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POSITIVE DERIVATIONS ON /-RINGS
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Introduction

Throughout this paper A will denote an /-ring i.e. a lattice-ordered ring
in the sense of Birkhoff and Pierce (1956) in which for all x, y, z G A, x A y = 0
implies x A zy = 0 = x A yz.

A group endomorphism D:A—»A is positive if D(x)gfl whenever
x § 0 in A. A derivation on A is a group endomorphism D: A —*• A for which
D{xy)=xD{y)+D{x)y for all x, y £ A.

Our objective is to characterize algebraically the positive derivations on
certain /-rings. Specifically, we show that if A is an archimedean /-ring then
the positive derivations on A are precisely the positive endomorphisms of A
with range contained in the nilpotents of A and vanishing on A2.

Derivations on archimedean /-rings

We recall that A is archimedean if for some x, y G A we have nx 3= y for
all natural numbers n, then x SO. Birkhoff and Pierce (1956) have shown that
every archimedean /-ring is commutative.

We denoted by Rad (A) the set of nilpotent elements of A. Birkhoff and
Pierce (1956) show that Rad (A) is a convex sublattice and a two-sided ideal
of A (briefly, Rad (A) is an l-ideal) and that A /Rad (A) is a reduced ring —
that is, a ring with no non-zero nilpotents.

LEMMA 1. If A is an archimedean f-ring then Rad (A) is a polar subset of
A. In particular, AI Rad (A) is an archimedean f-ring.

PROOF. We denote by M the set of all z G A for which | z | S xy for some
x, y G A. Thus, M contains all products and is an /-ideal of A. We let
M = {x G A : | x | A | z | = 0 for all z G M} be the polar of M. Then M annihi-
lates A for if a G M and b G A then ab G M so we have | a | A | ab \ = 0, and
then | ab \ = \ ab \ A J ab \ = | a \ \ b | A | ab \ = 0. Thus M C Rad (A). On the other
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hand, in the proof of their theorem 3.11 Henriksen and Isbell (1962) show that
Rad(A)HM = (0) holds if A is archimedean. Thus Rad(A)CM in this
case, so Rad(A)= M is a polar subset and A/Rad (A) is archimedean by
Bigard (1969).

LEMMA 2. Let A be a commutative ring with characteristic 0 and
D: A —> A a derivation. If a EL A is nilpotent then D(a) is nilpotent.

PROOF. Let a be nilpotent in the commutative ring A with characteristic
0 and let D:A-*A be a derivation. We have a" =0, for some natural
number n, so naniD(a) = 0 and therefore a"'lD(a) = 0. Now suppose that
for some integer k, 1 S k Si n, we have a"kD(a)2k~1 = 0. By applying D to
this expression and multiplying by D{a) we get a"~(k+:)D(a)2(k+>)~' =0. We
can therefore continue until D(a)2"~1 = 0, so D(a) is nilpotent.

An endomorphism T of the additive group of A is a positive orthomor-
phism if x A y = 0 implies x A T(y) = 0 in A.

THEOREM 3. (Bigard and Keimel (1969)). A positive orthomorphism of A
is a positive group endomorphism T for which T(M) C. M for each minimal
prime subgroup M of A. If A is archimedean and reduced (that is, without
proper nilpotents) then a positive orthomorphism T: A —> A is generalized
translation i.e. T satisfies T(xy) = xT(y) for all x, y G A.

LEMMA 4. If D is a positive derivation on an archimedean reduced f-ring
A then D = 0.

PROOF. We see firstly that D is a positive orthomorphism. Suppose that
JC A y = 0 in A. We then have xy = 0 so that xD(y)+ D(x)y = 0. Since
x j § 0 and D is positive we have xD(y) = 0 = D(x)y, and therefore
XAD(y) = 0, since A is reduced. Now by theorem 3, D is a generalized
translation. Thus for all x, y G A we have both D (xy) = xD (y) + D(x )y and
D(xy) = xD(y). That is, for all x, y G A we have D(x)y = 0, so D = 0, since
A is reduced.

We now prove the result mentioned in the introduction, algebraically
characterizing positive derivations on archimedean /-rings. Notice that if
1 C A is an ideal and D: A —> A is a derivation then the map D: A/I —> A/I
defined by D(a + I)= D(a)+ I is a derivation.

THEOREM 5. Suppose that A is an archimedean f-ring. Then the positive
derivations on A are precisely the positive group endomorphisms D: A —> A
satisfying D(A)Q Rad (A) and D(A2)= (0).

PROOF. Let A be archimedean and D : A —> A a positive homomor-
phism. If D is a derivation then D (Rad(A))C Rad(A) by lemma 2, since A
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is commutative, so we can define a positive derivation D of A/Rad(A) by
D(x + Rad(A)) = D(x)+Rad(A). By Lemma 1 and lemma 4 we then have
D =0. That is, D(A)CRad(A). Since Rad(A) annihilates A, as we have
noted in lemma 1, we have D (xy)= xD(y)+ D(x)y = 0.

Conversely, suppose that D(A) C Rad (A) and D(A2)^ (0). Then for all
x,y£A we have D(xy) = 0 = xD(y) + D(x)y, so D is a derivation.

Bounded and almost-bounded elements

The results of the previous section show that we cannot expect a positive
derivation on an /-ring to be too far from being zero. In this section we pursue
the idea that the kernel of a positive derivation must be large.

