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Abstract. Kernel methods are widely used in statistical learning tech-
niques. We recently introduced a general kernel framework based on
weighted transducers or rational relations, rational kernels, to extend
kernel methods to the analysis of variable-length sequences or more gen-
erally weighted automata. These kernels are efficient to compute and
have been successfully used in applications such as spoken-dialog clas-
sification. Not all rational kernels are positive definite and symmetric

(PDS) however, a sufficient property for guaranteeing the convergence of
discriminant classification algorithms such as Support Vector Machines.
We present several theoretical results related to PDS rational kernels. We
show in particular that under some conditions these kernels are closed
under sum, product, or Kleene-closure and give a general method for
constructing a PDS rational kernel from an arbitrary transducer defined
on some non-idempotent semirings. We also show that some commonly
used string kernels or similarity measures such as the edit-distance, the
convolution kernels of Haussler, and some string kernels used in the con-
text of computational biology are specific instances of rational kernels.
Our results include the proof that the edit-distance over a non-trivial
alphabet is not negative definite, which, to the best of our knowledge,
was never stated or proved before.

1 Motivation

Many classification algorithms were originally designed for fixed-length vectors.
Recent applications in text and speech processing and computational biology re-
quire however the analysis of variable-length sequences and even more generally
weighted automata. Indeed, the output of a large-vocabulary speech recognizer
for a particular input speech utterance, or that of a complex information extrac-
tion system combining several information sources for a specific input query, is
typically a weighted automaton compactly representing a large set of alternative
sequences. The weights assigned by the system to each sequence are used to rank
different alternatives according to the models the system is based on. The error
rate of such complex systems is still too high in many tasks to rely only on their
one-best output, thus it is preferable instead to use the full output weighted
automata which contain the correct result in most cases.

Kernel methods [13] are widely used in statistical learning techniques such
as Support Vector Machines (SVMs) [2, 4, 14] due to their computational effi-
ciency in high-dimensional feature spaces. Recently, a general kernel framework



Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1

Probability R+ + × 0 1

Log R ∪ {−∞,+∞} ⊕log + +∞ 0

Tropical R ∪ {−∞,+∞} min + +∞ 0

Table 1. Semiring examples. ⊕log is defined by: x⊕log y = − log(e−x + e−y).

based on weighted transducers or rational relations, rational kernels, was intro-
duced to extend kernel methods to the analysis of variable-length sequences or
more generally weighted automata [3]. It was shown that there are general and
efficient algorithms for computing rational kernels. Rational kernels have been
successfully used for applications such as spoken-dialog classification.

Not all rational kernels are positive definite and symmetric (PDS), or equiv-
alently verify the Mercer condition [1], a condition that guarantees the conver-
gence of discriminant classification algorithms such as SVMs. This motivates
the study undertaken in this paper. We present several theoretical results re-
lated to PDS rational kernels. In particular, we show that under some condi-
tions these kernels are closed under sum, product, or Kleene-closure and give a
general method for constructing a PDS rational kernel from an arbitrary trans-
ducer defined on some non-idempotent semirings. We also study the relationship
between rational kernels and some commonly used string kernels or similarity
measures such as the edit-distance, the convolution kernels of Haussler [6], and
some string kernels used in the context of computational biology [8]. We show
that these kernels are all specific instances of rational kernels. In each case, we
explicitly describe the corresponding weighted transducer. These transducers are
often simple and efficient for computing kernels. Their diagram often provides
more insight into the definition of kernels and can guide the design of new ker-
nels. Our results also include the proof of the fact that the edit-distance over a
non-trivial alphabet is not negative definite, which, to the best of our knowledge,
was never stated or proved before.

2 Preliminaries

In this section, we present the algebraic definitions and notation necessary to
introduce rational kernels.

Definition 1 ([7]). A system (K,⊕,⊗, 0, 1) is a semiring if: (K,⊕, 0) is a
commutative monoid with identity element 0; (K,⊗, 1) is a monoid with iden-
tity element 1; ⊗ distributes over ⊕; and 0 is an annihilator for ⊗: for all
a ∈ K, a⊗ 0 = 0 ⊗ a = 0.

Thus, a semiring is a ring that may lack negation. Table 1 lists some familiar
semirings.

Definition 2. A weighted finite-state transducer T over a semiring K is an
8-tuple T = (Σ,∆,Q, I, F,E, λ, ρ) where: Σ is the finite input alphabet of the



transducer; ∆ is the finite output alphabet; Q is a finite set of states; I ⊆ Q the
set of initial states; F ⊆ Q the set of final states; E ⊆ Q × (Σ ∪ {ε}) × (∆ ∪
{ε}) × K × Q a finite set of transitions; λ : I → K the initial weight function;
and ρ : F → K the final weight function mapping F to K.

