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Abstract

This paper develops both univariate and multivariate distributions based on
Gram-Charlier and Edgeworth expansions, attempting to ensure non nega-
tivity by exploiting the orthogonal properties of the Hermite polynomials.
The article motivates the problems underlying some specifications (in par-
ticular those involving other conditional moments beyond the variance) and
provides empirical examples comparing the performance of these positive
definite densities to the univariate and multivariate versions of the so-called
Edgeworth-Sargan distribution when fitting stock market indices. The fitted
densities perform similarly and thus the use of the positive versions depends
on other econometric considerations rather than accuracy.
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1 INTRODUCTION

The Gram-Charlier and the Edgeworth expansions were established in the

end of the 19th century and the beginning of the 20th century by Edgeworth

(1896), Charlier (1905) and Edgeworth (1907). Since then, these expansions

have been used in many fields frommathematics or statistics to physics, but it

was Sargan in the seventies who brought these expansions into econometrics

- Sargan (1975) and Sargan (1976). More recently the densities based on

these expansions have also been investigated - Nishiyama and Robinson

(2000), Velasco and Robinson (2001) and Nabeya (2001) - and have been

introduced in finance to capture the asymmetric and leptokurtic behaviour

of high frequency financial data - see Mauleón (1997), Mauleón and Perote

(2000) or Verhoeven and McAller (2004) as recent examples. Even more,

these densities have also been used to price options - Jarrow and Rudd

(1982), Corrado and Su (1996) and Rubinstein (1998) - or to improve Value

at Risk (VaR) measures - see Perote and Del Brío (2003) or Christoffersen

and Gonçalves (2003).

All these articles reveal densities based on Hermite polynomials as

accurate and general specifications that capture skewness and kurtosis of

most high frequency data - in particular, Mauleón and Perote (2000)

proved that these densities are capable of capturing financial data behavior

even better than other non-normal distributions such as the Student’s t.

Nevertheless, these distributions based on Hermite expanisons are not always

positive definite. This problem was already higlighted by Barton and Dennis

(1952) and Draper and Tierny (1972) and also in more recent papers such

as Joundeau and Rockinger (2001). Different solutions to this problem in

1



univariate contexts were introduced by authors such as Gallant and Nychka

(1987) and Gallant and Tauchen (1989). More recently, León et al. (2004)

have proposed some variations to the conditional variance and kurtosis model

defined by Harvey and Siddique (1999) in an attempt to ensure positive

definiteness.

Moreover, the analysis of multivariate financial data have been performed

by using many multivariate distributions and also multivariate GARCH

structures - see Bauwens et al. (2005) for a recent survey on multivariate

GARCH models. Nevertheless, as far as we know, the Gram-Charlier and

Edgeworth expansions have scarcely been introduced to define multivariate

densities. Actually, Perote (2004), shows the first attempt to develop

a multivariate density based on Gaussian expansions by defining the

multivariate Edgeworth-Sargan distribution. The resulting density, called the

Multivariate Edgeworth-Sargan distribution, was proved to fit high frequency

financial data even better than Prucha and Kelejian’s (1984) multivariate

Student’s t by means of its general and flexible representation. Even more,

this multivariate density was used in Perote and Del Brío (2003) to improve

Value-at-Risk measures of non-normal portfolios. Nevertheless, despite its

utility, this multivariate distribution also presents the shortcoming of not

being always positive definite. This is the main stress of our article, which

sheds light on this issue by providing different positive definite specifications

of this kind of densities but preserving the clear advantages of their former

non-positive counterparts.

The remaining of the article is structured as follows: Section 2 is devoted

to specifying univariate densities based on Hermite polynomials focusing
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on different solutions to prevent negative values; Section 3 discusses the

use of the different specifications, specially when conditional moments are

considered; Section 4 introduces several types of multivariate positive definite

densities; Section 5 provides empirical estimates for some of the univariate

and multivariate densities defined throughout the paper, and the last section

(Section 6) gathers the main conclusions.

