J. Austral. Math. Soc. 23 (Series A) (1977), 371-375.

POSITIVE DERIVATIONS ON *f***-RINGS**

P. COLVILLE, G. DAVIS and K. KEIMEL

(Received 23 January 1976; revised 31 March 1976)

Introduction

Throughout this paper A will denote an f-ring i.e. a lattice-ordered ring in the sense of Birkhoff and Pierce (1956) in which for all $x, y, z \in A, x \land y = 0$ implies $x \land zy = 0 = x \land yz$.

A group endomorphism $D: A \to A$ is positive if $D(x) \ge 0$ whenever $x \ge 0$ in A. A derivation on A is a group endomorphism $D: A \to A$ for which D(xy) = xD(y) + D(x)y for all $x, y \in A$.

Our objective is to characterize algebraically the positive derivations on certain f-rings. Specifically, we show that if A is an archimedean f-ring then the positive derivations on A are precisely the positive endomorphisms of A with range contained in the nilpotents of A and vanishing on A^2 .

Derivations on archimedean f-rings

We recall that A is archimedean if for some $x, y \in A$ we have $nx \leq y$ for all natural numbers n, then $x \leq 0$. Birkhoff and Pierce (1956) have shown that every archimedean f-ring is commutative.

We denoted by Rad (A) the set of nilpotent elements of A. Birkhoff and Pierce (1956) show that Rad (A) is a convex sublattice and a two-sided ideal of A (briefly, Rad (A) is an *l-ideal*) and that A/Rad(A) is a reduced ring that is, a ring with no non-zero nilpotents.

LEMMA 1. If A is an archimedean f-ring then Rad (A) is a polar subset of A. In particular, A/Rad (A) is an archimedean f-ring.

PROOF. We denote by M the set of all $z \in A$ for which $|z| \le xy$ for some $x, y \in A$. Thus, M contains all products and is an *l*-ideal of A. We let $M = \{x \in A : |x| \land |z| = 0 \text{ for all } z \in M\}$ be the polar of M. Then M annihilates A for if $a \in M$ and $b \in A$ then $ab \in M$ so we have $|a| \land |ab| = 0$, and then $|ab| = |ab| \land |ab| = |a| |b| \land |ab| = 0$. Thus $M \subseteq \text{Rad}(A)$. On the other

hand, in the proof of their theorem 3.11 Henriksen and Isbell (1962) show that $\operatorname{Rad}(A) \cap M = (0)$ holds if A is archimedean. Thus $\operatorname{Rad}(A) \subseteq M$ in this case, so $\operatorname{Rad}(A) = M$ is a polar subset and $A/\operatorname{Rad}(A)$ is archimedean by Bigard (1969).

LEMMA 2. Let A be a commutative ring with characteristic 0 and $D: A \rightarrow A$ a derivation. If $a \in A$ is nilpotent then D(a) is nilpotent.

PROOF. Let a be nilpotent in the commutative ring A with characteristic 0 and let $D: A \to A$ be a derivation. We have $a^n = 0$, for some natural number n, so $na^{n-1}D(a) = 0$ and therefore $a^{n-1}D(a) = 0$. Now suppose that for some integer k, $1 \le k \le n$, we have $a^{n-k}D(a)^{2k-1} = 0$. By applying D to this expression and multiplying by D(a) we get $a^{n-(k+1)}D(a)^{2(k+1)-1} = 0$. We can therefore continue until $D(a)^{2n-1} = 0$, so D(a) is nilpotent.

An endomorphism T of the additive group of A is a positive orthomorphism if $x \wedge y = 0$ implies $x \wedge T(y) = 0$ in A.

THEOREM 3. (Bigard and Keimel (1969)). A positive orthomorphism of A is a positive group endomorphism T for which $T(M) \subseteq M$ for each minimal prime subgroup M of A. If A is archimedean and reduced (that is, without proper nilpotents) then a positive orthomorphism $T: A \rightarrow A$ is generalized translation i.e. T satisfies T(xy) = xT(y) for all $x, y \in A$.

LEMMA 4. If D is a positive derivation on an archimedean reduced f-ring A then D = 0.

PROOF. We see firstly that D is a positive orthomorphism. Suppose that $x \wedge y = 0$ in A. We then have xy = 0 so that xD(y) + D(x)y = 0. Since $x, y \ge 0$ and D is positive we have xD(y) = 0 = D(x)y, and therefore $x \wedge D(y) = 0$, since A is reduced. Now by theorem 3, D is a generalized translation. Thus for all $x, y \in A$ we have both D(xy) = xD(y) + D(x)y and D(xy) = xD(y). That is, for all $x, y \in A$ we have D(x)y = 0, so D = 0, since A is reduced.

