Positive Eigenvectors of Wedge Maps (¥).

MARIO MARTELLI

Summary. — In this paper we investigate the existence of positive eigenvalues and corresponding
eigenvectors of nonlinear and noncompact maps defined in a wedge W of a Banach space E.
The results are established using the theory of O-epi maps introduced by Furi- Martelli-
Vignoli [10]. We prove a conjecture of I. Massabo - C. Stuart [23] and we obtain a mon-
linear version of the celebrated Krein-REutman [18) theorem, which brings about the different
role of the two properties

fltx) = tf(@) and  fl@ +y) = f(@) + {(y) .

0. — Introduction.

This paper has three main purposes. The first is the study of the fundamental
properties of a very large class of maps acting on cones or, more generally, on
wedges in Banach spaces. This class includes compact veetor fields and other vector
fields whose non-linear part is not compact. This study follows and expands the
ideas of a previous paper by M. Furr, M. MArRTELLI, A. VIGNOLI [10] and of some
extensions and generalizations of it (see [15], [14], [11], [12], [13]).

The second purpose is to prove a conjecture of I. MassaBO and C. STUART [23]
along with other results which can be obtained from the theorems of the first part.
We point out that degree and index theory techniques were used in [23], while our
approach is considerably simpler, being essentially based on Brouwer’s fixed point
theorem and suitable continuation prineiples.

The third purpose is to obtain a theorem on eigenvectors of positively homo-
geneous, order preserving and non-compact maps acting on cones, which is as close
as possible to the extension of the classical KREIN-RUTMAN [18] theorem to linear
non-compact maps. The result brings about the key poinis where the consequences
of the property

(0.1) fe + y) = f(@) + f(y)

(*) Entrata in Redazione il 25 maggio 1985.
Indirizzo dell’A.: Mathematics Department, Bryn Mawr College, Bryn Mawr, PA 19010.
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are crucial and should be substituted by suitable assumptions in the case where f
is only positively homogeneous. As a consequence of our results we obtain more
precise statements of already existing theorems. For example R. NUSSBAUM [25]
recently proved that if f: K — K, where K is a cone in a Banach space %, is an
a-contraction and there exists |u| =1, we K such that

0.2) {7}
is unbounded, then there exists |z, = 1 such that
(0.3) f(@y) = A,

for some A>1. Here we are able to give a better estimate of the value of 1 ap-
pearing in (0.3) and, in some cases, we are able to provide its exaect value.

A few more words should be said before we start. Our theorems of the second
and third part are based on the theory developed in the first part. No degree theory
or index theory is used. Nevertheless we are able to prove a conjecture and improve
results which were formulated within the framework of degree and index theory.
This fact seems to suggest that the skepticism of some researchers towards the
ideas and methods presented by FURI-MARTELLI-VIGNOLI in [10] and later used
and improved in [15], [14], [13], [12], [30], [11] were at least prematurs. Moreover
the methodology aspect should not be neglected either. To build index theory for
non-corapact maps requires a lengthy construction based on a suitable limiting
process [26]. This construction becomes more complex when multivalued maps are
involved [8].

Our approach is definitely simpler; and it provides, at least in this case, better
results. Moreover it can be extended to the multivalued case in a straightforward
manner.

1. — Notations and definiticns.

A cone K in a Banach space ¥ is a closed subset of E such that
(iy #,ye K, a, b>0 implies ax + by e K;

(ii) v e K and — 2 € K implies # = 0.

A wedge W in a Banach space F is a closed subset of F which satisfies (i).
A cone K or a wedge W are said to be normal if there exists a constant y > 0
such that

(1.1) le + y] >yl

for every =, y€ K or x, ye€ W. Notice that y<1.
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A cone K or a wedge W are said to be quasi-normal [27] if there exists x,¢ K
(woe W) and y > 0 such that

(1.2) | + Aao| >yl
for every € K (we W) and A>0

Every normal cone ig obviously quasi-normal. The cone K of non-negative func-
tions in C[0, 1] or L?[0, 1] for 1<p< oo is normal. The same cone in C*[0, 1], k>1
is not normal but it is quasi-normal. Every cone K in a Hilbert space H is quam-

normal -with- 9 =1 (see Proposition 3.1).
A cone K induces a partial ordering, <, in F by setting

(1.3) r<y it y—zekK.
A map f: K — K is order preserving if
(1.4) <y = f(@)<f(y) -

If f = L, a linear operator, then it is order preserving. In factifa<y ory —a2>0
then IL{y —#)e K and.