2 FINDINGPOSITIVEDENSITIES BASED

ON HERMITE POLYNOMIALS

The Gram-Charlier and Edgeworth series have been used to define general

density specifications whose moments are directly related to some parameters

(ds) weighting the so called Hermite polynomials. These polynomials, Hs(x),

are defined in terms of the derivatives of the normal density, g(x), as

expressed in Eq. (1).

dsg(x)

dxs
= (−1)sHs(x)g(x) (1)

or alternatively, they can be worked out by using the following closed

form - see Kendall and Stuart (1977):

Hs(x) =

⎧⎪⎪⎨⎪⎪⎩
s/2P
i=0

(−1)ixs−2i s!
2ii!(s−2i)! if s is even

(s−1)/2P
i=0

(−1)ixs−2i s!
2ii!(s−2i)! if s is odd

(2)
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These polynomials satisfy, among others, interesting orthogonality

properties. In particular it is proved that ∀s, j = 0, 1, 2, ... (see also Kendall

and Stuart (1977) for further details)

Z
Hs(x)Hj(x)g(x)dx = 0 if s 6= j and (3)

Z
Hs(x)Hj(x)g(x)dx = s! if s = j. (4)

Such orthogonality conditions guarantee that it is possible to define

functions based on Hermite polynomials that integrate up to one, the simplest

case being the Edgeworth-Sargan distribution used in some articles such as

Mauleón and Perote (2000). This distribution is defined as the expansion of

the Gaussian density truncated at the order q - see Eq. (5).

f1(x) = g(x)

"
1 +

qX
s=1

dsHs(x)

#
(5)

This distribution is easily proved to integrate one - as a direct application

of Eq. (3) to the Hermite polynomial H0(x) = 1 - but it is not strictly

a density since this function is not positive for all the values of the

parameter space. However, Mauleón and Perote (2000) emphasised the fact

that accurate optimisation procedures usually converge to parameter values

guaranteeing the positivity of the density. Other authors, e.g. Joundeau and

Rockinger (2001), found out parameter restrictions to achieve non negativity.

Nevertheless, there exist other more fruitful approaches to ensure positivity
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such as Gallant and Nychka (1987) and Gallant and Tauchen (1989) who

introduced straightforward solutions to this problem that lied in defining the

density in terms of the squared weighted sum of Hermite polynomials as

shown below.

f2(x) = g(x)

⎡⎣d0 +Ã qX
s=1

dsHs(x)

!2⎤⎦ (6)

where

d0 = 1−
Z
g(x)

Ã
qX
s=1

dsHs(x)

!2
dx = 1−

qX
s=1

d2ss!. (7)

Nevertheless, this distribution requires additional constrains (such as

d0 > 0) to ensure non negativity - see Mauleón (2003) - and, consequently,

we explore other possibilities that in general do not need further restrictions.

In particular we propose different specifications - see Eqs. (8), (9) and (10)

- exploiting the orthogonality properties of the Hermite polynomials - Eqs.

(3) and (4).Particularly, the density displayed in Eq. (10) was called Positive

Edgeworth-Sargan by Ñiguez and Perote (2004).

f3(x) = g(x)

"
1 +

qX
s=1

dsHs(x)

#2
1

k
(8)

f4(x) = g(x)

⎡⎣1 +Ã qX
s=1

dsHs(x)

!2⎤⎦ 1
k

(9)

f5(x) = g(x)

"
1 +

qX
s=1

d2sHs(x)
2

#
1

k
(10)
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For all of these three densities it is proved that the constant k, which

make them integrate up to one, is that of the Eq. (11) - see Proof 1 in the

Appendix.

k =

Z
g(x)

"
1 +

qX
s=1

dsHs(x)

#2
dx =

Z
g(x)

⎡⎣1 +Ã qX
s=1

dsHs(x)

!2⎤⎦ dx
=

Z
g(x)

"
1 +

qX
s=1

d2sHs(x)
2

#
dx = 1 +

qX
s=1

d2ss!. (11)

It is worth noticing, as well, that these three densities seem to be more

appropriate than the one shown in Eq. (6) not only from a theoretical

perspective but also from and empirical viewpoint, since the log-likelihood

function is separable - see Eq. (12) - and involves logarithms of positive

terms, thus simplifying the optimisation procedures.

LnL = ln [g(x)] + ln

⎡⎣Ã1 + qX
s=1

dsHs(x)

!2⎤⎦− ln"1 + qX
s=1

d2ss!

