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While low socioeconomic status (SES) introduces risk for developmental outcomes

among children, there are an array of proximal processes that determine the ecologies

and thus the lived experiences of children. This study examined interrelations between

22 proximal measures in the economic, psychosocial, physiological, and perinatal

ecologies of children, in association with brain structure and cognitive performance in

a diverse sample of 8,158 9–10-year-old children from the Adolescent Brain Cognitive

Development (ABCD) study. SES was measured by the income-to-needs ratio (INR),

a measure used by federal poverty guidelines. Within the ABCD study, in what is one

of the largest and most diverse cohorts of children studied in the United States, we

replicate associations of low SES with lower total cortical surface area and worse

cognitive performance. Associations between low SES (<200% INR) and measures

of development showed the steepest increases with INR, with apparent increases still

visible beyond the level of economic disadvantage in the range of 200–400% INR.

Notably, we found three latent factors encompassing positive ecologies for children

across the areas of economic, psychosocial, physiological, and perinatal well-being in

association with better cognitive performance and the higher total cortical surface area

beyond the effects of SES. Specifically, latent factors encompassing youth perceived

social support and perinatal well-being were positive predictors of developmental

measures for all children, regardless of SES. Further, we found a general latent factor

that explained relationships between 20 of the proximal measures and encompassed

a joint ecology of higher social and economic resources relative to low adversity

across psychosocial, physiological, and perinatal domains. The association between the

resource-to-adversity latent factor and cognitive performance was moderated by SES,

such that for children in higher SES households, cognitive performance progressively

increased with these latent factor scores, while for lower SES, cognitive performance
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increased only among children with the highest latent factor scores. Our findings suggest

that both positive ecologies of increased access to resources and lower adversity are

mutually critical for promoting better cognitive development in children from low SES

households. Our findings inform future studies aiming to examine positive factors that

influence healthier development in children.

Keywords: cortical surface area, cognition, SES, poverty, proximal processes, resilience

INTRODUCTION

According to the Census Bureau for 2017, 38.8% of children

in the United States experienced low socioeconomic status

(SES), living in households ranging from deep poverty to

low-income (Fontenot et al., 2018). SES is most often defined

by family income and has been reported widely in association

with outcomes in cognitive performance in children, such that

children from lower SES backgrounds perform worse compared

to peers from more economically advantaged backgrounds

(McLoyd, 1998; Evans, 2004; Farah et al., 2006; Noble et al.,

2015). Childhood low SES has also been linked to increased

risk of emergence of mental and physical health problems

in adulthood (Melchior et al., 2007; Jensen et al., 2017).

Most recently, studies have reported associations of SES

with characteristics of whole-brain and regional structure in

children (Hair et al., 2015; Noble et al., 2015; Farah, 2017;

McDermott et al., 2019). Several hypotheses about the causal

pathways by which SES influences development have been

suggested, including: (1) the indirect of effects of SES through

exposure to environmental stress that alters neural structures

important for stress regulation (the hypothalamic-pituitary-

adrenal axis); and (2) the indirect effect of SES through

ecologies of resource deprivation such as food and housing

insecurity, parental characteristics, cognitive stimulation in the

environment, and prenatal care (for reviews see Brito and Noble,

2014; Johnson et al., 2016; Farah, 2017). Thus, SES as measured

by family income is a distal measure of the proximal processes

underlying risk and resilience in developmental outcomes.

Proximal processes in the context of child development have

been defined as forms of interactions between the child and

environment thought to influence development over time

(Bronfenbrenner, 1994). To advance our understanding of the

pathways by which SES is associated with brain and cognitive

development, we must consider a bio-psycho-social-ecological

model that includes an array of proximal processes potentially

traveling with low SES and development, to then examine the

unique or joint influence they exert on development across the

economic spectrum.

Bronfenbrenner’s bio-psycho-social model suggests

that development during childhood is dependent on

reciprocal interactions that occur within the nested and

dynamic environments of children (Bronfenbrenner, 1979;

Bronfenbrenner and Morris, 2006). For low SES children,

there can be tremendous variability in the quality of these

environments (i.e., characteristics of parents, interactions with

family, community, school, and neighborhood experiences).

These transactional processes form linked social ecologies

that jointly shape risk and resilience for development during

childhood (Ungar et al., 2013). Low SES has been correlated to

various degrees with psychosocial risk (e.g., increased family

conflict) and sociodemographic risk (unplanned pregnancies

and single parent households), experiences thought to expose

children to adversity (Duncan and Brooks-Gunn, 2000; Hussey

et al., 2006; Kim et al., 2018). Studies that have examined an array

of proximal factors in relation to risk and cognitive development

suggest that it is the number of cumulative risk rather than the

specific type of risk that best predicts development (Furstenberg

et al., 2000; Zigler et al., 2011). However, low SES does not

always translate to adversity or material deprivation. In fact,

positive factors of social and community support, such as

positive parenting and positive school environments, have

been associated with better developmental outcomes among

children from low SES backgrounds (Benard, 1991; Whittle

et al., 2014). Thus, among children growing up in low SES

households, investigating how individual differences in their

ecologies exacerbate or mitigate the possible negative influences

of low SES on cognitive and brain development is complex.

To identify promotive factors for developmental outcomes for

children in low SES households, it is important to consider an

array of proximal measures encompassing the dynamic ecologies

for children.

Importantly, when considering the effects of bio-

psycho-social-ecological processes on development, we

must acknowledge that early experience, such as prenatal

exposures and early birth outcomes, influence brain

development throughout childhood. For instance, adverse

perinatal factors, such as low birth weight (Papadopoulou

et al., 2019) and maternal substance use (McLachlan et al.,

2016), have also been associated with stress dysregulation

in childhood and adolescence. These same adverse perinatal

factors are associated with cortical alterations (Hendrickson

et al., 2018; Pascoe et al., 2019). Some studies have

reported children from low SES backgrounds are at risk for

prematurity and low birth weight (Malecki and Demaray,

2006; Kelly and Li, 2019). Despite these connections, proximal

measures in the domains of adverse childhood experiences,

economic and psychosocial, physiological health, and

perinatal exposures have rarely been examined collectively

and within a single model as predictors of development

(Liaw and Brooks-Gunn, 1994).