(1.5) Ly—o)=Ly—LvecK or Le<ly.

Let 3 be the family of all bounded subsets of a cone K. A generalized measure
of non-compactness on B is a funection 6: H — [0, - co) such that

1) 6(4) = 0 if and only if 4 is compact;

(

(2) 6(co A) = 0(4), where co A denotes the convex closure of A;
(3) 6(4 U B) = max (6(4), 6(B));

(4) 6(td) = t0(A) for every t>0;

(8) 6(4 + B)<H(4) + 0(B).

The function «: $H — [0, + co) defined by

a(4) = inf {& > 0 such that A can be covered by a finite
family of sets of diameter <e}

was first proposed by KURATOWSKI [19] and it satisfies (1)-(B) (see G. DARBO [4]
for the first proof of (2)).

If the word «sets » is replaced by « spheres » we obtain another measure of non-
compactness, which is frequently denoted by ». It is easy to see that

(1.6) 7(4)<ald)<2y(4).
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M. Furt and A. VieNoLI [16] proved that if 8 = {x € B: |z = 1} then «(8) = 2.

In this paper we shall always use the Kuratowski measure of non-compactness
unless otherwise stated. The results can be easily generalized to arbitrary measure
of non-compactness.

A function f: K — K is o-Lipschitz (this term was first used by A. AMBRO-
SETTI [1]) with constant p if

1.7) , a(f(4)) <pa(d)

for every 4 € $. If p = 1 we say that f is «-nonexpansive. If p <1 we say that f
is an o-contraction. If

(1.8) «(f(4)) < «(4)

for every A€ B, a(A)5= 0 then f is said to be condensing. The constant ¢ = f(f) >0
is defined as the sup of all non-negative real numbers r such that ’

(1.9) ro(A)<o(f(4)) .

Let f: K — K be positively homogeneous, i.e., f(tz) = f(#) for every ¢t>0. Sup-
pose f sends bounded sets into bounded sets. Then we can define

(1.10) Il = sup {if@)]: Jol =1, ve K}

We really should use ||f]x, but no confusion will be possible since we are working
on cones. Therefore we shall drop the subseript.
Observe that |f?] <[|f|2. Therefore we can define

(1.11) (f) = li]f Sup Ife]2m .
and obviously #(f)<|f|.

It can be shown that if f is positively homogeneous than its restriction, f, to
the set

0K, = {me K: ||a| =1}

is a-Lipschitz with constant p iff f is a-Lipschitz with the same constant. Therefore
we define ‘

«(f(4))
(4)

(1.12) ee(f) = sup{

Since

ta(d)s£0, ACEKI}.

al(f2) < () ?
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we obtain
(1.13) o(f) = lim Sup [oc(fm) M <a(f) -
In the case Where‘ f is a linear operator, L, the more accurate Symbols
(1.14) re(L), ox(L), wx(L)
will be used to avoid confusion with .

(1.15) rLy, «l), o).

It is easy to verify that

(1.16) ra(L) = lim | Ln|in
n—~> 4 00
(1.17) wK(L) = ]im [OCK(L”)]I/” .
. o+ 00

2. — Definition and properties of 0-epi maps.
Let K, W c B be respectively a cone and a wedge in a Banach space E.

W., K, and the like.
Let #> 0. Denote by
D= fpek: o <)
8 = foe B: Jof =1}
B, = D\S&; .
Set
W,=WnD, W,.=WnS§,s,
K,=KEND,, oK, =ENS&,.

(.1)

A subset 2 c W is relatively open if there exists an open set O c E such that -
R=0NW.
The relative border of Q, denoted by 0L, is the set

2n
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where 2 is the closure of 2, and Q°= W\ 2. For the sake of simplicity we shall
say that 2 is open and 08 is its border.

p-0-6pi maps

DEFINITION. — Let 2 c W be an open and bouhded set. Let T: 2 — E be con-
tinuous and such that T'(x) + 0 for every x € 0f2. We say that T' is p-0-epi in Qif
for every continuous map h:  —~ W such that

(i) % is «-Lipschitz with constant <p;
(ii) R(z) = 0 for every x € 0L,
the equation
(2.2) ‘ T(a) = h(@
has at least one solution (see [30] for the case when h is ecompact).