#
(12)

3 WHICHPOSITIVEDENSITYTOCHOOSE?

In the previous section we showed that there exist different positive density

specifications based on Gram-Charlier and Edgeworth series expansions

that can be used to fit the distribution underlying most high frequency

data. Therefore, from an empirical perspective, we might wonder which

specification seems to be more adequate. Unfortunately, there is no general

answer to this question because the final choice depends on the econometric

targets, the nature of the data and the remaining assumptions of the model.
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For example, if we focus on the in-sample performance and the presence of

outliers is not an important shortcoming, the traditional Edgeworth-Sargan

density shown in Eq. (5) might be the best option. On the other hand,

if the objective is forecasting and potential outliers are likely to happen

using densities that ensure positivity would be strongly recommended. Even

more, the success on obtaining accurate estimates and the appropriate

interpretation of the results lie in the relationship between the density

moments and its parameters. For that reason, the in-depth analysis of these

relations is the key to choose the more accurate specification.

In what follows we consider some examples to motivate the importance

of analysing and interpreting the parameters of the proposed densities. Let

us imagine that we are modelling the conditional density of a high frequency

financial variable, yt, which has a strong persistence of volatility clusters.

For such a variable, it seems to be plausible the consideration of ARCH

or GARCH structures - proposed by Engle (1982) and Bollerslev (1986) -

not only for capturing conditional variance, i.e σ2t = Et−1 [(yt − µt)2], but

also to account for conditional kurtosis - Harvey and Siddique (1999) used

a GARCH(1,1) to model skewness and León et al. (2004) attempted to

measure kurtosis likewise -, i.e. k4t =
1
σ4t
Et−1 [(yt − µt)4], (µt = Et−1 [yt] being

the conditional mean of yt). Thus the density of the standardised variable

εt =
yt−µt
σt

might be modelled according to fi(·) ∀i = 1, 3, 4 - see Eqs. (5), (8)

and (9). For the sake of simplicity, we concentrate on these three densities

constrained to ds = 0 ∀s 6= 4, and hence the resulting densities are given in

Eqs. (13), (14) and (15), respectively.
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f1(εt) = g(εt)
£
1 + d4t(ε

4
t − 6ε2t + 3)

¤
(13)

f3(εt) =
1

1 + 24d24t
g(εt)

£
1 + d4t(ε

4
t − 6ε2t + 3)

¤2
(14)

f4(εt) =
1

1 + 24d24t
g(εt)

£
1 + d24t(ε

4
t − 6ε2t + 3)2

¤
(15)

Note that, although in most distributions based on Edgeworth and Gram-

Charlier expansions the odd moments depend on the odd parameters, it is

easy to check that the densities proposed in (8) and (9) may also account

for asymmetries even when all the odd parameters are constrained to zero.

Nevertheless, the former three densities are all symmetric and their even

moments are different functions of the density parameter d4t. In particular,

the second and fourth moments of the densities (13), (14), and (15) are given

in Eqs. (16), (17) and (18), respectively (see Proof 2 in the Appendix).

Et−1
£
ε2t
¤
= 1 and Et−1

£
ε4t
¤
= 3 + 24d4t (16)

Et−1
£
ε2t
¤
=
1 + 216d24t
1 + 24d24t

and Et−1
£
ε4t
¤
=
3 + 2952d24t + 12d4t

1 + 24d24t
(17)

Et−1
£
ε2t
¤
=
1 + 216d24t
1 + 24d24t

and Et−1
£
ε4t
¤
=
3 + 2952d24t
1 + 24d24t

(18)
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Note that in some cases, such as the densities (13) and (15) , the relations

given in (16) and (18) can be used to rewrite the densities in terms of the

fourth moment of the variable, as is shown in (19) and (20), respectively.

f1(εt) = g(εt)

∙
1 +

Et−1 [ε
4
t ]− 3
24

(ε4t − 6ε2t + 3)
¸

(19)

f4(εt) =
123−Et−1 [ε4t ]

120
g(²t)

∙
1 +

Et−1 [ε
4
t ]− 3

24(123− Et−1 [ε4t ])
(ε4t − 6ε2t + 3)2

¸
(20)

Moreover, if conditional variance and kurtosis processes are considered,

such as the GARCH(1,1) processes displayed in (21) and (22), the conditional

densities of the variable ut = σtεt corresponding to the densities (19) and (20)

will be given respectively by (23) and (24).