Weighted automata can be formally defined in a similar way by simply omitting
the input or output labels.

Given a transition e ∈ E, we denote by p[e] its origin or previous state
and n[e] its destination state or next state, and w[e] its weight. A path π =
e1 · · · ek is an element of E∗ with consecutive transitions: n[ei−1] = p[ei], i =
2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek] and p[π] = p[e1].
The weight function w can also be extended to paths by defining the weight of
a path as the ⊗-product of the weights of its constituent transitions: w[π] =
w[e1] ⊗ · · · ⊗ w[ek]. We denote by P (q, q′) the set of paths from q to q′ and
by P (q, x, y, q′) the set of paths from q to q′ with input label x ∈ Σ∗ and
output label y. These definitions can be extended to subsets R,R′ ⊆ Q, by:
P (R, x, y,R′) = ∪q∈R, q′∈R′P (q, x, y, q′). A transducer T is regulated if the output
weight associated by T to any pair of input-output string (x, y) by:

[[T ]](x, y) =
⊕

π∈P (I,x,y,F )

λ(p[π]) ⊗ w[π] ⊗ ρ[n[π]] (1)

is well-defined and in K. [[T ]](x, y) = 0 when P (I, x, y, F ) = ∅. If for all q ∈ Q
⊕

π∈P (q,ε,ε,q) w[π] ∈ K, then T is regulated. In particular, when T does not
have any ε-cycle, it is regulated. In the following, we will assume that all the
transducers considered are regulated. Regulated weighted transducers are closed
under ⊕, ⊗ and Kleene-closure. For any transducer T , we denote by T−1 its
inverse, that is the transducer obtained from T by transposing the input and
output labels of each transition. The composition of two weighted transducers
T1 and T2 is a weighted transducer denoted by T1 ◦ T2 when the sum:

[[T1 ◦ T2]](x, y) =
⊕

z∈Σ∗

[[T1]](x, z) ⊗ [[T2]](z, y) (2)

is well-defined and in K for all x ∈ Σ∗ and y ∈ ∆∗ [7].

3 Rational Kernels - Definition

Definition 3. A kernel K is said to be rational if there exist a weighted trans-
ducer T = (Σ,∆,Q, I, F,E, λ, ρ) over the semiring K and a function ψ : K → R

such that for all x ∈ Σ∗ and y ∈ ∆∗:

K(x, y) = ψ([[T ]](x, y)) (3)

This definition and many of the results presented in this paper can be generalized
by replacing the free monoids Σ∗ and ∆∗ with arbitrary monoids M1 and M2.
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Fig. 1. Gappy bigram rational kernel with decay factor λ = .1. Bold face circles repre-
sent initial states and double circles indicate final states.

Also, note that we are not making any particular assumption about the function
ψ in this definition. In general, it is an arbitrary function mapping K to R.

Figure 1 shows an example of a transducer over the probability semiring
corresponding to the gappy n-gram kernel with decay factor λ as defined by
[10]. Such gappy n-gram kernels are rational kernels [3].

Rational kernels can be naturally extended to kernels over weighted au-
tomata. Let A be a weighted automaton defined over the semiring K and the
alphabet Σ and B a weighted automaton defined over the semiring K and the
alphabet ∆, K(A,B) is defined by:

K(A,B) = ψ





⊕

(x,y)∈Σ∗×∆∗

[[A]](x) ⊗ [[T ]](x, y) ⊗ [[B]](y)



 (4)

for all weighted automata A and B such that the ⊕-sum:
⊕

(x,y)∈Σ∗×∆∗

[[A]](x) ⊗ [[T ]](x, y) ⊗ [[B]](y)

is well-defined and in K. This sum is always defined and in K when A and B
are acyclic weighted automata since the sum then runs over a finite set. It is
defined for all weighted automata in all closed semirings [7] such as the tropical
semiring. In the probability semiring, the sum is well-defined for all A, B, and
T representing probability distributions. When K(A,B) is defined, Equation 4
can be equivalently written as:

K(A,B) = ψ





⊕

(x,y)∈Σ∗×∆∗

[[A ◦ T ◦B]](x, y)



 (5)

A general algorithm for computing rational kernels efficiently was given in [3].
It is based on the composition of weighted transducers and a general shortest-
distance algorithm in a semiring K.