We now prove the result mentioned in the introduction, algebraically characterizing positive derivations on archimedean f-rings. Notice that if $I \subseteq A$ is an ideal and $D: A \to A$ is a derivation then the map $\overline{D}: A/I \to A/I$ defined by $\overline{D}(a + I) = D(a) + I$ is a derivation.

THEOREM 5. Suppose that A is an archimedean f-ring. Then the positive derivations on A are precisely the positive group endomorphisms $D: A \rightarrow A$ satisfying $D(A) \subseteq Rad(A)$ and $D(A^2) = (0)$.

PROOF. Let A be archimedean and $D: A \to A$ a positive homomorphism. If D is a derivation then $D(\operatorname{Rad}(A)) \subseteq \operatorname{Rad}(A)$ by lemma 2, since A

is commutative, so we can define a positive derivation \overline{D} of $A/\operatorname{Rad}(A)$ by $\overline{D}(x + \operatorname{Rad}(A)) = D(x) + \operatorname{Rad}(A)$. By Lemma 1 and lemma 4 we then have $\overline{D} = 0$. That is, $D(A) \subseteq \operatorname{Rad}(A)$. Since $\operatorname{Rad}(A)$ annihilates A, as we have noted in lemma 1, we have D(xy) = xD(y) + D(x)y = 0.

Conversely, suppose that $D(A) \subseteq \text{Rad}(A)$ and $D(A^2) = (0)$. Then for all $x, y \in A$ we have D(xy) = 0 = xD(y) + D(x)y, so D is a derivation.

Bounded and almost-bounded elements

The results of the previous section show that we cannot expect a positive derivation on an f-ring to be too far from being zero. In this section we pursue the idea that the kernel of a positive derivation must be large.

If A has a multiplicative identity 1 then we say that $b \in A$ is bounded if $|b| \le n1$ for some natural number n. We note that if $D: A \to A$ is a positive derivation then D(b) = 0 for all bounded elements b of A since D(1) = 0.

A subset P of A is a prime l-ideal if P is a convex sublattice ideal of A for which the set $\{a \in A : a \ge 0, a \notin P\}$ is closed under finite meet. A minimal prime l-ideal is a prime l-ideal minimal in the family of all prime l-ideals of A, ordered by inclusion. A family $\{P_{\lambda} : \lambda \in \Lambda\}$ of prime l-ideals of A is dense if $\cap \{P_{\lambda} : \lambda \in \Lambda\} = (0)$. Clearly if $\{P_{\lambda} : \lambda \in \Lambda\}$ is a dense family of prime l-ideals and $a + M \le b + M$ for all $\lambda \in \Lambda$ then $a \le b$. If A is a reduced f-ring then the family of all minimal prime l-ideals of A is dense.

LEMMA 6. Let A be a reduced f-ring with identity 1. Then for an element b > 0 in A the following are equivalent:

(i) $b = \lor \{b \land n \ 1 : n \ a \ natural \ number\}$

(ii) b is the join of a family of bounded elements

(iii) there is a dense family $\{M_{\lambda} : \lambda \in \Lambda\}$ of minimal prime l-ideals of A such that $b + M_{\lambda}$ is bounded in A/M_{λ} , for all $\lambda \in \Lambda$.

PROOF. The equivalence of (i) and (ii) is straightforward. Suppose that b > 0 in A and that \mathcal{M} is the set of all minimal prime *l*-ideals M of A such that b + M is bounded in A/M. In order to prove that (i) implies (iii) suppose that $I = \cap \mathcal{M} \neq (0)$. Then I contains an element x with $0 < x \leq 1$. Clearly $b - x + M = b + M \geq b \land n1 + M$ for all $M \in \mathcal{M}$. For every minimal prime *l*-ideal M not belonging to \mathcal{M} the coset b - x + M is unbounded in A/M; for if $b - x + M \leq n1 + M$ for some natural number n, then $b + M \leq x + n1 + M \leq (n + 1)1 + M$. Thus, $b - x + M > n1 + M \geq b \land n1 + M$ for all minimal prime *l*-ideals M of A not belonging to \mathcal{M} , and every natural number n. Consequently, $b - x + M \geq b \land n1 + M$ for every minimal prime *l*-ideal M of A. As the set of all minimal prime *l*-ideals is dense, we conclude that $b - x \geq b \land n1$, and this for every natural number n. Thus, (i) does not hold.