σ2t = α0 + α1u
2
t−1 + α2σ

2
t−1 (21)

k4t = β0 + β1

µ
ut−1
σt−1

¶4
+ β2k

4
t−1 (22)

f1(ut) =
1

σt
g

µ
ut
σt

¶"
1 +

k4t − 3
24

"µ
ut
σt

¶4
− 6

µ
ut
σt

¶2
+ 3

##
(23)

f4(εt) =
123− k4t
120

1

σt
g

µ
ut
σt

¶⎡⎣1 + k4t − 3
24(123− k4t )

"µ
ut
σt

¶4
− 6

µ
ut
σt

¶2
+ 3

#2⎤⎦
(24)
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Nevertheless it is noteworthy the fact that the conditional kurtosis

version of f4(·), i.e. the equation (24), is only positive for leptokurtic

distributions such that 3 < k4t < 123 and, despite such condition is held

in most high frequency financial data, for some outliers positivity could

be jeopardised. That means that there is a trade off between considering

conditional moments beyond the variance and positive definiteness (this issue

is also clear in asymmetric distributions based on Hermite polynomials).

Therefore defining positive definite densities that account simultaneously for

different conditional moments and that do not involve awkward restrictions

is still an open question that deserves further research. In this sense the

stationarity conditions of the GARCH processes introduced in these densities

must also be carefully analysed, since the conditional variance of ut (hereafter,

σ2+t ), depends on Et−1 [ε
2
t ] as shown below:

σ2+t = α+0 + α+1 u
2
t−1 + α2σ

2+
t−1 (25)

where α+0 = α0Et−1 [ε
2
t ] and α+1 = α1Et−1 [ε

2
t ]. Even more, from (18) it

follows that

Et−1
£
ε2t
¤
=
k4t + 12

15
(26)

(also observe that Et−1 [ε2t ] > 1, provided that k4t > 3) and thus the

stationarity condition α+1 + α2 < 1 involves additional constrains to the

conditional kurtosis, such as
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k4t <
(1− α2)15− 12α1

α1
. (27)

All this discussion illustrates some alternatives to searching appropriate

univariate densities based on Hermite polynomials and emphasising the

fact that guaranteeing positive definiteness is often possible, but the final

specification must involve a detailed study of the statistical properties of the

density and should be guided by the nature of the data and the econometric

assumptions.

4 POSITIVE DEFINITE MULTIVARIATE

DENSITIES

The increasing correlation among financial markets highlights the need

of studying the joint behaviour of high frequency financial variables by

estimating the multivariate p.d.f. of groups of variables. For that purpose

the Edgeworth and Gram-Charlier series can also be used and the type of

densities shown in previous epigraphs can be straightforwardly extended to

a multivariate framework. The simplest case is given in Perote (2004), which

generalises the Edgeworth-Sargan density - see Eq. (5) - to a n-variate

context. The resulting Multivariate Edgeworth-Sargan (hereafter, MES)

provides a joint distribution whose marginal densities behave as univariate

Edgeworth-Sargan, which not only facilitates the parameter interpretation
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but also simplifies the estimating procedures. In particular, for a vector

X 0 =
h
x1 x2 · · · xn

i
, this density is defined as

F (X) = G(X) +
nY
i=1

g(xi)
nX
i=1

qX
s=1

dsiHs(xi) (28)

where G(X) represents a multivariate normal distribution with zero mean

and variance matrix Σ - as shown in (29) - whose marginal densities are the

univariate normals g(xi).

G(X) = (2π)−n/2
¯̄
Σ−1/2

¯̄
exp

½
−1
2
X 0Σ−1X

¾
(29)

In order to consider a “standard” density, at the outset we assume that

every variance is one and the correlation coefficients of xi and xj are ρij

for all i 6= j. Therefore, all the moments of the distribution depend on the

correlation coefficients and dsi ∀s = 1, 2, ..., q and ∀i = 1, 2, ..., n. For the sake

of clarity the bivariate case of this distribution (for the variables xt and yt) is

given in equation (30). Without loss of generality, we expand every marginal

Gaussian density to the same order q. Moreover dsx and dsy stand for the

sth order Hermite polynomial parameters corresponding to the variables xt

and yt respectively. For this particular case and without loss of generality it

can be easily proved that the marginal density for the variable xt is in fact

distributed according to (5) (see Proof 3 in the Appendix).