In learning techniques such as those based on SVMs, we are particularly
interested in kernels that are positive definite symmetric (PDS), or, equivalently,
kernels verifying Mercer’s condition, which guarantee the existence of a Hilbert
space and a dot product associated to the kernel considered. Thus, in what
follows, we will focus on theoretical results related to the construction of rational
kernels that are PDS. Due to the symmetry condition, the input and output
alphabets Σ and ∆ will coincide in the rest of the paper.



4 Theoretical Results on Positive Definite Rational

Kernels

This section reviews a number of results related to PDS kernels and extends
them to PDS rational kernels, that is the class of rational kernels that have the
Mercer property [1]. These results can be used to combine PDS rational kernels
to design new PDS rational kernels or to determine if a rational kernel is PDS.

Definition 4. Let X be a non-empty set. A function K : X ×X → R is said to
be a PDS kernel if it is symmetric (K(x, y) = K(y, x) for all x, y ∈ X) and

n
∑

i,j=1

cicjK(xi, xj) ≥ 0 (6)

for all n ≥ 1, {x1, . . . , xn} ⊆ X and {c1, . . . , cn} ⊆ R.

It is clear from classical results of linear algebra that K is a PDS kernel iff
the matrix K(xi, xj)i,j≤n for all n ≥ 1 and all {x1, . . . , xn} ⊆ X is symmetric
and all its eigenvalues are non-negative.

PDS kernels can be used to construct other families of kernels that also
meet these conditions [13]. Polynomial kernels of degree p are formed from the
expression (K + a)p, and Gaussian kernels can be formed as exp(−d2/σ2) with
d2(x, y) = K(x, x)+K(y, y)−2K(x, y). The following sections will provide other
ways of constructing PDS rational kernels.

4.1 General Closure Properties of PDS Kernels

The following theorem summarizes general closure properties of PDS kernels [1].

Theorem 1. Let X and Y be two non-empty sets.

1. Closure under sum: Let K1,K2 : X×X → R be PDS kernels, then K1+K2 :
X ×X → R is a PDS kernel.

2. Closure under product: Let K1,K2 : X × X → R be PDS kernels, then
K1 ·K2 : X ×X → R is a PDS kernel.

3. Closure under tensor product: Let K1 : X ×X → R and K2 : Y ×Y → R be
PDS kernels, then their tensor product K1 �K2 : (X × Y ) × (X × Y ) → R,
where K1 �K2((x1, y1), (x2, y2)) = K1(x1, x2) ·K2(y1, y2) is a PDS kernel.

4. Closure under pointwise limit: Let Kn : X × X → R be a PDS kernel for
all n ∈ N and assume that limn→∞Kn(x, y) exists for all x, y ∈ X, then K
defined by K(x, y) = limn→∞Kn(x, y) is a PDS kernel.

5. Closure under composition with a power series: Let K : X × X → R be
a PDS kernel such that |K(x, y)| < ρ for all (x, y) ∈ X × X. Then if the
radius of convergence of the power series S =

∑∞
n=0 anx

n is ρ and an ≥ 0
for all n ≥ 0, the composed kernel S ◦K is a PDS kernel. In particular, if
K : X ×X → R is a PDS kernel, then so is exp(K).

Clearly, these closure properties all apply to PDS rational kernels as well. In the
next section, we present other closure properties more specific to the class of
PDS rational kernels.



4.2 Closure Properties of PDS Rational Kernels

By definition, weighted transducers are closed under rational operations. The
rational operations (sum, product, and closure operations) are defined as follows
for all transducers T1 and T2 and (x, y) ∈ Σ∗ ×Σ∗:

[[T1 ⊕ T2]](x, y) = [[T1]](x, y) ⊕ [[T2]](x, y) (7)

[[T1 ⊗ T2]](x, y) =
⊕

x=x1x2,y=y1y2

[[T1]](x1, y1) ⊗ [[T2]](x2, y2)

[[T ∗]](x, y) =

∞
⊕

n=0

T n(x, y)

In this section, we assume that a fixed function ψ is used in the definition of all
the rational kernels mentioned. We denote by KT the rational kernel correspond-
ing to the transducer T and defined for all x, y ∈ Σ∗ by KT (x, y) = ψ([[T ]](x, y)).

Theorem 2. Let Σ be a non-empty alphabet. The following closure properties
hold for PDS rational kernels.