Across the SES spectrum, including children from low

SES households, there is tremendous variability in the quality

and experience of such bio-psycho-social ecologies. Some
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children from low SES households may likely experience

positive ecologies, however, it is unknown to what extent

these positive ecologies promote healthier development

within a low SES context compared a higher SES context.

In this study, we examine the large and diverse typically

developing sample of the Adolescent Brain Cognitive

Development (ABCD) study, to first test replication of

SES associations with developmental measures of cognitive

performance and total cortical surface area. We then go

beyond associations of SES and leverage the bio-psycho-

social-ecological model by utilizing 22 proximal measures

of economic, social, physiological, and perinatal ecologies

to accelerate our understanding of how these contexts

uniquely influence cognitive and brain development. We

implemented a Group Factor Analysis (GFA), a multivariate

approach which allowed for the examination of relationships

among the 22 proximal measures to identify latent factors

descriptive of ecologies among children. We hypothesized latent

factors for positive bio-psycho-social-ecologies encompassing

economic, psychosocial, physiological, and perinatal health

would predict better developmental outcomes beyond

the variability explained by SES. Further, we considered

whether the associations between positive ecologies and

developmental measures could be moderated by SES, such

that the positive ecologies could relate to the developmental

measures differentially for children in low SES households

relative to children in higher SES households. Findings from

our large sample study can inform future smaller scale studies

of risk and resilience for cognitive and brain development

with children growing up low SES, as well across the

SES spectrum.

MATERIALS AND METHODS

Participants
Data were obtained from the ABCD Study. The ABCD 2.0.1 data

release was downloaded from the NIMH Data Archive ABCD

Collection (10.15154/1504041) and contained baseline data

for a total of N = 11,875 children ages 9–10 years old.

Demographics of the sample are described in Table 1. Baseline

data that passed quality assurance (N = 462 excluded) and had

complete cases for FreeSurfer imaging data (N = 341 missing),

demographic measures (household income: N = 1,018 missing;

Sex:N = 4missing), and the 22 proximal measures, were included

in the analyses for a total of N = 8,158.

The recruitment strategy has been described in detail

previously (Garavan et al., 2018). Children were recruited from

22 study sites and ABCD is following children at 21 study sites

across the United States. A school-based recruitment strategy

was developed to achieve a cohort of families that was diverse

in income, race-ethnicity, and cultural background and has

been described in detail by Garavan et al. (2018). Demographic

information for age, sex (female: 1, male: 0), and race-ethnicity

were examined. Race-ethnicity was recoded to include five

categories: Hispanic, and non-Hispanic White, Black, Asian, and

more than one race.

SES: Income-to-Needs Ratio
SES was estimated using the income-to-needs ratio (INR). The

INR was calculated by dividing reported household income

by the federal poverty threshold for a given household size.

A lower INR ratio indicated higher SES. Gross household

income and the number of household members were reported

by the participants’ caregiver in the Parent Demographics

Survey. Income was reported in bins and was adjusted to

the median for each income bin. We used the 2017 federal

poverty level for the corresponding household sizes from the

poverty guidelines updated periodically in the Federal Register

by the United States (U.S.) Department of Health and Human

Services under the authority of 42 U.S.C. 9902(2). The federal

poverty level (i.e., 100% INR) is the necessary income needed

for a family of a given size (e.g., $24,600 for a family of 4)

to meet the cost of living, including shelter, food, clothing,

transportation, and other necessities and determines eligibility

for federal government benefit programs. The federal poverty

guidelines also specify a threshold for low SES households

(<200% INR) and these are subdivided into: deep poverty

(<50% INR), poverty (50–100% INR), and near poverty

(100–200% INR).

Proximal Measures for Bio-Psycho-Social
Ecologies
We examined 22 proximal measures thought to encompass

bio-psycho-social ecologies hypothesized to be associated with

cognitive performance and brain structure based on previous

literature (Bronfenbrenner and Morris, 2006; Zigler et al., 2011;

Ungar et al., 2013; Pepper and Nettle, 2017; Farah, 2018).

We grouped the 22 measures into six groups thought to

encompass ecologies of economic, psychosocial, physiological

and perinatal ecologies: (1) economic security (i.e., food,

housing, bills, and medical); psychosocial ecologies: (2) parental

characteristics (i.e., education, dual parent households, parental

monitoring, and caregiver warmth); (3) school/community

environment; (4) risk for adverse childhood experiences

(ACEs); (5) physiological health; and (6) perinatal well-

being. Table 2 shows a list of variables examined within

each group and detailed descriptions for each variable are

available in Supplementary Table 1. Previous studies have

shown that measures of economic security often travel together,

such as food and housing insecurity (Njai et al., 2017).

Economic security was measured by a set of questions that

determined food security, housing security, ability to pay

bills, and access to medical or dental care. Risk for adverse

childhood experiences, including history of traumatic events,

family conflict, parent psychopathology have been shown to be

correlated (Hussey et al., 2006). Parental psychopathology was

the average z-score of Adult Self-Report scores and parental

history of conduct problems (unable to hold down a job, gets

into fights, et cetera). Parental ecologies which are comprised

of characteristics of the parent, including parental education,

parental monitoring and caregiver acceptance (i.e., warmth

and responsiveness) were grouped together, while measures of

school and community environments were grouped together,
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TABLE 1 | Distributions for cognition scores, total cortical surface area (SA), age, sex, and race-ethnicity are shown for the overall sample and each income-to-need

group as defined by the federal poverty level.

