HomH (P, Q) to C ®r HomH (P, Q), i.e. S(k ®/) AA Nr (f).
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LEMMA 2.6. The map p:C&lt;g&gt;HomH (P, Q)^&gt; Homc (P, Q)^&gt; P&apos;®c Q

where the ftrst map is the multiplication and the second is the canonical map, is an

isomorphism of a-hermitian spaces p : S^&gt; aP&gt;&lt;8&gt; ao.

Proof. For any basis {et} of P, p is given by p(À ® /) £, e? ® /(Ae,). Choosing
the basis given in (2.3), we hâve, using (2.4),

(aP. (8) aQ)(l e&apos;, ® /(Ae,)) I aP.(e&apos;,, 6;)aQ(/(Ac,),

Nr (/)AA X aP,(e;, e;)ao(e,, e,) Nr (/)AA.

This shows that p is an isometry.
Theorem (2.1) now follows from (2.6) noting that the extension of a positive

definite a-hermitian form from A£ to Pc is unique and that (P*) #(P).
To show that the bundles ^(P, Q) and ^(P) are stable, we begin with

LEMMA 2.7. Let Kbe a field of characteristic ^2 and let (#, &lt;/&gt;) be a quadratic
bundle of rank 2 over PrK. If (#, &lt;f&gt;) is anisotropic, (£, $) is extended from K. If
(, &lt;f&gt;) is isotropic, then (, tfr)-^ H(0(n)), a hyperbolic space.

Proof. The first part of the lemma is proved in ([8], 2.4). If (#, &lt;f&gt;) is isotropic,
then restricted to each affine pièce D(xt), the quadratic form can be given by the

matrix I

j. One then easily checks that (#, c^)-2» H(0(n)) for some n.

LEMMA 2.8. Let K be a field of characteristic ^2 and let be an indécom¬

posable anisotropic quadratic bundle over PrK. Then t has no non-zéro section.

Proof. Evaluating the quadratic form on a global section one gets a global
function on PrK, hence a constant. This constant must be zéro, since the bundle is

indécomposable as a quadratic bundle. The section has to be zéro since the form
is anisotropic.

For any bundle # over P£ the &quot;type&quot; of is the pair of Chern classes (ct(),

THEOREM 2.9. The bundles #(P) are stable rank 3 bundles of type (0, 8n),

where c2(#(P)) 2n, (P) denoting the ^-bundle associated to a non-free projective
idéal P of H[x, y]. The bundles (P, Q) are stable rank 4 of type (0,4(m + n)) if P

and Q are non-isomorphic, non-free, {P) of type (0,2n) and (Q) of type

(0,2m).
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Proof. Since g(P) supports a quadratic form it follows that cx(g{P)) 0. If we

consider global sections, we hâve H°(Pc, »(P)) -=*&gt; C ® H° (Pg,^(P)) 0 by

Lemma 2.7, since &amp;{P) supports an anisotropic indécomposable quadratic form.

Further, being a quadratic bundle, ^(P)-2&gt;^(P)&apos;. Hence »(P) is stable by [12],
1.2.6.

We shall now show that »(P, Q) is stable for P, Q non-isomorphic, non-free.
We show that for every subsheaf 9 of » »(P, Q) with the quotient »(P, Q)/^
torsion free, c^J/rank ^&lt;Cx(^)/rank ». Since Pc is regular of dimension 2,

such a sheaf is locally free. Hence it suffices to show that for any locally free

subsheaf 9 of », c^) &lt;0. If 9 is a Une bundle with ^(9) n, necessarily n &lt;0

since, otherwise, ^ and hence » would hâve a non-zero global section. If 9 is of

rank 3 we hâve a surjection »&apos;»^&apos;&gt; 0 whose kernel is a Une bundle S£. Since

»&apos;-:»» also does not admit of global sections, it follows that cl(£)&lt;0. Hence

cl(9&apos;)&gt;0 so that c1(9) -Ci(9&apos;)&lt;0. Let y be of rank 2. The bundle »

restricted to a real line L of Pc is trivial, since » supports an anisotropic quadratic
form ([16], Prop. 5). The restriction of 9 to L is isomorphic to C(n)©0(m).
Since 9\L is a subsheaf of ^Il^SCIl, we ^ave c1(^) n + m=^0. Suppose
that cx(^) 0. Then 9 is a rank 2 bundle with no global sections and with
cx{&amp;) 0. Hence 9 is a stable bundle ([12], 1.2.5). The quadratic structure on