1. Closure under ⊕-sum: Assume that ψ : (K,⊕, 0) → (R,+, 0) is a monoid
morphism. Let KT1

,KT2
: Σ∗ × Σ∗ → R be PDS rational kernels, then

KT1⊕T2
: Σ∗ ×Σ∗ → R is a PDS rational kernel and KT1⊕T2

= KT1
+KT2

.
2. Closure under ⊗-product: Assume that ψ : (K,⊕,⊗, 0, 1) → (R,+,×, 0, 1) is

a semiring morphism. Let KT1
,KT2

: Σ∗×Σ∗ → R be PDS rational kernels,
then KT1⊗T2

: Σ∗ ×Σ∗ → R is a PDS rational kernel.
3. Closure under Kleene-closure: Assume that ψ : (K,⊕,⊗, 0, 1) → (R,+,×, 0, 1)

is a continuous semiring morphism. Let KT : Σ∗×Σ∗ → R be a PDS rational
kernel, then KT∗ : Σ∗ ×Σ∗ → R is a PDS rational kernel.

Proof. The closure under ⊕-sum follows directly Theorem 1 and the fact that
for all x, y ∈ Σ∗:

ψ([[T1]](x, y) ⊕ [[T2]](x, y)) = ψ([[T1]](x, y)) + ψ([[T2]](x, y))

when ψ : (K,⊕, 0) → (R,+, 0) is a monoid morphism. For the closure under
⊗-product, when ψ is a semiring morphism, for all x, y ∈ Σ∗:

ψ([[T1 ⊗ T2]](x, y)) =
∑

x1x2=x,y1y2=y

ψ([[T1]](x1, y1)) · ψ([[T2]](x2, y2)) (8)

=
∑

x1x2=x,y1y2=y

KT1
�KT2

((x1, x2), (y1, y2))

By Theorem 1, since KT1
and KT2

are PDS kernels, their tensor product KT1
�

KT2
is a PDS kernel and there exists a Hilbert space H ⊆ R

Σ∗

and a mapping
u→ φu such that KT1

�KT2
(u, v) = 〈φu, φv〉 [1]. Thus

ψ([[T1 ⊗ T2]](x, y)) =
∑

x1x2=x,y1y2=y

〈φ(x1,x2), φ(y1,y2)〉 (9)

=

〈

∑

x1x2=x

φ(x1,x2),
∑

y1y2=y

φ(y1,y2)

〉



Since a dot product is positive definite, this equality implies that KT1⊗T2
is a

PDS kernel. The closure under Kleene-closure is a direct consequence of the
closure under ⊕-sum and ⊗-product of PDS rational kernels and the closure
under pointwise limit of PDS kernels (Theorem 1). ut

Theorem 2 provides a general method for constructing complex PDS rational
kernels from simpler ones. PDS rational kernels defined to model specific prior
knowledge sources can be combined to create a more general PDS kernel. In
contrast to Theorem 2, PDS rational kernels are not closed under composition.
This is clear since the ordinary matrix multiplication does not preserve positive
definiteness in general.1 The next section studies a general construction of PDS
rational kernels using composition.

4.3 A General Construction of PDS Rational Kernels

In this section, we assume that ψ : (K,⊕,⊗, 0, 1) → (R,+,×, 0, 1) is a continuous
semiring morphism.2 We show that there exists a general way of constructing
a PDS rational kernel from any transducer T . The construction is based on
composing T with its inverse T−1. The composition of two weighted transducers
T1 and T2 is a weighted transducer denoted by T1 ◦ T2 and defined by:

[[T1 ◦ T2]](x, y) =
⊕

z∈Σ∗

[[T1]](x, z) ⊗ [[T2]](z, y) (10)

Proposition 1. Let T = (Σ,∆,Q, I, F,E, λ, ρ) be a weighted transducer defined
over (K,⊕,⊗, 0, 1). Assume that the weighted transducer T ◦ T−1 is regulated,
then T ◦ T−1 defines a PDS rational kernel over Σ∗ ×Σ∗.

Proof. Denote by S the composed transducer T ◦ T−1. Let K be the rational
kernel defined by S. By definition of composition

K(x, y) = ψ([[S]](x, y)) = ψ

(

⊕

z∈∆∗

[[T ]](x, z) ⊗ [[T ]](y, z)

)

(11)

for all x, y ∈ Σ∗. Since ψ is a continuous semiring morphism, for all x, y ∈ Σ∗

K(x, y) = ψ([[S]](x, y)) =
∑

z∈∆∗

ψ([[T ]](x, z)) · ψ([[T ]](y, z)) (12)

For all n ∈ N and x, y ∈ Σ∗, define Kn(x, y) by:

Kn(x, y) =
∑

|z|≤n

ψ([[T ]](x, z)) · ψ([[T ]](y, z)) (13)