Deep

poverty <50%

Poverty

50–<100%

Near poverty

100–<200%

Mid income

200–<400%

High income

≥400%

Total sample

Cognition scores mean (SD) 78.9 (9.2) 81.5 (8.1) 84.5 (8.6) 87.3 (8.1) 89.9 (7.7) 87.1 (8.8)

Total cortical SA (mm2)

Mean (SD)

1.77e5 (1.78e4) 1.82e5 (1.79e4) 1.83e5 (1.72e4) 1.87e5 (1.78e4) 1.9e5 (1.76e4) 1.9e5 (1.8e4)

Age Mean (SD) 9.83 (0.61) 9.87 (0.61) 9.92 (0.63) 9.90 (0.63) 9.94 (0.62) 9.91 (0.62)

Sex N (%)

Female 303 (49.0) 225 (46.2) 628 (48.4) 981 (48.0) 1,776 (47.8) 3,913 (48.0)

Male 315 (51.0) 262 (53.8) 670 (51.6) 1,061 (52.0) 1,937 (52.1) 4,245 (52.0)

Race-ethnicity N (%)

Whitea 92 (14.9) 126 (25.9) 515 (39.7) 1,215 (59.5) 2,772 (74.7) 4,720 (57.9)

Hispanic 178 (28.8) 181 (37.2) 362 (27.9) 433 (21.2) 362 (9.7) 1,516 (18.6)

Blacka 276 (44.7) 133 (27.3) 266 (20.5) 200 (9.8) 116 (3.1) 991 (12.1)

Asiana 4 (0.6) 4 (0.8) 13 (1.0) 18 (0.9) 91 (2.5) 130 (1.6)

Othera 68 (11.0) 43 (8.8) 142 (10.9) 176 (8.6) 372 (10.0) 801 (9.8)

Total sample N (%) 618 (7.6) 487 (6.0) 1,298 (15.9) 2,042 (25.0) 3,713 (45.5) 8,158 (100)

U.S. Population >18 years

(%)b
8.0 9.5 21.3 28.9 32.3 -

aNon-Hispanic; bU.S. Census Bureau, Current Population Survey, 2018 Annual Social and Economic Supplement.

TABLE 2 | List of grouped measures entered into the Group Factor Analysis (GFA) encompassing economic security, psychosocial ecologies (parental, ACEs, and

school/community), physiological and perinatal domains, across parent report and youth (Y) report.

GFA groups Measures

Economic Food security Housing security Ability to pay bills Access to

medical/dental

Parental Parental education Total caregiver

warmth (Y)

Parental monitoring (Y) Dual parent

households

ACEs Family conflict (Y) History of a traumatic

event

Parent

psychopathology

School/community Neighborhood

safety (Y)

Positive school

environment (Y)

School engagement (Y)

Physiological Sleep hours BMIz

Perinatal Total prenatal

conditions

Planned pregnancy Maternal

age at birth

History of prenatal

substance use

Gestational age

(weeks)

Birth weight (kg)

i.e., school engagement, school positive environment and

neighborhood safety (Collishaw et al., 2009). Importantly,

dual parent household was defined by the study caregiver

report of whether he/she had a partner who was involved

in at least 40% or more of the daily activities of the child.

Highest parental education was from parent report of highest

education attained among both caregivers when available.

Measures of physiological health, specifically BMIz and sleep

hours have been closely liked and were grouped together

(Carter et al., 2011; Golley et al., 2013), while measures of

perinatal health, including birth weight, prematurity and prenatal

drug use have also been closely linked together (Malecki

and Demaray, 2006; Kelly and Li, 2019). Body Mass Index

z-scores (BMIz) were calculated using the SAS Program for the

2000 CDC Growth Charts (Centers for Disease and Control

and Prevention n.d.) using height (cm), weight (kg), age,

and sex. Two participants with implausible birth weights for

gestational age were excluded (>4.98 kg at 35 weeks). For

BMIz scores, N = 46 participants had implausible scores

(>4) and were thus excluded. A detailed description of

the ABCD baseline protocol, including a description of the

variables used have been reported previously (Barch et al., 2018;

Zucker et al., 2018).

Cognitive Performance
The NIH Toolboxr cognition battery was administered as

part of the ABCD study baseline neurocognition protocol

(Luciana et al., 2018). The Toolboxr provides composite derived

T-Scores for each participant, summarizing performance

across seven cognitive tasks in the domains of language

(reading and vocabulary) and executive function related skills

(i.e., working memory, processing speed, cognitive flexibility,

episodic memory, attention/inhibition). The composite

derived T-Scores are fully corrected standardized scores

that account for demographic characteristics, including gender,

education and race/ethnicity (Luciana et al., 2018). Studies
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have reported extensively on associations of SES with cognitive

skills encompassing both language and executive function

domains (Ursache and Noble, 2016; Merz et al., 2019). Thus,

the total composite cognition score, which encompasses both

language and executive function domains, was used as the

summary measure of cognitive performance (Bleck et al., 2013;

Gershon et al., 2013).

Cortical Surface Area
The imaging procedures for ABCD imaging acquisition and

preprocessing have been described previously (Hagler et al.,

2019). Each site applied a standardized structural magnetic

resonance imaging (sMRI) protocol that included a T1 weighted

scan among other imaging modalities. All imaging data

was processed using FreeSurfer pipelines and procedures by

the ABCD Data Informatics and Resource Center. Quality

control details are described in depth in Hagler et al.

(2019). Briefly, sMRI data underwent distortion and motion

correction, and cortical surface area reconstruction was derived

using T1 weighted images. Trained technicians manually

reviewed sMRI data pre and post processing pipelines to

evaluate integrity of the images across five artifact categories:

intensity inhomogeneity, underestimation of white matter,

pial overestimation, and magnetic susceptibility artifact. Each

quality control category was assigned a rating of either absent,

mild, moderate, or severe. In addition, the trained quality

control technicians assigned an overall quality control score,

with a score of 1 indicating a passing score and that the

cortical surface area reconstruction as usable, or a score of

0 recommending the data be excluded. A rating of severe on

any of the five categories was recommended as exclusionary.

Imaging data with an overall quality control score of passing

were used.

Cortical surface area, in contrast to other morphological

measures of brain structure, increases across cortical regions

during childhood, while during early adolescence, regions

across the cortex begin to shift to a pattern of reduction

(Lebel and Beaulieu, 2011; Raznahan et al., 2011; Wierenga

et al., 2014). At age 9–10 years, it was expected there

would be relatively low variability in total cortical surface

area attributable to age, with higher total cortical surface

area thought to reflect a more mature child brain. Thus

given that previous studies have reported higher total cortical

surface area in association with higher SES across a wider

age range of individuals (Noble et al., 2015; McDermott

et al., 2019b), we identified total cortical surface area as an

appropriate measure to examine associations between proximal

measures of children’s ecologies and brain structure at age

9–10 years.

Group Factor Analysis
A Group Factory Analysis (GFA; Klami et al., 2015) was

applied to extract latent factors from our 22 proximal measures.