If T is p-0-epi in £ then obviously 7T is ¢-0-epi for every g<p.
If T is 0-0-epi then we shall simply say that 7' is 0-epi.

EBxistence results

PROPOSITION 2.1. — Let T: 2 — E be p-0-epi in D. Then the equation T(x) =0
has a solution xz,€ 0.

PROOF. — The function h: @ — W defined by h(z) = 0 for every » € 2 satisfies
(i) and (). QE.D.

PROPOSITION 2.2. — Let 0 Q. Then the identity is (1 — )-0-epi in Q, for every
0<egl.

PROOF. — Let h: 2 — W be an x-contraction such that h(z) = 0 for every x € 00
Let # > 0 be such that

[n@)|<r for every xef -
[ef<r - for every e dR.
Extend % ‘to an «-contraction- h,: W, - W, by setting

] “hx) if el
”‘(“’”:{ 0  ifa¢.

Then %, has a fixed point [4], which is obviously a fixed point of & since 0 € £.
Q.E.D,
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The following example shows that the identity is not 1-0-epi in 2, 0 € 2.

ExavpLe 2.1. — Let {2 be the Hilbert space of square summable sequences of
real numbers and let W be the wedge of sequences having non-negative entries.
Let 2 = W,. Define

V1=l 21, 3a,...) it o] <1

(2 — [@])(0, 21, 75, ...) i I<]|o)<2.

Then & is a-nonexpansive. Moreover if Hwﬂ = 2 then h{w) = 0.
The equation

(2.3) » = h{x)

does not have a solution. In fact if |#] <1 then ||k(x)] = 1, and if |2] > 1 then
|h(z)] < 1. Hence the only solutions can be in 0W,. But if |#] = 1 then

(@) = (0, @1, 25, ...) = (@1, @y, -..)

only if oy, == ... = 0.

PROPOSITION 2.3. — Let € B and 0 <e<1. Then the map T(x) = —u, is
(1 —¢)-0-epi in QcW if e Q and is not 0-epi if x,¢ Q.

ProoF. — If x,¢ Q2 then the equation T(x) = 0 does not have any solution in £
and therefore 7' is not 0-epi in Q.

If wyc 02 then T does not satisfy the requirement T(x) = 0 for every « € 942,

If 2 2 and h: 2 — W is an a-contraction such that h(z) = 0 for every = € 02,
then we can choose 7 > 0 so that

r>||h(x)| + @]  for evéry vef

r>sup {|o|: v € 082}.

Then we can extend % to a map h,: W,— W, as in Proposition 2.2, and we can
consider the a-contraction k: W, — W, defined by

(2.4) , k(z) = hy(x) + 2, .
Let Z be a fixed point of k. Then

(2.5) % = hy(Z) + @ .
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If Z ¢ Q then hy(Z) = 0 and T = @x,, which is impossible since z,€ 2. Hence Z € £,
and

(2.6) F—oy= (@) = k@) . QED.

Additivity

PROPOSITION 2.4. ~ Let 2C W be open and bounded. Let T:Q — E be p-0-eps
in Q. Assume that V,, V, are two open subsets of Q such that V,N\ V,= 0 and

I-10)cV,uU7T,.

Then T is p-0-epi in either V, or V,.

PROOF. — Assume that 7T is not p-0-epi in ;. Then there exists k,: ¥, — W such
that h(z) = 0 for every s € 0V, kh is a-Lipschitz with constant p and

T(@) # hy(x)

for every » € V,. Similarly if T is not p-0-epi in ¥, we can find %, with similar
properties. Define

hz) ifaxeV,
W) ={ hyfz) ifweV,

0 otherwise .
Notice that h is continuous and «(h) = p. Hence the equation
T(x) = h(z)

has a solution. Since T(z)7£ 0 if ¢V, UV, and T(x)+= hy(x) if eV, UV, we
reach a contradiction. Thus 7 is p-0-epi in either ¥V, or F,.

Continuation Principles

PROPOSITION 2.5. — Let 2 c W be open and bounded and T: Q — E be p-0- epz
in Q. Assume that B(T)> 0. Let R: 2 ~>E be such that

(D) o(B—T)=q<p(I)=s and ¢<p;
i) R—T17: 02 > W;
(iii) T(x) + ¢(R(x) — T(x)) = 0 for every x € 0 and t€(0,1].