F (xt, yt) = G(xt, yt) + g(xt)g(yt)

"
qX
s=1

dsxHs(xt) +

qX
s=1

dsyHs(yt)

#
(30)
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This distribution has been found out to be very useful for capturing the

joint density of financial variables, but on the other hand the estimation

techniques for such density require a very accurate selection of initial values

(based on the previous estimates for the marginal densities) so as to prevent

processes from non converging due to potential negative values for the density

(note that maximising the log-likelihood for a given sample is not compatible

with parameter estimates approaching to zero, which would imply that the

log likelihood tends to minus infinite). For that reason, in this paper we

propose two possible variations of (28) to ensure that F (X) ≥ 0 for all X,

which we call the Multivariate Gram-Charlier I and the Multivariate Gram-

Charlier II (hereafter MGCI and MGCII, respectively).The former, MGCI,

implements the same density structure displayed in (8) into the MES,

FI(X) =
1

n+ 1
G(X) +

1

n+ 1

nY
i=1

g(xi)
nX
i=1

1

ki

"
1 +

qX
s=1

dsiHs(xi)

#2
(31)

where

ki =

Z
g(xi)

"
1 +

qX
s=1

dsiHs(xi)

#2
dxi = 1 +

qX
s=1

d2sis!. (32)

Particularly, the bivariate distribution for variables xt and yt can be

written as follows:

FI(xt, yt) =
1

3
G(xt, yt) +

1

3
g(xt)g(yt)

⎡⎣ 1
kx

"
1 +

qX
s=1

dsxHs(xt)

#2
+
1

ky

"
1 +

qX
s=1

dsyHs(yt)

#2⎤⎦
(33)
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where

kx =

Z
g(xt)

"
1 +

qX
s=1

dsiHs(xt)

#2
dxt = 1 +

qX
s=1

d2sxs! and (34)

ky =

Z
g(yt)

"
1 +

qX
s=1

dsiHs(yt)

#2
dyt = 1 +

qX
s=1

d2sys!. (35)

This distribution is indeed a density since it also integrates up to one and

its marginal densities are also univariate density functions. For instance, the

marginal density of xt is that of the Eq. (36) (see Proof 3 in the Appendix).

fI(xt) =
2

3
g(xt) +

1

3kx
g(xt)

"
1 +

qX
s=1

dsxHs(xt)

#2
(36)

On the other hand, the MGCII is the multivariate case of the Eq. (9)

and may be expressed as follows,

FII(X) =
1

n+ 1
G(X) +

1

n+ 1

nY
i=1

g(xi)
nX
i=1

1

ci

"
qX
s=1

dsiHs(xi)

#2
(37)

where

ci =

Z
g(xi)

"
qX
s=1

dsiHs(xi)

#2
dxi =

qX
s=1

d2sis!. (38)

Note that as far as MGCII is defined the constants ensuring the density

to integrate up to one are slightly different from those used in MGCI. In
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particular ci = ki − 1 -see Eqs. (32) and (38).The bivariate p.d.f. of the

MGCII in terms of the variables xt and yt is:

FII(xt, yt) =
1

3
G(xt, yt) +

1

3
g(xt)g(yt)

⎡⎣ 1
cx

"
qX
s=1

dsxHs(xt)

#2
+
1

cy

"
qX
s=1

dsyHs(yt)

#2⎤⎦
(39)

where

cx =

Z
g(xt)

"
qX
s=1

dsiHs(xt)

#2
dxt =

qX
s=1

d2sxs! and (40)

cy =

Z
g(yt)

"
qX
s=1

dsiHs(yt)

#2
dyt =

qX
s=1

d2sys!. (41)

For this density it is also easy to check that it integrates up to one and

that the marginal density of xt, for example, is distributed according to (42)

(see Proof 3 in the Appendix).

fII(xt) =
2

3
g(xt) +

1

3cx
g(xt)

"
qX
s=1

dsxHs(xt)

#2
(42)