One of the strengths of the GFA approach is that it allows

for assignment of variables to a specific group. The GFA

approach then accounts for the covariances between variables

within each group while identifying orthogonal linear latent

factors that encompass relationships across all variables. GFA is

similar to a Bayesian exploratory factor analysis, except unique

to the GFA approach is the implementation of a structural

sparsity prior that allows modeling of the dependencies between

groups, where each group contains a set of related variables.

Thus the GFA approach is appropriate for examining relations

across a set of variables, while accounting for more nuanced

relations within each group. All 22 proximal measures were

assigned to a category (economic security, parental ecology,

school/community environment, ACEs, physiological health,

and perinatal well-being) and entered into the GFA (listed in

Table 2). To test the stability and robustness of the latent

factors, we completed 10 different iterations of the GFA. Robust

latent factors were chosen based on latent factor loadings that

met a 0.9 correlation threshold across all 10 iterations. Robust

factor loadings across all 10 GFA iterations were averaged.

Separate robust GFAs were examined in split-half samples to

test replication of the latent factor loadings. Robust GFA latent

factors accounting for more than 5% of the GFA variance

were chosen.

Analytic Strategy
All statistical analyses were done using open source software

from the Comprehensive R Archive Network (version

3.4.4; R Development Core Team, 2018). All R code to

replicate the analyses, including the GFA, is available at:

https://github.com/ABCD-STUDY/gfa_ses. Generalized

Additive Mixed-Effect Models (GAMMs) were fitted using

the R-package gamm4 (Wood, 2017) to construct additive

mixed-effect models. Continuous measures were standardized to

a zero mean and unit variance. All models included demographic

covariates of age, sex, race/ethnicity as fixed effects, and random

effects of site and family identification. First, using separate

mixed effect models, we tested whether cognitive performance

and total cortical surface area was each predicted by the INR.

Second, results from the GFA were interpreted to identify latent

factors that described patterns of relations among measures

hypothesized a priori as proximal measures of economic,

psychosocial, physiological, and perinatal ecologies across the

entire economic spectrum. We then tested whether the INR

was associated with each latent factor in separate mixed effect

models by entering the INR and the demographic covariates,

including random effects of site and family, as predictors of each

latent factor. Third, we tested the associations between each

latent factor and total cortical surface area and cognition scores

in models that included the INR as a covariate, as well as the

demographic covariates and random effects of site and family.

To determine the variance statistically attributable to each

latent factor, we examined models in which each latent factor

was entered individually as a predictor, including the INR and

covariates, for each developmental measure. To then examine

the additive variance statistically attributable to all latent factors

together, we tested a model in which all latent factors were

entered together, including the INR and covariates, as predictors

of each developmental measure. Last, we examined interactions

between the INR and latent factors on total cortical surface

area and total cognition scores using the INR thresholds
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corresponding to the five income categories for federal

guidelines: deep poverty, poverty, near poverty, mid-income,

and high-income range. We tested the smooth transformation,

which allows for non-linear relationships, of the INR and each

latent factor in association with cognitive performance and

total cortical surface area using a loglikelihood ratio test with

the R ‘‘anova’’ function. Models including the smooth term,

compared to models including the linear term, with significant

chi-square statistics of p < 0.001 were determined to be the best

fitting model.

To determine the significance of our models, we compared

our full model (predictors + covariates) with a reduced model

(covariates only). Reduced GAMMs for each dependentmeasure,

i.e., total cortical surface area and total cognition scores, were

constructed with only covariates (fixed effects: age + sex + race-

ethnicity; random effects: scanner identification number and

family membership). Effect sizes, i.e., the variance statistically

attributable by each model, were evaluated as the change in R2

between a full model (predictors + covariates) and a reduced

model (covariates only). The significance of the effect size was

determined using the log-likelihood test with the R ‘‘ANOVA’’

function, comparing the full model to the reduced model,

and the significance of the chi-square statistic was examined.

Effect sizes with chi-square statistic values of p < 0.001 were

determined significant.

Mass Univariate Effect Size Estimation for
Cortical Surface Area
Vertexwise imaging data were obtained from the ABCD

2.0.1 fixed release and was available for 11,536 participants.

Imaging data that did not pass quality assurance were

excluded from our analyses using the FreeSurfer quality

control variable for the ABCD baseline tabulated dataset. A

total of 8,158 participants who had complete vertexwise data

and complete data on all other behavioral measures were

included in the vertexwise surface area analyses. Vertexwise

data for all subjects for the surface area were concatenated

into matrices in MATLAB R2017a. To measure the vertexwise

effects of the INR, we conducted a general linear model

at every vertex predicting the INR from the surface area.

The following fixed effects were included as covariates of no

interest: age, sex, scanner identification number, and race-

ethnicity. To determine the vertexwise effects uniquely predicted

by each latent factor from the GFA we conducted the same

mass univariate vertexwise analysis including additional fixed

effects of the INR and the other respective latent factors.

To account for the genetic relatedness across the sample, we

selected at random only one member from each family to

be included in the analysis. This created an N of 6,954. All

behavioral and imaging variables were standardized with zero

mean and unit variance before analysis. Cortical maps were

smoothed using a Gaussian kernel of 20 mm full-width half

maximum (FWHM) and mapped into standardized spherical

atlas space. All estimated effect size maps show the mass

univariate standardized beta coefficients. Additional maps were

created showing the distribution of mass univariate p-values

across the scalp adjusted for a false discovery rate (FDR)

of 5% using the Benjamini-Hochberg procedure implemented

in MATLAB 2017a using the ‘‘mafdr’’ function. All p-value

maps were thresholded based on an alpha level of adj-

p < 0.05.

RESULTS

SES Associated With Total Cortical Surface
Area and Cognition
In a very large sample of children 9- to 10-years of age from

diverse socioeconomic and cultural backgrounds, we tested

associations between our SESmeasure (INR) with developmental

outcomes. The smooth transformation, which allows for the

modeling of non-linear associations, was the best fit for

these associations (cortical surface area: χ2
(2,N = 8,158) = 120.66,

p < 0.001; cognition: χ2
(2,N = 8,158) = 557.57, p < 0.001)

and thus the smooth INR term was used in all models.

We observed a significant non-linear association between

the INR and each developmental measure, such that both

total cortical surface area and cognition scores were more

strongly related to the INR among children near poverty and

below, i.e., <200% of the federal poverty level (Figure 1).