Then R is at least r-0-epi, where r <<s—gq, r<p —¢.
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Proor. — Let h: @ — W be an o-Lipschitz map with constant r and such thatb
hiz) = 0 for every # € 0£2. We must show that the equation

(2.7) R(z) = h(z)
has a solution. Let X = {(z, 1) € 2 x[0, 1]: T(w) + t(R(w) — T(»)) = h(z) for some
te[0,1]}. Then X~ 0 since for ¢t = 0 the equation T(») = h(x) has a solution.
Moreover X is closed.

Let us show now that 2 is compact. Put

A = {we: (v,t) € X for some te[0,1]}.
Then — T(4) c [0, 1] X (B — T)(A) — h(A4). Hence
so(4) <o(T(A)) <a(B —T)(A) + a(b(4)) <(q + r)o(4) .

Since ¢ + r<<s we must have a(d) =0. Thus A is totally bounded. This

implies that X is compact and A4 is compact. Moreover 4 N 202 = 0.

Let ¢: 2 —[0,1] be a Urysohn’s function such that

1 ifxed

W):{ 0 if weo

and define

k(z) = — $(z)(E(@) — I(z)) + h(=) .

Then k(z) = 0 if € 02 and & is a-Lipschitz with constant <r + g<p. Hence the
equation

(2.8) T(x) = k(x)
has a solution Z € 2. Sinee ¢(Z) € [0, 1] we sec that Ze A. Thus ¢(Z) =1 and
2.9) R(Z) = h(Z). Q.E.D.

PROPOSITION 2.6. — Let QC W be open and bounded and f: 2 — W be compact.
Let z,€¢ W and 0 < e<1. Assume that

(2.10) % — (@) — 3y~ 0

for every € 0 and t€[0,1]. Then T = I —xy—f is not 0-epi if x,¢ 2 and it is
(1 )-0-epi if z,€ 2, '
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PrROOF. — Let z,¢ Q. Obviously x,¢t Q. Assume I —z,— f is 0-epi. Then § =
= {&: » — tf(#) — w,= 0 for some £ € [0, 1]} is compact and § N 92 = @. Let ¢: Q —
->[0,1] be a Urysohn’s funetion such that

1 ifaxelS

W):{ 0 it wedn.

Define h(x) = — ¢(@)f(x). Then h: & — W is compact and h(z) = 0 for every e
€ 0f2. Therefore the equation o o '

(2.10) & — f(&) — 2o = h(z) .
has a solution. Thus
(2.11) p— (1 — (@) f(2) —2,= 0.
Since ¢(x) €0, 1] it follows that x € 8. Hence ¢(x) = 1 and
(2.12) x = %,
which is impossible.
Now let z,€ 2. Then x — z, is (1 — ¢)-0-epi. Let h: @ —~ W be an «-contraction
such that h(z) = 0 for every x € 02. Define

S = {weQ:x—z—if(z) = hz)}.

Then 8+ 6 and compact. Moreover SN 902 = @. Let ¢ be a Urysohn’s function
as before and consider the equation -

(2.13) © —xy = $(x)f(@) + h(z)

which has a solution. Then ¢(z) =1 and  — z,— flz) = hiz). Q.E.D.

The following proposition extends the result of Proposition 2.6 to x-contractions.

PROPOSITION 2.7. — Let 2 c W be open and bounded. Let f: 2 — W be an a-con-
traction with constant p. Let e W and 0 < e<p. Assume» that

(2.14) & — z,— tf(2) % 0

for every xe€00,te[0,1]. Then I —z,—7f is (1 — p —&)-0-epi if woc L. If w ¢ 02
then I — wy—f is not p-0-epi in 0.
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PrOOF. — Let #,¢ Q. Then z,¢ Q. Let
0 = inf {||o — x| : x € 22}
and let ¢ be such that
elft@)| <o
for every z€ Q. We may assume g < 1.
Assume that I -—x,—f is p-0-epi. Then the set § = {x € x—m—tflx) =0
for some {€[0,1] and » € 2} is non empty and compact. Morsover SN 002 = f.

Let ¢ be a Urysohn’s function such that

1 ifzefS
PO =10 itweso

and define k(z) = (1 — g)@(x)f(z). Then the equation
(2.15) @ — 2y— fl@) = — k()

has a solution since % i3 an a-contfraction with constant (1 —¢)p < p and kix) =0
for every z e 62. Thus

(2.16) @ — 2,— of(®) = 0.
Sinee o|f(w)]| < & we get a contradiction. Hence ® — #,— f(#) is not p-0-epi.