All these densities may be considered as “standard” in the sense that their

corresponding moments depend only on the whole sequence of parameters

{dsi}. Nevertheless, depending on the characteristics of the underlying

variables, alternative specifications can be achieved by either constraining
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the density to fixed values (for example symmetry may often be achieved

by restricting the odd parameters to zero) or doing transformations of the

original variables (in order to obtain different means or variances). In

particular, the bivariate Edgeworth-Sargan density - a transformed version of

(30) - with variances σ2x(1+2d2x) and σ2y(1+2d2y) and correlation coefficient

ρxy can be written as

F (xt, yt) = G
∗(xt, yt) +

1

σxσy
g

µ
xt
σx

¶
g

µ
yt
σy

¶" qX
s=1

dsxHs

µ
xt
σx

¶
+

qX
s=1

dsyHs

µ
yt
σy

¶#
(43)

where

G∗(xt, yt) =
1

2πσxσy
p
1− ρ2xy

exp

(
1

2
¡
1− ρ2xy

¢ "µ xt
σx

¶2
+

µ
yt
σy

¶2
− 2ρxy

xyyt
σxσy

#)
(44)

Alternatively, a positive version of the bivariate distribution shown in

(33) with variances proportional to σ2x and σ2y and correlation coefficient ρxy

can be expressed as

FI(xt, yt) =
1

3
G∗(xt, yt) +

1

3σxσy
g

µ
xt
σx

¶
g

µ
yt
σy

¶
1

kx

"
1 +

qX
s=1

dsxHs

µ
xt
σx

¶#2

+
1

3σxσy
g

µ
xt
σx

¶
g

µ
yt
σy

¶
1

ky

"
1 +

qX
s=1

dsyHs

µ
yt
σy

¶#2
(45)

where G∗(xt, yt) is the multivariate normal - see Eq. (44), and kx and

ky are the constants displayed in Eqs. (34) and (35). Moreover, conditional
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variance and kurtosis - see Eqs. (21) and (22) - can be also introduced into

multivariate Gram-Charlier models as shown in Eqs. (46) to (51), which

provide the bivariate generalisation of the univariate density displayed in

Eq. (23).

F (xt, yt) = G+(xt, yt) +
1

σxtσyt
g

µ
xt
σxt

¶
g

µ
yt
σyt

¶
k4xt − 3
24

"µ
xt
σxt

¶4
+ 6

µ
xt
σxt

¶2
+ 3

#

+
1

σxtσyt
g

µ
xt
σxt

¶
g

µ
yt
σyt

¶
k4yt − 3
24

"µ
yt
σyt

¶4
+ 6

µ
yt
σyt

¶2
+ 3

#
(46)

G+(xt, yt) =
1

2πσxtσyt
p
1− ρ2xy

exp

(
1

2
¡
1− ρ2xy

¢ "µ xt
σxt

¶2
+

µ
yt
σyt

¶2
− 2ρxy

xyyt
σxtσyt

#)
(47)

σ2xt = α0x + α1xx
2
t−1 + α2xσ

2
x,t−1 (48)

σ2yt = α0y + α1yy
2
t−1 + α2yσ

2
y,t−1 (49)

k4xt = β0x + β1x

µ
xt−1
σx,t−1

¶4
+ β2k

4
x,t−1 (50)

k4yt = β0y + β1y

µ
yt−1
σy,t−1

¶4
+ β2k

4
y,t−1 (51)
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5 EMPIRICAL EXAMPLES

In this section we estimate by maximum likelihood the parameters of

some of the densities described in previous sections.The data used for the

density estimation correspond to the residuals of the previous estimation

of a first order autoregressive process for the continuously compounded

returns of the corresponding stock index (measured as the difference of

logarithms). Therefore, we consider that the conditional mean of each

variable is generated by an AR(1) process and the conditional variance

is supposed to be either constant or GARCH(1,1) - note that estimating

the density for the residuals of the AR(1) involves a loss in efficiency

(not in consistency) but also simplifies the convergence of the optimisation

algorithms. Table 1 shows the estimates for some univariate Gram-Charlier

densities including two specifications - these of (5) and (8) - with either

constant or conditional GARCH(1,1) variances. Table 2 displays the bivariate

densities corresponding to the univariate distributions shown in Table 1, i.e.

the MES density -see Eq. (43) - and some of its transformations defined in

this paper to avoid negative values - a scaled version of the MGCI described

in Eq. (33), whose marginal density of x is that of equation (36). All these

densities were truncated on the eighth Hermite polynomial and all the odd

parameters were dropped after the corresponding constraints had been tested.