The greatest differences in total cortical surface area and

cognition scores for the INR appeared to be approximately

below 400% of the federal poverty level (i.e., 98,400 for a

family of 4), seen clearly in Figure 1. Coefficient values and

model fits are shown in Supplementary Table 3 for total

cognition scores and Supplementary Table 4 for total cortical

surface area.

Latent Ecologies: Resource-to-Adversity,
Social Support, and Perinatal Health
We implemented a (GFA; Klami et al., 2015) to better

understand the distinct connections among our 22 proximal

measures encompassing economic, psychosocial, physiological,

and perinatal ecologies of children. The correlation structure

across all 22 measures is provided in Supplementary Figure

1. We found 19 of the proximal measures had significant

associations with the INR (Supplementary Figure 2). There was

consistent replication across factor loading values for separate

GFAs implemented with two split-half samples, for the GFA

with a sample with singleton participants only, for the GFA with

a sample randomly assigned only one participant per family,

and for the GFA implemented with the residuals for each

variable after adjusting for fixed covariates (age, sex, and race-

ethnicity) and random effects (scanner identification number

and family). GFA replications are shown in Supplementary

Table 2.

Latent factor 1 (LF1) explained 13.68% of the variance

across all proximal measures and described latent ecologies

indicative of higher access to social and economic resources,

relative to a lower endorsement of adversity across perinatal,

psychosocial, and physiological domains (Figure 2). Higher

LF1 scores indicated more access to social and economic

resources, i.e., food security, ability to pay bills, housing

security, access tomedical/dental care, higher parental education,
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FIGURE 1 | Plots showing the non-linear relationship between socioeconomic status (SES) as measured by the INR (A) total cortical surface area and (B) total

cognition scores. Increases in each developmental measure were steepest for children from lower SES households (near poverty and below, i.e., <200% of the

federal poverty level).

FIGURE 2 | Group factor analysis (GFA) median value loadings (with 95% confidence intervals) for each of the 22 measures for (A) latent factor 1:

resources-to-adversity (13.68% variance explained); (B) latent factor 2: youth perceived social support (6.5% variance explained); and (C) latent factor 3: perinatal

well-being (5.91% variance explained).

dual-parent households, older maternal age at birth, and planned

pregnancies. Higher LF1 scores jointly indicated less prenatal

conditions and lower endorsement of history of prenatal

substance use, suggesting less perinatal adversity from teratogens

for in utero development. Higher LF1 scores also indicated

less exposure to social adversity, i.e., lower ACEs, lower parent

psychopathology scores, less endorsement of history of one

or more traumatic events, and lower family conflict. Last,

higher LF1 scores also jointly indicated less physiological

adversity, including sleep hours and lower body-mass-index

(BMI) z-scores.

Latent factor 2 (LF2) explained 6.5% of the variance

across all measures and higher scores indicated more youth

perceived social support, loading highly on higher parental

monitoring, caregiver acceptance, school engagement, and a

more positive school environment, relative to less family

conflict. Interestingly, higher LF2 scores, to a moderate extent,

also jointly indicated less access to resources, i.e., lower

maternal age at birth, unplanned pregnancies, and less

endorsement in the ability to pay bills, food, and housing

security (Figure 2). Latent factor 3 (LF3) explained 5.91% of

the variance and described indices of perinatal health, with
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higher LF3 scores indicating higher birth weight and longer

gestational age, relative to lower total prenatal conditions

(Figure 2).

Latent Ecologies Positively Associated
With Total Cortical Surface Area and Total
Cognition Scores
Figure 3 shows the conceptual model in which latent factors

were derived from proximal measures hypothesized to be

related to the INR, to then examine the unique associations

between these latent factors with total cognition scores and

total cortical surface area. Among the three latent factors, LF1

(resource-to-adversity), was strongly and positively associated

with the INR (F = 399.7, edf = 7.18, p < 0.001), families

with higher economic advantage had more access to resources

relative to less adversity across psychosocial, physiological, and

perinatal ecologies. The INR was not significantly associated

with LF2 of youth perceived social support (p = 0.97), nor

for LF3 for perinatal well-being (p = 0.90). For the association

between LF1 and total cognition scores, the smooth term of

the LF1 was the best fit (X2
(2,N = 8,158) = 18.4, p < 0.001).

In models adjusting for s(INR), fixed covariates of age, sex,

parent-reported race-ethnicity, and random effects of scanner

identification number and family, each latent factor was

positively associated with both total cognition scores and total

cortical surface area such that increases in each latent factor

score predicted higher total cognition scores and higher total

cortical surface area (Table 3). Associations between each latent

factor and the developmental measure were consistent for

models in which each latent factor was entered individually,

including the INR and covariates as predictors, as well as in

models in which all three latent factors were entered together

as predictors, including the INR and covariates. Summary

coefficients for the full model that included all three latent

factors together as predictors, controlling for the INR and

covariates, are shown in Table 3. Detailed model results

for each model tested, including coefficient and confidence

intervals, are shown in Supplementary Table 3 for total

cognition scores and Supplementary Table 4 for total cortical

surface area. The individual variance statistically attributable

to each latent factor (Models 2, 3, and 4) and the additive

variance of all latent factors in comparison to the INR (Model

5) are shown in Figure 4. Importantly, these associations

were significant when including INR in the models, which

demonstrates that variability in individual differences in the

developmental measures was statistically attributable to these

proximal measures above and beyond SES. In a post hoc

analysis, we examined individual associations of each proximal

measure with both total cognition scores and total cortical

surface area to evaluate the contribution of each measure. We

found that proximal measures encompassing the latent factors,

including measures of economic security, parental ecologies

(i.e., parent highest education and psychopathology), and ACEs

(i.e., family conflict) were associated with total cognition scores,

while similarly, economic security, parental ecologies, and

importantly, perinatal heath were associated with total cortical

surface area (Supplementary Figure 3). These patterns of the

strength of these post hoc associations were consistent with the

magnitude of the loadings of the proximal measures within each

latent factor.