The proof that I —x,— f is (1 — p — &)-0-epi when x,€ £ follows the same pat-
tern of the similar part in Proposition 2.6 and it will be omitted. Q.E.D.

3. — Quasi-normal wedges and eigenvectors.

In section 1 we said that a cone K (or a wedge W) is quasi-normal if there exist
€ K (r,e W), 2,5 0, and ¥ > 0 such that

1@+ 2ao| >va]

for every A>0 and every we K.
The definition of quasi-normality encountered in the literature is apparently
weaker, because it requires the existence of z,€ K, »,5~ 0, such that

[ + o] >]a]

for every 2 € K.
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But the two definitions are really equivalent, since given # € K and given 4> 0
there exists y € K such that o = ly. From
ly + @] > 7]y
we get
12y + Aol > y] 29
and therefore

[+ 220 > y]] .
A cone K is said to be normal if there exists y > 0 such that

| 4yl >yla]

for every «, y € K.

The constant v is called the normality or quasi-normality constant of the cone
respectively.

A normal cone is obviously quasi-normal. The converse is false as the following
example shows.

ExampLE 3.1. — Let C*[0, 1] be the Banach space of real functions of clags C*
in [0, 1] endowed with the norm

: k
lolh = 3 Ja|
where
l2@] = max {|a9()]: t € [0, 1]}
and #O(t) = z(t).

Congider the cone K of nonnegative funetions. Then K is not normal.
In fact take (¢) = ¢* and y{(#) = 1 -—¢». Then

lo +yle=1.
But
lz)e>1 4+ n.

The cone K is quasi-normal. In fact let x(f) =1. Then it is easy to see that

|+ 2> |«
and y =1.
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PROPOSITION 3.1 ([20], [3], [5]). — Let K be a cone in a Hilbert space H. Then K
is quasi-normal, with y = 1. :

ProoF. — We may assume, without loss of generality, that K is not contained
in a proper subspace of H. There exists a continuous linear funetional ¢: H — R
such that |4 =1 and

(3.3) P(e)>0

for every x € K [6].
Let [y} =1 be such that

Yy > = P()
for every xz e K.
If y belongs to K, set #,=y. Then write

@ = @ + u,
with u = (=, %,»>. We obtain |

|l + da| 2= @ + (2 + p)ao]* = [2* + (4 + p)?
Thus

@[> [a]* + plo]* = [ -

[# + 22| > ] -

If y ¢ K, let 2 be the point in K whieh is closest to y [17]. It is easy to see that

0 < |]#]] < 1 since K is not confained in a proper subspace. Moreover it is known
that

(3.4) Y—ze—2><0

for every 2z € K, and {2, ¥y —2> = 0. We therefore obtain
(3.5) Y, > <2y ) .

Set 2, = 2/[2]. Q.E.D.

We see that y = 1. It is known that this fact characterizes Hilbert spaces ([3],
[5]) if dim H >3 and that every cone in a Banach space E is quasi-normal [20].

PROPOSITION 3.2. — Let K be a cone and Q2 c K be an open and bounded set such
that 0 € Q. Let ¢ = sup {|a]|: w€ 22} Let {: @ — K be compact and such that

d =int {|f(z)|: x€ 22} > 0.

Then I —f is not 0-epi in 0.
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PROOF. — We may assume, without loss of generality, that ||f(z)| = & for every
xe 0. Let

r = sup {[] + [f(z)]: » € 2}
and choose ¢ such that
(3.6) >0+ ¢.

Let y== 0, y € K, |y| < e Define g(x) = f(#) + y. Observe that g(x) 5= 0 for every
wef. Let v: K,|{0} - 0K, be defined by

x
T(%) = 2rm .

Consider the map h(z) = 7(g(»)). Using (3.6) it can be easily shown that for every
t€[0,1] and z € 242 we have

x 7 (L —1)f(2) + th(z) = f(z) + t(h@) — f(z))
and that ¥ = b —f maps Q into K. Let § = {we: 2 = f(z) + t{h(x) — f(@)}. If

I —fis 0-epi then S5« 0 and it is compact. Moreover SN &2 = 0.
Let ¢: 2 —[0,1] be a Urysohn’s function such that

0 if xe0
P@ =11 it ses

Define
q(@) = ¢(@) k() .
Then ¢ is compact and ¢(z) = 0 for every » € 0£2. Thus there exists #, such that
o — f(20) = q(@0) = P(@0) k(o) -
Then 2,8 a.nvd (@) = 1. Thus
Wo— f(o) = h(wo) — f(a,) .
This implies
By == R(x,) .