In order to prove that (iii) implies (i) suppose that $b \neq \sqrt{b \wedge n! n}$ a natural number}. Then there is an x > 0 in A such that $b - x \ge b \wedge n!$ for all natural numbers n. For every $M \in \mathcal{M}$ we get $b - x + M \ge b \wedge n! + M = b + M$ for some n, so $-x + M \ge 0$. As on the other hand $x + M \ge 0$, we have $0 < x \in \cap \mathcal{M}$ which contradicts (iii).

We shall say that an element b of a reduced f-ring A with identity is almost-bounded if |b| satisfies one of the equivalent conditions of lemma 6. We denote the set of *almost-bounded* elements of A by $\mathscr{E}(A)$, and from lemma 6 (iii) one readily deduces that $\mathscr{E}(A)$ is a convex sublattice and subring of A.

THEOREM 7. Let A be a reduced f-ring with identity and let $D: A \rightarrow A$ be a positive derivation. Then $\mathscr{C}(A) \subseteq \text{Ker } D$.

PROOF. By theorem 3 every minimal prime *l*-ideal of A is invariant under D. Let b be an almost-bounded element of A, and let $\{M_{\alpha}\}$ be the set of minimal prime *l*-ideals of A for which b is bounded in A/M_{α} . Then, for each α , D defines a derivation D_{α} on A/M_{α} by $D_{\alpha}(x + M_{\alpha}) = D(x) + M_{\alpha}$, and since b is bounded in A/M_{α} we have $D_{\alpha}(b + M_{\alpha}) = 0$. That is, $D(b) \in \bigcap_{\alpha} M_{\alpha} = (0)$.

COROLLARY 8. Let A be a reduced f-ring with identity. If $y \in A$ is such that uy is almost-bounded for some u > 0 with $u^{\perp} = (0)$, then D(y) = 0 for every positive derivation $D: A \rightarrow A$.

PROOF. By theorem 7 we have uD(|y|) + D(u)|y| = 0 and therefore uD(|y|) = 0, for each positive derivation D on A. Since A is reduced we then have $u \wedge D(|y|) = 0$ and therefore D(|y|) = 0 since $u^{\perp} = (0)$. Consequently D(y) = 0.

COROLLARY 9. If A is a reduced f-ring with identity 1 such that every x > 1 is invertible then the only positive derivation $D: A \rightarrow A$ is D = 0.

PROOF. If A satisfies the assumptions then each x > 1 has the property that $(x^{-1})^{\perp} = (0)$ and $x^{-1}x = 1$ is bounded. Thus D(x) = 0 for all x > 1. Then D(y) = 0 for all $y \in A$, since $|y| \le |y| \lor 1$ for all $y \in A$.

COROLLARY 10. If D is a positive derivation on a totally-ordered division ring then D = 0.

We recall that a ring A is (von Neumann) regular if for each $a \in A$ there is an $x \in A$ for which axa = a and xax = x. D. J. Johnson (1962) has shown that every regular f-ring A is strongly regular, that is, for each $a \in A$ there is an $x \in A$ for which $a^2 x = 0$. In particular, every regular f-ring A is reduced and A/M is a totally-ordered division ring for each minimal prime l-ideal M.

THEOREM 11. If $D: A \rightarrow A$ is a positive derivation on a regular f-ring not necessarily with identity) then D = 0.

PROOF. Let M be a minimal prime *l*-ideal of A. By the remarks preceding this theorem and by theorem 3 we have $D(M) \subseteq M$. The derivation D defined on the totally-ordered division ring A/M by $\overline{D}(x+M) = D(x) + M$ then must be zero by corollary 10. Thus, $D(A) \subseteq \cap \{M: M \text{ is a minimal prime } l \text{-ideal}\} = (0)$, since A is reduced.

References

- A. Bigard (1969), Contribution à la théorie des groups réticulés (Thèse, Paris).
- A. Bigard and K. Keimel (1969), 'Sur les endomorphismes conservant les polaires d'un groupe réticulé archimédien', Bull. Soc. Math. France 97, 381-398.
- G. Birkhoff and R. S. Pierce (1956), 'Lattice-ordered rings', Anais. Acad. Brasil Ciencias 28, 41-69.
- M. Henriksen and Isbell (1962), 'Lattice-ordered rings and function rings', Pac. J. Math. 12, 533-565.
- . D. G. Johnson (1962), 'On a representation theorem for a class of archimedean lattice-ordered rings', Proc. Lond. Math. Soc. (3) 12, 207-225.

Ballarat Institute of Advanced Education, Ballarat.

Mathematics Department, La Trobe University, Melbourne, Australia

and

Technische Hochschule, Darmstadt, Germany.