SES Moderated Associations Between
Latent Resource-to-Adversity and
Cognitive Performance
To determine if there were interactions between SES and the

latent factors predicting total cortical surface area and total

cognition scores, we generated a grouped INR variable based on

U.S. federal guidelines for poverty levels (deep poverty: <50%;

poverty: 50–<100%; near poverty: 100–<200%; mid-income:

200–<400%; higher-income: ≥400%). There was a significant

interaction of the INR by LF1 scores on total cognition scores

such that the association between LF1 and cognition scores

differed for deep poverty and poverty compared to higher

income groups (deep poverty: F = 6.86 (3.1), p < 0.001; near

poverty: F = 10.2 (2.4), p < 0.001; near poverty: F = 2.0 (2.3),

p = 0.18; mid-income: F = 1.8 (4.2), p = 0.16). To interpret

the interaction, we plotted LF1 scores predicting total cognition

scores by INR groups (Figure 5). The interaction plot shows

that among children with high SES, cognitive performance

increased steadily with LF1 scores, while for children from low

SES households, cognitive performance showed a protracted

increase with LF1 scores such that cognitive performance was

comparable to their higher-income peers only at the highest

LF1 scores. This suggests that for children in the lowest SES

households (ranging from poverty to deep poverty), having

both increased access to resources and lower endorsement of

psychosocial, physiological, and perinatal adversity could be

joint and equally promotive ecologies for cognitive performance.

There was no significant interaction for LF1 with the INR groups

on total cortical surface area (χ2
(4,N = 8,158) = 3.76, p = 0.44),

nor any significant interactions of LF2 or LF3 with the INR

groups on total cortical surface area (χ2
(4,N = 8,158) < = 5.66,

ps > 0.22) or on total cognition scores (χ2
(4,N = 8,158)) < = 4.13,

ps > 0.39).

Cortical Surface Area Effect Size Maps
A vertex-wise mass univariate analysis across the surface of the

cortex was conducted to visualize the effect of the INR and each

of the latent factors on surface area (Figure 6). Figure 6A shows

the vertex-wise association between the INR (non-transformed)

and surface area. Figures 6B–D show the vertex-wise association

between each latent factor and surface area (in separate models)

all including the INR and the other latent factors as covariates.

They, therefore, display the unique variance in the surface area

predicted by each latent factor independent of the INR and

the other orthogonal latent factors. The maximum vertex-wise

beta coefficients for each predictor were β = 0.10 for the INR,

β = 0.093 for LF1, β = 0.051 for LF2 and β = 0.16 for LF3. INR,

LF1, and LF3 showed significant distributed effects across the

cortex. INR and LF1 showed very similar effect size maps with

the strongest associations on the medial frontal surface, although

there is no evidence for strong localization effects. LF3 showed

a unique pattern of effects, not explained by INR or the other

Frontiers in Human Neuroscience | www.frontiersin.org 8 October 2020 | Volume 14 | Article 578822

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Gonzalez et al. Positive Factors Predict Brain Cognition

FIGURE 3 | Conceptual model showing that while the INR is associated with proximal measures across ecologies of economic, psychosocial, physiological, and

perinatal well-being, three latent factors were derived from the proximal measures to examine associations between each latent factor and cognition scores and total

cortical surface area, beyond the INR.

LFs, with the largest effects in the medial orbitofrontal, fusiform

and insular cortices as well as along the temporal lobe. Given that

these LFs were included in the same model, this suggests that the

associations between these LFs and total surface area may have

been driven by effects in different regions of the brain; however,

we did not conduct any statistical analyses to specifically test for

differences in the localization of effects across these measures.

Interestingly, despite being significantly associated with total

SA, LF2 did not show any significant vertexwise effects when

the other LFs were included in the model, which suggests that

LF2 was not associated with any unique variability in cortical SA

above and beyond that already explained by the other LFs and

INR, which were included in the model. Maps with thresholded

vertexwise p-values, adjusted for a FDR of 5% are shown in

Supplementary Figure 4.

DISCUSSION

SES has long been known to impact cognitive development

and school performance, with more recent research relating to

low SES with differences in brain structure thought to reflect a

negative effect on brain development (Hair et al., 2015; Noble

et al., 2015; Lawson et al., 2017). In this larger and more

diverse cohort of children, we replicated previous findings of

a continuous association between the INR and developmental

measures, with the strongest associations among children from

low SES households (Hair et al., 2015; Noble et al., 2015).

Methodologically, this study advanced our understanding of

the associations between proximal measures of the ecologies of

children and cognitive and brain development by: (a) utilizing

a large demographically diverse cohort; (b) utilizing proximal

measures of the environment of children that more closely reflect

the lived experiences of participants; and (c) expanding the

scope of developmental ecologies integrated with measures of

cognitive and brain development. Within the expanded scope

of the 22 proximal measures examined, a GFA identified three

latent factors that overall explained 26% of the variability across

these measures among individuals aged 9–10 years. The three

latent factors were strongly driven by distinct sub-groupings

of proximal measures, the first generally encompassing higher

access to resources relative to lower adversity in the areas of

economic, psychosocial, physiological, and perinatal health, the

TABLE 3 | Standard beta coefficient values and 95% confidence intervals are shown for each latent factor, while for the smooth terms of the INR and LF1 (cognition

model only) the F(edf) values are shown, for models in which the INR and latent factors were entered together as predictors of total cognition scores and total cortical

surface area. The additional variance statistically attributable to this full model compared to a reduced model (covariates only) is shown as ∆R2.

Total cognition Total cortical surface area

R2 0.30 0.30

∆R2
(Full—Reduced) 0.09 0.03

Chi-square 740.7∗∗ 282.5∗∗

s(INR) 36.9(6.18)± 13.91(3.10)±

LF 1: Resource-to-adversity 38.6(3.4)± 0.081(0.055, 0.107)

LF 2: Youth perceived social support 0.042(0.02, 0.063) 0.027(0.007, 0.047)

LF 3: Perinatal health 0.073(0.051, 0.096) 0.121(0.099, 0.143)

∗∗p < 0.001. ±F (edf) statistics for smooth terms.
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FIGURE 4 | For each developmental measure (A) total cortical surface area and (B) total cognition scores, effect sizes are shown as the percent of variance

statistically attributable to the INR only, each latent factor, and to the additive effect of the INR and all latent factors combined. Change in adjusted R2 was calculated

by comparing each separate model to the null model (fixed effects of covariates and random effects only).

second youth perceived social support, and the third perinatal

well-being. The three latent factors each positive predicted

cognitive performance and total cortical surface area at ages

9–10 years beyond economic advantage.