The densities were estimated using daily data from the Dow Jones and the

FTSE indices spanning from January 1970 to May 1996. The columns of the

tables are numbered according to the different density specification and data

used (see the details below).
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I: Edgeworth-Sargan density - type (5) - with constant variance for the

Dow Jones index.

II: Positive univariate density - type (8) - with constant variance for the

Dow Jones index.

III: Positive univariate density - type (8) - with GARCH(1,1) variance

for the Dow Jones index.

IV: Edgeworth-Sargan density - type (5) - with constant variance for the

FTSE index.

V: Positive univariate density - type (8) - with constant variance for the

FTSE index.

VI: Positive univariate density - type (8) - with GARCH(1,1) variance

for the FTSE index.

VII: Bivariate Edgeworth-Sargan density - type (43) - with constant

variances for the Dow Jones (x) and the FTSE (y) indices.

VIII: Bivariate MGCI density - type (33) - with constant variances for

the Dow Jones (x) and the FTSE (y) indices.

IX: Bivariate Edgeworth-Sargan density - type (43) - with GARCH(1,1)

variances for the Dow Jones (x) and the FTSE (y) indices.

X: Bivariate MGCI density - type (33) - with GARCH(1,1) variances for

the Dow Jones (x) and the FTSE (y) indices.

Insert Tables 1 and 2

Both tables also display the corresponding t-ratio statistics for each

parameter (in parentheses), the log-likelihood value (lnL) and the Schwarz
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Bayesian Information Criterion (B.I.C.), defined as B.I.C. = − lnL +

p ln(T )/2 where p stands for the number of the parameters of the model.

It must be noted that most of the parameters of the models considered

are significant at 5 per cent confidence level, thus, the models seem to be

accurate measures of the density underlying the Dow Jones and the FTSE

indices. However, the values of the parameters are quite different since the

Edgeworth-Sargan densities need all the parameters to be positive (except

d2) whilst the other specifications, such as the MGCI, are always positive

whichever the sign of the parameters. Moreover, both the lnL and the B.I.C.

criteria throw evidence in favour of the Edgeworth-Sargan representations as

compared to other Gram-Charlier densities. This evidence highlights the fact

that “positive Gram-Charlier expansions” can be adequate representations

for both univariate and multivariate densities but at the cost of a loss of

accuracy when compared to other simpler Edgeworth-Sargan representations.

Nevertheless, the use of Edgeworth-Sargan densities requires a more careful

selection of initial values (or even implementing some constrains to the

parameters) to avoid the problems caused by possible negative values.

Moreover, the consideration of GARCH(1,1) processes improves the

estimates for the conditional densities, which enforces the idea of considering

other conditional moments that can be incorporated to this kind of densities.

Despite this idea sounds promising, it also provokes several shortcomings

from both a theoretical and an empirical point of view (some examples were

commented in Section 3 raising the fact that the succesful introduction of

conditional moments is sensible to the density specification). Even more, the

interpretation of the parameters is also sensible to the density specification
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and thus the estimates of the parameters must be analysed accordingly. For

example, the naïve interpretation of ρxy as the correlation coefficient among

both indices (note that ρxy stands for the correlation coefficient among both

variables only for the MES density and provided that d2x = d2y = 0) is clearly

misleading, as revealed by the the sharp increase of this parameter when

using the MGCI instead of the MES, which seems to be rather puzzling. The

consideration of all these issues play an important role when the estimated

densities are used to achieve more accurate measures of risk.

6 CONCLUDING REMARKS

This paper presents different specifications for densities based on Gram-

Charlier and Edgeworth series in both a univariate and a multivariate

framework. The focus of the paper is done on guaranteeing positive

definiteness by using the orthogonality properties of the Hermite polynomials

and extending some of the proposals given in the literature to a multivariate

context. These densities are shown to adequately fit most high frequency

data but the gains in terms of accuracy are not clear compared to the

Edgeworth-Sargan and its multivariate version defined in Perote (2004),

which is not strictly a density from a theoretical point of view due to potential

negative values. Therefore in contexts where strong presence of outliers is

perceived or when the recursive algorithms to obtain systematically estimates

are needed (as in forecasting exercises) the use of these positive densities

are strongly recommended. The paper also emphasises the fact that there

exist many different positive specifications of the densities based on Hermite
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polynomials, and that the selection among all of them should be based on

the econometric assumptions used to model the data. For example, if the

model involves the study of other conditional moments than the conditional

variance, it is not always possible to guarantee positive definiteness of the

conditional density. In this sense, the interpretation of the density parameters

in terms of the density moments is the key to define densities based on

Gram-Charlier and Edgeworth series capable of improving data fits and thus

representing more accurate measures of risk.
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APPENDIX: PROOFS