But [#,] <¢ <7 < |h(x,)]. Hence I —f is not 0-epi. Q.E.D.
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We are now ready to obtain our first theorem on positive eigenvalues and
eigenveetors.

THEOREM 3.1. — Let f: @ - K be oompact.ahd such that
(3.7) inf {|f(w)]: € 8Q} = 6> 0.
Let o = sup {|a]: € 8Q}. Then there ewists € 002 and 1>6/p such that
(3.8) (@) = 2o .

PrOOF. — Assume f(x) # tx for every z < of2 and every ¢>d/o. Then I —7f is
0-epi in £ via the homotopy

» = tf(z)

(see Proposition 2.6 with x,= 0). Define

Then inf {|g(#)]: # € 82} > ¢. Moreover

® — f(o) — i(g(@) — fl@)) + 0

for every t [0, 1] and every x € 0f2. By Proposition 2.5 » — g(x) is 0-epi. But by
Proposition 3.2 it is not. Hence

(3.8) flo) = Az

for some A>d/p and e 9f2. Q.E.D.

We now take up the noncompact case. Recall that a cone K cF is always
guasi-normal.

PRroOPOSITION 3.3. — Let WC E be a quasi-normal wedge or a cone and let Qc W
be an open and bounded neighborhood of 0. Let f: 2 — K be an a-contraction with
constant p.

Assume that

(3.9) 8 — inf {|f(2)]: w € 09} > g

where o = sup {||#]: » € 02} and k is the quasi-normality constant of the wedge.
Then I —f is not 0-epi in O.
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PROOF. — Let [, =1, x,€ K be such that

(3.10) lo + Az > 7| =]

for every #€ W and A>0. Let y: E — R be a linear continuous functional such
that

(3.11) p) =1, |y]=1.

Define fo(@) = y(f())#, and fi(#) = f(@) —fo(#). Since Imjf is bounded we can
¢ oose D> 0 so that

D>|y(f@)], VYeel

and
D > sup {|lz — fi(@)||: v 2}.

Let

@) = [D — y(f(x)) Ja -
Then h is eompact and Im A c W. Observe that
w — f(w) 7 th{x)
for every te€[0,1] and every z € 0R2. In fact if z€ 0Q then |o| <o. But
[f(@) + th(@)]|>y]1@)] > > ¢

since t(D-— y)(f(w))) = A>0.
Define T(x) = » — f(x), B(») = » — f,{(x) — Dx,. Then

@ — f(x) — th(z) = T(») + t(R(x) — T(x)) .

Moreover (B —T) = a(h) = 0 < f(T) since S(T}>1—p.
Hence, by Proposition 2.5, R is 0-epi. In particular there exists # such that

Z — f1(Z) = Da, .
But
|2 — /@) < D = Dja .

This contradiction shows that I —f is not 0-epi. Q.E.D.
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In [23] I. MassaBo and C. STUART proved that if K is a normal cone with
normality eonstant ¢ and if f: 2 — K is an «-contraction with constant p such that

8 = inf {|f(z)]: v € 50} >%‘3

where £, g, y are as in Proposition 3.3, then there exists € 82 and 1>4d/o such
that

fle) = Az .

They conjectured that the normality of the cone was unnecessary.
The following theorem shows that their conjeeture is true.

THEOREM 3.2. — Let W be a quasi-normal wedge or a cone and Q2 c W be a bounded

and open neighborhood of 0. Let f: Q —~W be a-Lipschitz with constant p. Assume
that

(3.13) 8 = inf {|f(a)]: v € 02} >1-”;9

with g,y as in Proposition 3.3. Then there exists x € 02 and 1> /o such that

(3.14) flx) = Az .

PrOOF. — Assume f(z) #% Az for every A>4/p and x € 02. Then obviously
fl@) = Az
for every A>0 and z € 2@, since for A < 8/¢ we cannot have
S<|[f@)] = A« <2e.
Define g(z) == (o/y6}f(z). Then

(3.15) x(g(4)) < 7—%0:(]’(44)) < %cx(A) .