While studies in children often index SES using measures of

family income, each proximal measure studied here is thought to

represent components of economic, psychosocial, physiological,

and perinatal ecologies that are often studied in isolation in

association with development (Braveman et al., 2005). Given

the complexity of the relations among measures of risk and

resilience for children grouping up low SES, it has been difficult

to understand how such associations between various economic,

psychosocial, physiological, and perinatal factors contribute

individually or multiplicatively in explaining differences in

developmental outcomes (Guo and Mullan Harris, 2000;

Hackman and Farah, 2009; Whittle et al., 2017). Here, using a

multidimensional analysis, we identified three latent factors that

each describe key relationships between 22 proximal measures

that encompass distinct ecologies of the lived experiences of

children, with each contributing positively to developmental

outcomes. Specifically, LF1 shows interrelations between 20 of

the proximal measures such that higher LF1 scores indicate

more access to social and economic resources (i.e., higher

parental education, economic security, higher maternal age at

birth, planned pregnancy, dual-parent households) relative to

lower adversity for psychosocial, physiological and perinatal

health (lower prenatal substance exposures, and less prenatal

conditions, lower family conflict, lower endorsement of

traumatic events, lower parent psychopathology, more parental

monitoring, safer neighborhood, and lower BMI and better

sleep). Higher LF1 scores predicter better cognitive performance

and higher total cortical surface area, suggesting that more

access to resources relative to lower perinatal, psychosocial and

physiological adversity was associated with better cognitive

performance across the INR spectrum. Although, LF1 scores

did benefit higher-income families more strongly than lower-

income families, children from lower income households

with the highest LF1 scores showed comparable cognitive

performance to their higher-income peers. This suggests

that having high access to resources and low exposure to

perinatal, psychosocial and physiological adversity were optimal

ecological environments that contributed to better cognitive
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FIGURE 5 | The plot of the interaction of the INR by LF1 scores in

association with total cognition scores shows differences in total cognition

scores between income-to-need groups varied as a function of LF1 scores.

While total cognition scores steadily increased with higher LF1 scores for

children with higher SES (mid to high income), total cognition scores for

children in poverty and deep poverty showed a protracted shift in scores,

revealing an advantage in total cognition scores for children from higher SES

households in the middle-range of LF1 scores. Importantly, the gap in total

cognition scores between low SES and higher SES narrowed for children at

two intersections with latent factor scores: those with higher (approx. +2)

scores (i.e., a higher endorsement of access to resources relative to the lower

endorsement of adversity) and those with lower (approx. −3) scores

(i.e., fewer resources relative to higher adversity).

performance for children in lower-income households (ranging

from deep poverty to near-poverty). Economic deprivation and

psychosocial adversity have been previously described in the

literature as poverty-related stress and have been associated with

poor mental and physical health (Wadsworth and Berger, 2006;

Wadsworth et al., 2008). Thus poverty-related stress may be

one overt-stress pathway by which SES has an indirect negative

effect on development in children. Also, low SES increases

exposure to other risk factors (not captured by LF1 scores,

i.e., more pollution and environmental toxins), and it is plausible

that these risk factors may exacerbate the negative impact of

low-SES on development and attenuate the benefit to cognitive

performance and brain development, in particular among

children in lower-income households with moderate to low

latent factor 1 scores. Increasing resources relative to decreasing

adversity, as suggested by LF1, may be important ecologies

that promote healthier cognitive outcomes among youth and

especially among youth with poverty/deep poverty. This is

especially critical for low SES youth, who were more likely

to have less resources relative to higher adversity (i.e., lower

LF1 scores), and highlights the need to implement public policies

that target systemic inequities for youth in poverty/deep poverty

by increasing resources and decreasing adversity to promote

healthier cognitive outcomes.

While the associations between LF2, youth perceived

social support, and each developmental measure were

moderate, our findings suggest that having a positive family

and community environment is associated with positive

developmental outcomes, even though co-occurring with

other risk factors, i.e., young maternal age at birth, unplanned

pregnancies, lower endorsement of ability to pay bills and

food and housing security. Given that LF2 did not show

specific associations with the INR, this suggests that higher

LF2 or increased youth perceived social support can benefit

all children regardless of economic status. LF3 loaded most

strongly on perinatal factors that align with the concept of

developmental origins of health and disease (DOHaD), which

postulate that birth factors (e.g., shorter gestational age, lower

birth weight, and more prenatal conditions) are both an

outcome and predictor of health and disease (Silveira et al.,

2007). Specifically, several prenatal adversities can result in this

collection of birth outcomes, and subsequently, this collection

of birth outcomes is predictive of increased risk for a sequela

of disease outcomes in adulthood. Importantly, we found that

LF3 scores benefit children the same across the economic

spectrum, suggesting that there was no specific risk captured

by the proximal measures in LF3 for children from lower or

higher SES.

Previous studies reporting on the association between family

income and cortical surface area have suggested the effects of SES

on brain structure are stronger in specific regions (Hair et al.,

2015; Noble et al., 2015; Kim et al., 2018; McDermott et al.,

2019). However, in the present study, with increased sample size

and power for detection, we found that the vertex-wise cortical

surface area associations for the INR appeared continuous and

distributed across the cortex, and while the strongest associations

were on the medial frontal surface, we did not find evidence for

strong localization effects. From a developmental perspective, the

whole-brain cortical surface area increases throughout childhood

and begins to show regional decreases in early adolescence

(Raznahan et al., 2011; Wierenga et al., 2014). We examined

a narrow age group of 9–10 years of age, and it is plausible

that associations between SES and regional specificity in brain

structure may change with developmental age (Noble et al., 2012;