Proof 1:

k =

Z "
1 +

qX
s=1

dsHs(x)

#2
g(x)dx

=

Z
g(x)dx+

Z "
qX
s=1

dsHs(x)

#2
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qX
s=1

ds
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¡
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Z
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TABLE 1: Univariate Edgeworth and Gram-Charlier densities.
I II III IV V VI

bσx .96x10−2

(40.62)
.68x10−2

(76.48)bd2x -.69x10−1

(-3.31)
.61x10−1

(7.95)
.27
(53.38)bd4x .72x10−1

(10.71)
.71x10−2

(3.66)
.32x10−1

(23.44)bd6x .75x10−2

(4.11)
-.51x10−2

(- 16.06)
-.65x10−2

(- 28.55)bd8x .14x10−2

(7.44)
-.42x10−3

(-8.78)
-.15x10−2

(-45.61)

bσy .11x10−1

(40.13)
.91x10−2

(56.64)bd2y -.15
( -8.68)

.24x10−1

( 2.66)
.31
(56.71)bd4y .75x10−1

(11.99)
.12
(8.34)

.48x10−1

(29.10)bd6y .56x10−2

(3.24)
-.35x10−2

(- 9.78)
.72x10−3

(2.34)bd8y .13x10−2

(7.17)
-.29x10−3

(- 6.74)
-.11x10−2

(-37.78)

bα0x .15x10−6

(64.44)

bα1x .97
(2084.42)

bα2x .53x10−2

(138.16)

bα0y 56x10−6

(79.94)

bα1y .89
(2297.25)

bα2y .14x10−1

(93.89)
ln T 24800.9 24628.4 62351.7 24351.8 24312.6 61818.5
B.I.C. -24778.8 -24606.3 -62320.8 -24329.8 -24290.5 -61787.6

t-ratios in parentheses. * Non significant at 5% confidence level.
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TABLE 2: Multivariate Edgeworth and Gram-Charlier densities.
VII VIII IX X

bσx .78x10−2

(51.85)
.93x10−2

(64.19)bd2x .27
(6.02)

-.25
(-5.42)

-.44x10−2

( .06)*
-.32
(-10.21)bd4x .19

(8.61)
.51x10−1

(5.36)
.83x10−1

(4.99)
.25x10−1

(3.49)bd6x .34x10−1

(6.28)
-.14x10−1

(-10.00)
.11x10−1

(2.10)
-.22x10−2

(-2.96)bd8x .28x10−2

(6.82)
.63x10−3

(4.82)
.16x10−2

(3.45)
.44x10−3

(5.41)

bσy .11x10−1

(39.89)
.90x10−2

(68.23)bd2y -.26
(-8.37)

-.35x10−1

(-1.36)*
.42x10−1

(.55)*
-.33x10−1

(-1.25)*bd4y .12
(11.15)

.43x10−1

(9.51)
.44x10−1

(3.37)
.18x10−1

(6.03)bd6y .84x10−2

(2.92)
-.54x10−2

(-5.13)
.77x10−2

(1.72)*
.05x10−2

(0.93)*bd8y .23x10−2

(7.96)
-.62x10−3

(-7.13)
.53x10−3

(1.49)*
.67x10−4

(1.41)*

bα0x .64x10−6

(3.14)
.71x10−6

(3.31)

bα1x .96
(114.48)

.96
(118.23)

bα2x .41x10−1

(6.68)
.0.5
(8.24)

bα0y .13x10−5

(4.97)
.14x10−5

(5.08)

bα1y .91
(98.54)

.91
(97.12)

bα2y .82x10−1

(7.92)
.87x10−1

(9.98)

bρxy .09
(8.71)

.43
(15.31)

.18
(14.05)

.65
(23.43)

ln L 49178.8 44885.0 50088.7 45200.5
B.I.C. -49130.2 -44836.5 -50022.4 -45134.3

t-ratios in parentheses. * Non significant at 5% confidence level.
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