Heonce g is an «-contraction since gp/yd = r << 1. Moreover inf {|g(x)|: = € 22} > ofy.
Now observe that

x = tg (r)

for every t€[0, 1] and « € 6f2. Therefore by Proposition 2.7 with x,= 0 we have
that 7 — g is 0-epi. But according to Proposition 3.3 I — ¢ is not 0-epi. This con-
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tradiction shows that there exists xz,e 02 and A>d/p such that
(3.16) (o) = Az . Q.E.D.

Corollary 3.1 (I. MAssABO-C. STUART [23]).

Let K be a normal cone in a Banach space H, Q c K be an open netghborhood of 0.
Let f: K — K be an «-contraction with constant p. Suppose that

(3.17) 8 = inf {|f(2)]: @ € 32} >%@

where o = sup {|z]: @ € 32}, and y is the normality constant of K. Then there ewists
t> 0 and xc 0L such that flx) = tx.

The following two results do not derive from the theory of 0-epi maps, but we
shall include them here for completeness.

The firgt is a theorem which. can be proved using either the approach of M. MAR-
TELLI [21], or P. MASSAT [24], or G. FourNiER and M. MARTELLL [7].

THEOREM 3.3. ~ Let K be a cone in a Banach space E and let f: 0K, — 0K, be an
o-contraction or a condensing map. Then | has a fived point.

As a consequence of the above result we get the following.

THEOREM 3.4, — Let x| = r there exists a

unique 1 € [0, 1] with the property that.the R, Let f: Q > K be o-Lipschite with
constant p (or condensing) such that

(3.18) 8 = inf {||f(@)]: z € 22} > pr.
Then there ewists xy€ 082 and 1> 0[r such that
(3.19) f(@o) = Ay .

PROOF. — Let f,: 0K, — 0K, be defined by

7f(t.4)
f(ta2)]

(3.20) o) =

Then f{, is continuous [25].
For every A c 0K, define

Ag={t z: ve A}.
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Then «(d,)<a(d). Moreover

(3.21) (1 (4)) < §olf(A) < T adg) < D) .

Since rp/d <1 we see that f, is an a-contraction. Thus there exists w € 0K, such
that '

@) =%
or

(3.22) F(@o) = Ao

where #,= ;% and A>4/r. If f is condensing and

(3.23) 6 = inf {||f(»)[|: # € 002} > r

we can use the same proof to obfain again an eigenveetor corresponding to an
eigenvalue A>dfr. Q.E.D.

4. — Krein-Rutman type theorems.

We are now ready to give a non- linear version of the Klem Rumnan thﬂerem,
where the full potential of the homogeneity property is used. '

ProposSITION 4.1. ~ Let f: W x[0, + oé) > W be compact. Assume that f(x, 0) =0
for every we W. Let X = {(x, }) € K X[0, + o0): @ = f(, A)}. Then there is an un-
bounded component of X containing (0, 0).

ProoF. - Obgerve that H = W x[0, 4 o) is a wedge in E><R endowed with
the norm |(», 4)| = max {|af, |4|}. Define H, = {(z, 1) A <n} and set

(4.1) BH,= (W.x{n}) U (0W, x (0, n]) .

Let € be the connected component of 2 which contains (0, 0). We want to show
that C intersects oH,. . Coe .

In fact if this is not the case then we can find an open set Uc H,= W, x[0, n]
such that eUN X =@ and Cc U [29]. Let ¢: H,—[0;1] be a Urysohn’s fune-
tion sueh that

0 if(x,)¢U
(4.2) ple, 4) :{ 1 if (5, )eZNT,
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Define h(x, 1) = (f(m, @z, A)n), (=, A)n). Then % is compact and h(z, 1) = 0 if
(@, 2) € 6H,. Therefore the equation

(4.3) (@, 4) = (f(z, p(x, H)n), p(z, 2)n)

has a solution.
If (»,})¢ U then ¢(z, 1) = 0. Thus i =0, and we get

@ =f(@,0)=0.
But then (0,0)eC and {0, 0) = 1. A contradiction. If (v, A) € U, then
A= gz A)n
or A,€[0,n] and
@ = f(a, Aa) .
Thus (2, 4,) € 2 and ¢(#, A,) = 1. Hence A,=# and
& = f(z, n) .

But (#, n) € 0H, and ¢(», n) = 0. Again a contradiction. Then C intersects ¢H,.
Since this is true for every = it follows that C is unbounded. Q.E.D.

For a different proof of Proposition 4.1 using degree theory see [28].