9(P, Q) extends to a positive-definite cr-hermitian structure, denoted by &lt;£&gt;, on

&lt;g(P,Q). The restriction of $ to 9 induces a map 9 -» o-*^* ^*. This map

cannot be zéro since ^ is anisotropic (positive-definite). By the corollary to

Lemma 1.2.8 of [12], &lt;t&gt; is an isomorphism and (&amp;9 &lt;t&gt; \ 9) splits off as an orthogonal
summand of (§?, &lt;f&gt;). Then, 9-^9191. The bundle ^ supports a quadratic form,

namely the extension of the quadratic structure on 9(P, Q). The bundle 9 cannot

support a quadratic structure, since, otherwise, 9 -^ H(6(n)) by Lemma 2.7

contradicting the stability of 9. Thus, by the uniqueness of the quadratic structure
on », it follows that 9S:&gt;H(9) and hence 9X ^&amp;ts&gt;&amp;. In fact, by the

uniqueness of the positive-definite structure (see (1.6)) (9t, &lt;t&gt; \ 9X) ^&gt; (9, &lt;\&gt; \ 9)
and (&lt;3,&lt;t&gt;)::*(&amp;,&lt;t&gt;\&amp;)l(&amp;,&lt;t&gt;\&amp;). Since 9 is a rank 2 stable bundle with a

positive-definite cr-hermitian structure, it follows by [8] that 9 is a ^-bundle, i.e.

9s+(P0)9 where Po is some non-free projective idéal of H[x, y]. By [8],

Prop. 3.2, » ^ S(P0) 0 ^(Po) -^ ir*7r^(Po) - tt*(^(H[x, y]), Po)). Since

End (#(P0) © ^(Po)) &quot;~* Af2(C), the isomorphism classes of vector-bundles on Pr
with 7T*(^)^&gt;^(Po)©^(Po) are classified by H\ZI2l, GL2(C) for an action on

GL2(C) which is the restriction of an action on M2(C). Since tt*(#) -^ ^(Po) ©

#(P0) is C-linear, Z/2Z acts on C &lt;= M2(C) End (#(P0) + ^(Po)) by conjugation,
and hence the action on M2(C) is of the form a » uâu&quot;1 for some fixed

ueGL2(C). It is easily checked that in this case H1(Z/2Z,GL2(C)) 0. Hence,
there is a unique descent for tf(P0) © tf(P0), i.e. * (P, O) ^ ^(H[x, y], Po). By the
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uniqueness of the positive-definite quadratic structure on a vector-bundle over Pr
[(1.7)], it follows that &amp;(P9 Q) is isomorphic as a quadratic bundle to

âP(H[x, y], Po). By restricting thèse bundles to Ar and using ([6], Thm. 4.6), it

follows that P or Q is free, a contradiction. The statement in the theorem

regarding the second Chern classes of ^(P) and ^(P, Q) was proved in (2.2).

§3. An example of an indécomposable quadratic space of rank 6 over R[jc, y]

LEMMA 3.1. Let R be a local domain in which 2 is invertible and let qu q2 be

quadratic spaces over R[x] such thatq1lq2 is anisotropic. If qt{v) + q2(w) is a unit

of R[x], then qx(v) or q2(w) is a unit of R[x].

Proof. Let K dénote the quotient field of R. Since .R is local, if bar dénotes

réduction modulo x, one has qx -=* (kl9..., An), q2 -^ (fil9 /Ltm&gt;, A,, ^ e U(R).
By a theorem of Harder, we hâve, over K[x], qt ^(k1,..., Àn),

qi-^ipi, »
M-m)- Thus, there exist 6V faeKlx] such that q\(v) Jdkl0* and

&lt;Ï2(w) Z /v^f. Since the forms ql and q2 are anisotropic over K[x\ if qx{v)-
ao+a1x + - - + a,jcr, then q2(w)= b^-a^-- --aX, and ar X A,cf S M?&gt;

where c,, dx dénote the leading coefficients of 0, and fa respectively. Then, qtlq2
represents zéro over K and hence qx 1 q2 represents zéro over K[x], contradicting
the assumption that qx 1 q2 is anisotropic.

The next lemma is a generalization of Proposition 1.1 of [13].

LEMMA 3.2. Let A be a normal ring in which 2 is invertible. Every quadratic

space of rank 2 over A[XU XJ is extended from A.