1 It is not difficult to prove however that the composition of two PDS transducers T1

and T2 is a PDS transducer when T1 ◦ T2 = T2 ◦ T1.
2 In some cases such a morphism may not exist. Its existence implies among other

properties that K is commutative and that K is non-idempotent. Indeed, if K is
idempotent, for any x ∈ K, ψ(x) = ψ(x⊕ x) = ψ(x) + ψ(x) = 2ψ(x), which implies
that ψ(x) = 0 for all x.



where the sum runs over all strings z ∈ ∆∗ of length less than or equal to n.
Clearly, Kn defines a symmetric kernel. For any l ≥ 1 and any x1, . . . , xl ∈ Σ∗,
define the matrix Mn by: Mn = (Kn(xi, xj))i≤l,j≤l. Let z1, z2, . . . , zm be an
arbitrary ordering of the strings of length less than or equal to n. Define the
matrix A by:

A = (ψ([[T ]](xi, zj)))i≤l,j≤m (14)

By definition of Kn, Mn = AAt. Thus, the eigenvalues of Mn are all non-
negative, which implies that Kn is a PDS kernel. Since K is a pointwise limit of
Kn, K(x, y) = limn→∞Kn(x, y), by Theorem 1, K is a PDS kernel. This ends
the proof of the proposition. ut

The next propositions provide results related to the converse of Proposition 1.

Proposition 2. Let S = (Σ,Σ,Q, I, F,E, λ, ρ) be an acyclic weighted trans-
ducer over (K,⊕,⊗, 0, 1) defining a PDS rational kernel over Σ∗ × Σ∗, then
there exists a weighted transducer T such that S = T ◦ T−1.

Proof. The proof is based on the classical result of linear algebra that any posi-
tive definite (finite) matrix M can be written as M = AAt for some matrix A.
The full proof of the proposition is reserved to a longer version of the paper. ut

Assume that the same continuous semiring morphism ψ is used in the definition
of all the rational kernels.

Proposition 3. Let Θ be the subset of weighted transducers over (K,⊕,⊗, 0, 1)
defining a PDS rational kernel such that for any S ∈ Θ there exists a weighted
transducer T such that S = T ◦T−1. Then Θ is closed under ⊕-sum, ⊗-product,
and Kleene-closure.

Proof. The proof is based on various technical arguments related to the compo-
sition of weighted transducers and is left to a longer version of the paper. ut

Proposition 1 leads to a natural question: under the same assumptions, are
all weighted transducers S defining a PDS rational kernel of the form S =
T ◦ T−1? We conjecture that this is the case and that this property provides
a characterization of the weighted transducers defining PDS rational kernels
under the assumptions made in Proposition 1. Indeed, we have not (yet) found
a counter-example contradicting this statement and have proved a number of
results in support of it, including the two propositions above.

4.4 Negative Definite Kernels

As mentioned before, given a set X and a distance or dis-similarity measure
d : X ×X → R+, a common method used to define a kernel K is the following.
For all x, y ∈ X ,

K(x, y) = exp(−td2(x, y)) (15)



where t > 0 is some constant typically used for normalization. Gaussian kernels
are defined in this way. However, such kernels K are not necessarily positive
definite, e.g., for X = R, d(x, y) = |x − y|p, p > 1 and t = 1, K is not positive
definite. The positive definiteness of K depends on t and the properties of the
function d. The classical results presented in this section exactly address such
questions [1]. They include a characterization of PDS kernels based on negative
definite kernels which may be viewed as distances with some specific properties.3

The results we are presenting are general, but we are particularly interested
in the case where d can be represented by a rational kernel. We will use these
results later when dealing with the case of the edit-distance.

Definition 5. Let X be a non-empty set. A function K : X×X → R is said to be
a negative definite symmetric kernel (NDS kernel) if it is symmetric (K(x, y) =
K(y, x) for all x, y ∈ X) and

n
∑

i,j=1

cicjK(xi, xj) ≤ 0 (16)

for all n ≥ 1, {x1, . . . , xn} ⊆ X and {c1, . . . , cn} ⊆ R with
∑n

i=1 ci = 0.

Clearly, if K is a PDS kernel then −K is a NDS kernel, however the converse
does not hold in general. Negative definite kernels often correspond to distances,
e.g., K(x, y) = (x− y)α, with 0 < α ≤ 2 is a negative definite kernel.

The next theorem summarizes general closure properties of NDS kernels [1].

Theorem 3. Let X be a non-empty set.