If A has a multiplicative identity 1 then we say that b E A is bounded if
| b | S= n 1 for some natural number n. We note that if D: A —» A is a positive
derivation then D(b) = 0 for all bounded elements b of A since D( l ) = 0.

A subset P of A is a prime l-ideal if P is a convex sublattice ideal of A
for which the set {a £ A : a 'S 0, a (El P} is closed under finite meet. A minimal
prime l-ideal is a prime /-ideal minimal in the family of all prime /-ideals of
A, ordered by inclusion. A family {PA: A G A} of prime /-ideals of A is dense
if n {PA: A G A} = (0). Clearly if {PA: A G A} is a dense family of prime /-ideals
and a + M § b + M for all A E A then a § b. If A is a reduced /-ring then the
family of all minimal prime /-ideals of A is dense.

LEMMA 6. Let A be a reduced f-ring with identity 1. Then for an element
b>0 in A the following are equivalent:

(i) b = v{b/\nl:na natural number]
(ii) b is the join of a family of bounded elements
(iii) there is a dense family {MA: A G A} of minimal prime l-ideals of A

such that b + MA is bounded in A/MK, for all A G A.

PROOF. The equivalence of (i) and (ii) is straightforward. Suppose that
b > 0 in A and that M is the set of all minimal prime /-ideals M of A such
that b + M is bounded in A/M. In order to prove that (i) implies (iii) suppose
that 1= D J / ( 0 ) . Then I contains an element x with 0 < i S l . Clearly
b — x + M=b + MSbAnl + M for all M G M. For every minimal prime
/-ideal M not belonging to M the coset b - x + M is unbounded in AIM; for
if b-x + MSnl + M for some natural number n, then fc + M S
x + n 1 + M g (n + 1)1 + M, Thus, / > - x + M > n l - f - M g / > A n l + M f o r a l l
minimal prime /-ideals M of A not belonging to M, and every natural number
n. Consequently, b-x + MSb/\nl + M for every minimal prime /-ideal M
of A. As the set of all minimal prime /-ideals is dense, we conclude that
b - x^ b A nl, and this for every natural number n. Thus, (i) does not hold.

https://doi.org/10.1017/S1446788700019017 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019017


374 P. Colville, G. Davis and K. Keimel [4]

In order to prove that (iii) implies (i) suppose that b^ v{b A n 1: n a
natural number}. Then there is an x > 0 in A such that b - x g b A n 1 for all
natural numbers n. For every M E M we get b-x + M^bMil + M =
b + M for some n, so - x + M =£ 0. As on the other hand x + M g 0, we have
0 < x £ DM, which contradicts (iii).

We shall say that an element b of a reduced /-ring A with identity is
almost-bounded if | b \ satisfies one of the equivalent conditions of lemma 6.
We denote the set of almost-bounded elements of A by %(A), and from
lemma 6 (iii) one readily deduces that %{A) is a convex sublattice and subring
of A.

THEOREM 7. Let A be a reduced f-ring with identity and let D: A —»A be
a positive derivation. Then %(A)C. KerD.

PROOF. By theorem 3 every minimal prime /-ideal of A is invariant
under D. Let b be an almost-bounded element of A, and let {Ma} be the set of
minimal prime /-ideals of A for which b is bounded in A/Ma. Then, for each
a, D defines a derivation Da on A/M« by Da(x + Ma) = D(x)+ Ma, and
since b' is bounded in A/Ma we have Da(b + Ma) = 0. That is,
D(b)(E naMa = (0).

COROLLARY 8. Let A be a reduced f-ring with identity. If y £ A is such
that uy is almost-bounded for some u > 0 with u1 = (0), thenD(y) = 0 for every
positive derivation D: A —* A.

PROOF. By theorem 7 we have uD(\ y |)+ D(u)\ y | = 0 and therefore
uD{\ y |) = 0, for each positive derivation D on A. Since A is reduced we then
have K A D ( | V | ) = 0 and therefore D( |y | ) = 0 since u± = (O). Consequently
D(y) = 0.

COROLLARY 9. / / A is a reduced f-ring with identity 1 such that every
x > 1 is invertible then the only positive derivation D: A -» A is D = 0.

PROOF. If A satisfies the assumptions then each x > 1 has the property
that (x~Y = (0) and x'x = 1 is bounded. Thus D(JC) = 0 for all x > 1. Then
D(y) = 0 for all y £ A , since | y | S | y | v 1 for all y £ A

COROLLARY 10. If D is a positive derivation on a totally-ordered division
ring then D = 0.

We recall that a ring A is (von Neumann) regular if for each a £ A there
is an x £ A for which axa = a and xax = x. D. J. Johnson (1962) has shown
that every regular /-ring A is strongly regular, that is, for each a & A there is

https://doi.org/10.1017/S1446788700019017 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019017


[5] Positive derivations on /-rings 375

an x £ A for which a2x =0. In particular, every regular /-ring A is reduced
and A /M is a totally-ordered division ring for each minimal prime /-ideal M.

THEOREM 11. If D:A—>A is a positive derivation on a regular f-ring
not necessarily with identity) then D = 0.

PROOF. Let M be a minimal prime /-ideal of A. By the remarks
preceding this theorem and by theorem 3 we have D(M) C M. The derivation
D denned on the totally-ordered division ring AIM by D(x + M) =
D(x)+M then must be zero by corollary 10. Thus, D(A)C n{M:M is a
minimal prime /-ideal} = (0), since A is reduced.
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