Proof. By [3,4.15, Remark 4] we may assume that A is local. Let K be the

field of fractions of A and M a quadratic space of rank 2 over A[X], X denoting

(Xu Xn). If the signed discriminant of MK is trivial, by [2, Proposition 5.1] M

is of the form H(I), where I is a projective idéal of A[X]. Since PicA
Pic A[X], M is extended. If the signed discriminant d of MK is not a square in K,

put L K[y/d] and B A[Vd]. Then B is the intégral closure of A in L hence is

a normal semilocal ring. The signed discriminant of MB is trivial and hence MB is

of the form H(I), where I is a projective idéal of B[X]. Since Pic B[X] Pic B

0, MB H(B[X]). This shows that M is represented by an élément of

H^GaUL/K), O2(B[X])). But O2(B[X]) O2(B) (compare [11], §1) and hence

M is in the image of H^Gal (L/K), O2(B)) in H^Gal (L/K), O2(B[X])). This

shows that M is extended from A.
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Given a pair /, g of polynomials in R[x, y], let afg (respectively /3/g) dénote
the rank 3 (rank 4) quadratic spaces over R[x, y] defined as the orthogonal
complément of the identity in End(P/g) (respectively reduced norm on P/g),
where P/g is the projective idéal of Hl[x, y] defined as the kernel of the H[x, y]-
linear map H[x, y]2 -&gt; H[x, y] given by (1,0)-^ /+ i, (0,1) -&gt; g + j ([8], 1.2). Then

a - axy is an indécomposable quadratic space over R[x, y]. This space remains

indécomposable over R[x](i+X2)[y]. In fact, if it décomposes as a&apos;la&quot;, then the

ranks of a&apos; and a&quot; are 1 or 2 and hence, by Lemma 3.2, a is extended from

R[*](i+X*). since over Rl&gt;&gt; l/l + x2][y], Pxy is free ([7], §5), a is &lt;l, 1,1) over
this ring. Therefore by [3,4.15, Remark 4], a is extended from R, contrary to the

assumption. The form j3 j3xv2,y is an indécomposable quadratic space over
R[x, y] which is isometric to (1,1,1,1) over R[x, l/2 + x2][y]. We claim that j3

remains indécomposable over R[x](2+X2)[y]. Suppose that j3 |3&apos;l|3&quot; over

Rt^](2+x2)[y]- M rank /3&apos; rank ]8&quot; 2 the same argument as abôve shows that /3 is

extended from R, which is absurd. If rank |3&apos; 1, then j3 represents a unit over
RM(2+x2)[y] and therefore, by [6], (3.19) Pxv2,y is ^ree over H[x](24.x2)[y] and, in

particular, extended from H. Since it is also free over H[x, 1/2 + x2][y] ([7], §5), by
Quillen&apos;s theorem Pxv2,y M[x, y], contrary to the assumption.

We define a quadratic space over R[x, y] of rank 6 as follows: we consider the

covering

Spec R[x, y] Spec R[x, y][l/l H- x2] U Spec R[x, y][l/2 4- x2].

We take the space ]311 11 over SpecR[x, y][l/l4-x2] and the space a 1 a over

SpecR[x, y][l/2 + x2] and some patching isometry ^:ala-^|8llll over

SpecR[x, y][l/(l + x2)(2 + x2)] (note that both quadratic spaces are équivalent to

the identity over this intersection) to get a quadratic space y of rank 6 over

SpecR[x,y].
We show that y is indécomposable. Suppose that y represents a unit of

R[x, y]. Since y-2* a la over R[x](1+X2)[y], it follows that a la represents a unit
of R[x](1+X2}[y] and since a la is anisotropic, by Lemma 3.1, a represents a unit
of R[x](1+X2}[y] contradicting the indecomposability of a over R[x](1+x2)[y]. Since

by (3.2) any quadratic space of rank ^2 over R[x, y] is extended from R and

hence represents units, we assume now that y 7j 1 y2, where yx and y2 are

indécomposable rank 3 spaces. Over R[x](2+X2)[y], we hâve yx 1 y2 » j81111, so

that if Yi(v) + y2(w)= 1, we hâve by Lemma 3.1 that Yi(u) or y2(n&gt;) is a unit.

Suppose that yt(v) is a unit. Then 7ij:»&lt;7i(u))l7i and the orthogonal complé¬
ment of yi(u) + y2(w) in yx 1 y2 is y[ 1 y2, where y2 is the orthogonal complément
of yx(v) + y2(w) in (y^v))! y2. We therefore hâve y[ 1 y2 -^ ]811. Repeating the

arguments over again, we get that j3 is decomposable over R[x](2+X2)[y], which is a

contradiction.
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