1. Closure under sum: Let K1,K2 : X×X → R be NDS kernels, then K1+K2 :
X ×X → R is a NDS kernel.

2. Closure under log and exponentiation: Let K : X ×X → R be a NDS kernel
with K ≥ 0, and α a real number with 0 < α < 1, then log(1 + K),Kα :
X ×X → R are NDS kernels.

3. Closure under pointwise limit: Let Kn : X ×X → R be a NDS kernel for all
n ∈ N, then K defined by K(x, y) = limn→∞Kn(x, y) is a NDS kernel.

The following theorem clarifies the relation between NDS and PDS kernels and
provides in particular a way of constructing PDS kernels from NDS ones [1].

Theorem 4. Let X be a non-empty set, xo ∈ X, and let K : X ×X → R be a
symmetric kernel.

1. K is negative definite iff exp(−tK) is positive definite for all t > 0.
2. Let K ′ be the function defined by:

K ′(x, y) = K(x, x0) +K(y, x0) −K(x, y) −K(x0, x0) (17)

Then K is negative definite iff K ′ is positive definite.

3 Many of the results described by [1] are also included in [12] with the terminology
of conditionally positive definite instead of negative definite kernels. We adopt the
original terminology used by [1].
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Fig. 2. (a) Weighted transducer over the tropical semiring representing the edit-
distance over the alphabet Σ = {a, b}. (b) Weighted transducer over the probability
semiring computing the cost of alignments over the alphabet Σ = {a, b}.

The theorem gives two ways of constructing a positive definite kernel using a
negative definite kernel. The first construction is similar to the way Gaussian
kernels are defined. The second construction has been put forward by [12].

5 Relationship with some commonly used kernels or

similarity measures

This section studies the relationships between several families of kernels or sim-
ilarities measures and rational kernels.

5.1 Edit-Distance

A common similarity measure in many applications is that of the edit-distance
[9]. We denote by de(x, y) the edit-distance between two strings x and y over
the alphabet Σ with cost 1 assigned to all edit operations.

Proposition 4. Let Σ be a non-empty finite alphabet and let de be the edit-
distance over Σ, then de is a symmetric rational kernel. Furthermore, (1): de is
not a PDS kernel, and (2): de is a NDS kernel iff |Σ| = 1.

Proof. The edit-distance between two strings, or weighted automata, can be
represented by a simple weighted transducer over the tropical semiring [11]. Since
the edit-distance is symmetric, this shows that de is a symmetric rational kernel.
Figure 2(a) shows the corresponding transducer when the alphabet is Σ = {a, b}.
The cost of the alignment between two sequences can also be computed by a
weighted transducer over the probability semiring [11], see Figure 2(b).

Let a ∈ Σ, then the matrix (de(xi, xj))1≤i,j≤2 with x1 = ε and x2 = a has a
negative eigenvalue (−1), thus de is not a PDS kernel.

When |Σ| = 1, the edit-distance simply measures the absolute value of the
difference of length between two strings. A string x ∈ Σ∗ can then be viewed as
a vector of the Hilbert space R

∞. Denote by ‖ · ‖ the corresponding norm. For
all x, y ∈ Σ∗:

de(x, y) = ‖x− y‖
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Fig. 3. (a) Smallest eigenvalue of the matrix Mn = (exp(−de(xi, xj)))1≤i,j,≤2n as a
function of n. (b) Example demonstrating that the edit-distance is not negative definite.

The square distance ‖ · ‖2
is negative definite, thus by Theorem 3, de = (‖ · ‖2

)1/2

is also negative definite.
Assume now that |Σ| > 1. We show that exp(−de) is not PDS. By theorem

4, this implies that de is not negative definite. Let x1, · · · , x2n be any ordering
of the strings of length n over the alphabet {a, b}. Define the matrix Mn by:

Mn = (exp(−de(xi, xj)))1≤i,j,≤2n (18)

Figure 3(a) shows the smallest eigenvalue αn of Mn as a function of n. Clearly,
there are values of n for which αn < 0, thus the edit-distance is not negative def-
inite. Table 3(b) provides a simple example with five strings of length 3 over the
alphabet Σ = {a, b, c, d} showing directly that the edit-distance is not negative

definite. Indeed, it is easy to verify that:
∑5

i=1

∑5
j=1 cicjK(xi, xj) = 2

3 > 0. ut

To our knowledge, this is the first statement and proof of the fact that de

is not NDS for |Σ| > 1. This result has a direct consequence on the design
of kernels in computational biology, often based on the edit-distance or other
related similarity measures. When |Σ| > 1, Proposition 4 shows that de is not
NDS. Thus, there exists t > 0 for which exp(−tde) is not PDS. Similarly, d2

e is
not NDS since otherwise by Theorem 3, de = (d2

e)
1/2 would be NDS.