Piccolo et al., 2016; Farah, 2018). Differences in patterns of

associations across regions in the brain between the latent factors

encompassing distinct aspects of bio-social-ecological systems

would be suggestive of differences in underlying mechanisms

by which the INR and the latent factors associated with the

total cortical surface area. Interestingly, we found that the

distribution of effect sizes across the cortex for surface area

appeared to be most similar between the INR and LF1 (resource-

to-adversity), suggesting that there may be shared pathways by

which these ecologies are associated with the cortical surface

area. Some studies have suggested regional specificity of the

effects of SES in limbic brain structures, including frontal lobe

regions, the amygdala, and hippocampus (for a review see Farah,

2017). Our findings suggest that the effect of SES as measured

by the INR is much more distributed across the brain for

the cortical surface area at age 9–10 years of age. While the

visual comparison of the effect size maps between the INR

and LF3 (perinatal well-being) shows an apparent qualitative

difference, we cannot infer regional differences from these

post hoc exploratory effect size maps. Instead, these qualitative
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FIGURE 6 | Mass univariate vertex-wise estimated effect size maps predicting surface area from each independent variable, (A) the INR, (B) latent factor 1, (C)

latent factor 2, and (D) latent factor 3, were created using general linear models at each vertex controlling for age, sex, race/ethnicity, and scanner ID. Maps b–d also

included the INR and the other latent factors as additional covariates such that these maps show the unique contribution of each latent factor predicting surface

area. The maps show unthresholded standardized beta coefficients. All of the independent variables showed positive effects with the surface area.

differences between these maps can guide future studies and

hypotheses about the differential pathways by which these

ecologies associate with the regional cortical surface area. Also,

future studies can examine whether the distribution of SES effects

on cortical surface area changes over time during adolescence

and whether they shift from global distribution to a pattern that

suggests regional specificity.

Further, while we cannot infer any causality or directionality

from the observational associations reported here, we found

LF1 captured specific relationships between the proximal

measures that were indicative of higher access to social and

economic resources and lower exposure to adversity, and this

was closely linked with SES. This suggests that in our large

and diverse sample, increases in family income, in general, were

associated with increases in access to resources and decreases

in exposure to adversity. Previous studies have attempted

small scale interventions in which the household income of

families is supplemented and found relative improvement

in the allocation and use of economic resources (Rojas

et al., 2020; for a review see Barrientos and DeJong, 2006).

We found that income was closely tied to other proximal

measures that also showed their unique associations with

measures of development. While supplementing the income

for low-SES households may improve economic resources,

it is difficult to know whether this would also generalize

to positive changes across other joint social processes that

also influence development, i.e., decreased exposure to social

and environmental adversity, as well as to better outcomes

in development.

LIMITATIONS AND STRENGTHS

Understanding the proximal measures that describe the ecology

of a child’s environment is important for the investigation of

developmental outcomes, as they better assess the compilation

of the common daily experience influenced by economic

status and subsequently impact development. To best inform

interventions or policy reform, we need to better capture

the most prominent constellations of experiences that drive

brain and cognitive development. To this end, we believe the

present findings serve only as an intermediate step towards

understanding the incredibly rich proximal and proximal factors

that shape America’s youth, as our proximal measures only

begin to push the needle towards diving deeper into patterns of

daily experiences important for adolescent development. Future

studies should strive to capture measures that are even more
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proximal, and that would ultimately make the present proximal

measures appear distal in comparison.

In this study, we have only examined the total cortical

surface area as one measure of maturation of brain structure.

There are various other measures of brain development that

we do not examine that have been reported in association with

SES, including cortical thickness, cortical volume, and white

matter microstructure (for a review see Farah, 2018). The age

at which surface area peaks during childhood is uncertain and

studies suggest that there is likely individual variability in the

chronological age at which surface area peaks (Raznahan et al.,

2011; Shaw et al., 2012; Wierenga et al., 2014; Jernigan et al.,

2016). While there were no significant effects of age on the

total cortical surface area in our narrow age range of 9–10 year-

olds, our cross-sectional analysis cannot determine whether the

total cortical surface area in our cohort has yet peaked at age

9–10 years of age. Future longitudinal studies can examine

age-related changes in total surface area in association with

SES. Further, the relative effect sizes are small, although this is

perhaps to be expected from studies examining behavioral and

brain outcomes with large samples, given the heterogeneity in

individual differences in the population being studied as well as

the wide range of factors that could influence development.

Although the composition of the study sample analyzed is

overrepresented in the number of households in the higher

income range relative to the population income distribution

in the United States, our study sample includes a larger

representation of children from low SES households than

previous studies (Compton et al., 2019). The duration and

extent under which children in this cohort have experienced

economic and social adversity during their early childhood

are not yet known. While it is challenging to differentiate

between transitory poverty and chronic poverty, previous

literature suggests that even children who have experienced

transitory poverty have poorer outcomes compared to children

who never experienced poverty (Smith et al., 1995; Duncan

and Brooks-Gunn, 2000). Many other risk factors are closely

related to low SES not directly examined in this study,

such as the child’s mental health and environmental toxins

(Evans, 2004; Marshall et al., 2020). Also, many other

experiences may contribute to resilience in developmental

outcomes for children from low SES backgrounds, including

participation in enriching activities like art, music, and sports,

that were not considered in our analysis. Although parental

education may be conceptualized as a distal factor, it is

considered here as a proximal measure that encompasses

potential differences in the environment for children across

the economic spectrum. For instance, it may be that higher

parental education affords children with more opportunities

for enriching learning and recreational activities, such as

participating in music or sports (Guo and Mullan Harris,

2000; Bradley et al., 2001). Future studies should examine

whether there are measurable differences in the quality

and access of enriching activities that stimulate learning at

all levels of parental education and whether participation

in enriching activities for children among lower educated

parents can be linked to positive developmental outcomes.

However, there is likely not one single factor that will

apply to all children with economic disadvantage in the

same way. Thus, looking at the constellation of factors

traveling with low SES helps identify malleable experiences

that should be targeted synchronously by interventions. Last,

cognitive and brain development is an on-going process and

occurs reciprocally with many environmental proximal factors.

The present cross-sectional study is unable to advance our

understanding of this bi-directional process and warrants future

longitudinal investigation.

CONCLUSION

Within the large sample of children in the ABCD study, we

conducted a descriptive investigation of 22 proximal measures

of the lived experiences of children in association with SES

and development. While our findings suggest that SES is

an important determinant of developmental outcomes at age

9–10 years, in future studies within the ABCD cohort, we will

be able to continue to examine the association of SES and

proximal measures of the environment with brain development

throughout adolescence. Beyond SES associations, we can

examine the longitudinal influences of these latent ecologies

and whether different patterns of relations among proximal

measures emerge as stronger predictors during different stages

of adolescence, i.e., will social support emerge as a stronger

predictor of development in mid-adolescence?
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