5.2 Haussler’s Convolution Kernels for Strings

D. Haussler describes a class of kernels for strings built by applying iteratively
convolution kernels [6]. We show that these convolution kernels for strings are
specific instances of rational kernels. To define these kernels, Haussler introduces
for 0 ≤ γ < 1 the γ-infinite iteration of a mapping H : Σ∗ ×Σ∗ → R by:

H∗
γ = (1 − γ)

∞
∑

n=1

γn−1H(n) (19)

where H(n) = H ?H(n−1) is the result of the convolution of H with itself n− 1
times. Note that H∗

γ = 0 for γ = 0.

Lemma 1. For 0 < γ < 1, the γ-infinite iteration of a rational transduction
H : Σ∗ ×Σ∗ → R can be defined in the following way with respect to the Kleene
†-operator:

H∗
γ =

1 − γ

γ
(γH)† (20)
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Fig. 4. Haussler’s convolution kernels KH for strings: specific instances of rational
kernels. K1, (K2), corresponds to a specific weighted transducer over the probability
semiring and modeling substitutions (resp. insertions).

Proof. Haussler’s convolution simply corresponds to the Cauchy product or con-
catenation in the case of rational transductions. Thus, for 0 < γ < 1, by defini-
tion of the †-operator:

(γH)† =

∞
∑

n=1

(γH)n =

∞
∑

n=1

γnHn =
γ

1 − γ

∞
∑

n=1

(1 − γ)γn−1Hn =
γ

1 − γ
H∗

γ ut

Given a probability distribution p over all symbols of Σ, Haussler’s convolution
kernels for strings are defined by:

KH(x, y) = γK2 ? (K1 ? K2)
?
γ + (1 − γ)K2

where K1 is the specific polynomial PDS rational transduction over the proba-
bility semiring defined by: K1(x, y) =

∑

a∈Σ p(x|a)p(y|a)p(a) and models substi-
tutions, and K2 another specific PDS rational transduction over the probability
semiring modeling insertions.

Proposition 5. For any 0 ≤ γ < 1, Haussler’s convolution kernels KH coincide
with the following special cases of rational kernels:

KH = (1 − γ)[K2(γK1K2)
∗] (21)

Proof. As mentioned above, Haussler’s convolution simply corresponds to con-
catenation in this context. When γ = 0, by definition, KH is reduced to K2

which is a rational transducer and the proposition’s formula above is satisfied.
Assume now that γ 6= 0. By lemma 1, KH can be re-written as:

KH = γK2(K1K2)
?
γ + (1 − γ)K2 = γK2

1 − γ

γ
(γK1K2)

† + (1 − γ)K2 (22)

= (1 − γ)[K2(γK1K2)
† +K2] = (1 − γ)[K2(γK1K2)

∗]

Since rational transductions are closed under rational operations,KH also defines
a rational transduction. Since K1 and K2 are PDS kernels, by theorem 2, KH

defines a PDS kernel. ut

The transducer of Figure 4 illustrates the convolution kernels for strings
proposed by Haussler. They correspond to special cases of rational kernels whose
mechanism is clarified by the figure: the kernel corresponds to a substitution with
weight (1−γ) modeled by K2 followed by any number of sequences of insertions
modeled by K1 and substitutions modeled by K2 with weight γ. Clearly, there
are many other ways of defining kernels based on weighted transducers with
more complex definitions and perhaps more data-driven definitions.
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Fig. 5. Mismatch kernel K(k,m) = Tk,m ◦ T−1
k,m [8] with k = 3 and m = 2 and with

Σ = {a, b}. The transducer T3,2 defined over the probability semiring is shown. All
transition weights and final weights are equal to one. Note that states 3, 6, and 8 of
the transducer are equivalent and thus can be merged and similarly that states 2 and
5 can then be merged as well.

5.3 Other Kernels Used in Computational Biology

In this section we show the relationship between rational kernels and another
class of kernels used in computational biology.

A family of kernels, mismatch string kernels, was introduced by [8] for protein
classification using SVMs. Let Σ be a finite alphabet, typically that of amino
acids for protein sequences. For any two sequences z1, z2 ∈ Σ∗ of same length
(|z1| = |z2|), we denote by d(z1, z2) the total number of mismatching symbols
between these sequences. For all m ∈ N, we define the bounded distance dm

between two sequences of same length by:

dm(z1, z2) =

{

1 if (d(z1, z2) ≤ m)
0 otherwise

(23)

and for all k ∈ N, we denote by Fk(x) the set of all factors of x of length k:

Fk(x) = {z : x ∈ Σ∗zΣ∗, |z| = k}

For any k,m ∈ N with m ≤ k, a (k,m)-mismatch kernel K(k,m) : Σ∗ ×Σ∗ → R

is the kernel defined over protein sequences x, y ∈ Σ∗ by:

K(k,m)(x, y) =
∑

z1∈Fk(x), z2∈Fk(y), z∈Σk

dm(z1, z) dm(z, z2) (24)

Proposition 6. For any k,m ∈ N with m ≤ k, the (k,m)-mismatch kernel
K(k,m) : Σ∗ ×Σ∗ → R is a PDS rational kernel.

Proof. Let M , S, and D be the weighted transducers over the probability semir-
ing defined by:

M =
∑

a∈Σ

(a, a) S =
∑

a6=b

(a, b) D =
∑

a∈Σ

(a, ε) (25)

M associates weight 1 to each pair of identical symbols of the alphabet Σ, S
associates 1 to each pair of distinct or mismatching symbols, and D associates
1 to all pairs with second element ε.



For i, k ∈ N with 0 ≤ i ≤ k, Define the shuffle of Si and Mk−i, denoted by
Si ttMk−i, as the the sum over all products made of factors S and M with
exactly i factors S and k − i factors M . As a finite sum of products of S and
M , Si ttMk−i is rational. Since weighted transducers are closed under rational
operations the following defines a weighted transducer T over the probability
semiring for any k,m ∈ N with m ≤ k: Tk,m = D∗RD∗ with R =

∑m
i=0 S

i tt
Mk−i. Consider two sequences z1, z2 such that |z1| = |z2| = k. By definition of
M and S and the shuffle product, for any i, with 0 ≤ i ≤ m,

[[Si ttMk−i]](z1, z2) =

{

1 if (d(z1, z2) = i)
0 otherwise

(26)

Thus, [[R]](z1, z2) =
m
∑

i=0

Si ttMk−i(z1, z2) =

{

1 if (d(z1, z2) ≤ m)
0 otherwise

= dm(z1, z2)

By definition of the product of weighted transducers, for any x ∈ Σ∗ and z ∈ Σk,

Tk,m(x, z) =
∑

x=uvw,z=u′v′w′

[[D∗]](u, u′) [[R]](v, v′) [[D∗]](w,w′) (27)

=
∑

v∈Fk(x),z=v′

[[R]](v, v′) =
∑

v∈Fk(x)

dm(v, z)

It is clear from the definition of Tk,m that Tk,m(x, z) = 0 for all x, z ∈ Σ∗ with
|z| > k. Thus, by definition of the composition of weighted transducer, for all
x, y ∈ Σ∗

[[Tk,m ◦ Tk,m
−1]](x, y) =

∑

z1∈Fk(x), z2∈Fk(y), z∈Σ∗

dm(z1, z) dm(z, z2) (28)

=
∑

z1∈Fk(x), z2∈Fk(y), z∈Σk

dm(z1, z) dm(z, z2) = K(k,m)(x, y)

By proposition 1, this proves that K(k,m) is a PDS rational kernel. ut

Figure 5 shows T3,2, a simple weighted transducer over the probability semir-
ing that can be used to compute the mismatch kernel K(3,2) = T3,2◦T3,2

−1. Such
transducers provide a compact representation of the kernel and are very efficient
to use with the composition algorithm already described in [3]. The transitions of
these transducers can be defined implicitly and expanded on-demand as needed
for the particular input strings or weighted automata. This substantially re-
duces the space needed for their representation, e.g., a single transition with
labels x : y, x 6= y can be used to represent all transitions with similar labels
((a : b), a, b ∈ Σ, with a 6= b). Similarly, composition can also be performed
on-the-fly. Furthermore, the transducer of Figure 5 can be made more compact
since it admits several states that are equivalent.



6 Conclusion

In general, the transducer representation provides a very compact representation
benefiting from existing and well-studied optimizations and leads to an efficient
computation of rational kernels. It further avoids the design of special-purpose
algorithms for the computation of the kernels covered by the framework of ra-
tional kernels. We gave the proof of several new and general properties related
to PDS rational kernels. These results can be used to design a PDS rational
kernel from simpler ones or from an arbitrary weighted transducer over an ap-
propriate semiring, or from negative definite kernels. Rational kernels provide a
unified framework for the design of computationally efficient kernels for strings
or weighted automata. The framework includes in particular pair-HMM string
kernels [5, 15], Haussler’s convolution kernels for strings and other classes of
string kernels introduced for computational biology.
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