PROPOSITION 4.2. — Let f: W — W be a-Lipschits with constant p. Let X = {(», ) e
€ Wx[0, 4 o) = H: such that « = Af(w)}. Then there is a connected component C
of 2 which contains (0,0) and intersecis oH, for every o < 1/p.

Proor. — Observe that

ZNH

e

is compact. Therefore we can proceed as in the previous proposition. It is enough
to observe that

W, ) = (pp(@, 2)f(®), p(@, )

is an «-contraction for every o< 1/p. Q.E.D.

Let f: W — W be such that

(4.4) f(tw) = t(z) .
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Observe that we can consider f as the radial extension of a map g: oW, — W, by
setting

@x .
o uwng(m) if @£ 0
0 ifa=20.

Suppose |f|| = sup {|f(»)]|: # =1} < + oo and recall that

(4.6) r(f) = lim sup [f[1/~.

n—> 4+ o0

LemmA 4.1. — Let f: W — W be positively homogeneous. Assume that there exists
Ju]| =1 and d<r(f) such that

(4.7) lim sup Hf_n(;u)_”> 0.

#~>+ oo 0
Let 9 < 6 and define f,(x) = 1/of(®). Then

|73l

is unbounded.
Proor. - We have

f(u) = —f"(u).

1
o’
Thus

Ife(w)]

_ @) _ )] (o)
I 1 (Q)

Since d/p >1 and limsup [f*(u)]/0" >0 we get that
fo—>+ 0 ’

RUKCIE
is unbounded. Q.E.D.

LEMMA 4.2 [2]. — Let {a,} be an unbounded sequence of positive numbers. Then
there evists a subsequence {a, } such that for every i€ N we have

(4.8) U, <,

for all m,> i.

Proor. — Let m; = 1. Define m, as the smallest integer such that

O, > 0
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for every j<m,. Then define m,> m, as the smallest integer such that

T

for every j<m, ete. Q.E.D.

Let f: W — W be positively homogeneous. Denote by f the restriction of f to
oK, = KN D,.

LemMa 4.3. — Let f be a-Lipschitz with constant p. Then f is a-Lipschitz with the
same constant. '

‘PrOOF. — Obviously it is enough to show that f is o-Lipschivz 1u W, for every r.
If r>1 we can define

fo: oW, W

o =1i(3).

Since f, is a-Lipschitz with eonstant p it is enough to show that

by

fr Wy—W
is «-Lipschitz with the same constant. For a proof of this fact see [21] and [9].
Q.ED.
Given a posifively hemogeneous function f: W — W recall that
(4.9) o(f) = Um'sup [a(f,)r<alf) .
B>+ oo

LeEMMA 4.4. — Let f: W — W be positively homogeneous. Assume that w(f) < 1 and
there exists |u| = 1 such that {|[f(u)|} is unbounded. Then the sequence {v, =
= fr(u)/|f*(w)]} admits a comvergent subsequence.

Proor. — Let {a,= [f*(u)|}. Then {a,} is an unbounded sequence of positive
numbers. Let {a, } be the subsequence. of Lemma 4.2 and let

(4.10) A= {v;} .

a

Let m be any positive integer such ’bhat' o(f*) = pn<1. Define

A= {v,: Ny >m} .
Obviously |
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for every m. Let B, = {f"™(u)/|f*(w)|: n,> m}. Then B,c KN D, and f*(B,) =
= A,. Thus

a(4) = a(An) <Puo(Bn) <prnolK,) .
Take m? Then «(4) = «(4,.) and
a(A) < pmolKy) .
In general
(4.11) a(d) <pme(K,) .

Hence «(A4) =0 and A4 admits a convergent subsequence (see [25] for a similar
result). Q.E.D.

THEOREM 4.1. — Let K be a cone and let f: K — K be positively homogeneous and
order preserving. Assume thai

(1) «f) <r(f);
(ii) there ewist |u] =1 and 6 € («(f), #(f)] such that

lim sup H—ff(—:ﬂ >0.

B>+ 0 6
Then there exists ||w,] = 1 such that f(w,) = pw,, for some u € [0, r(f)].

Proor. —~ Let

(4.12) aff)y <o <o
and define
(4.13) fol®) = %’f(W) .

By Lemma 4.1 {|f*(u)|} is unbounded. Moreover there exists a subsequence {.}
such that '

Iim ~——— = limsup——-—>0.

. n n
>+ o0 5 ¢ n—> + 0o

L) 17~ ()
i}

By Lemma 4.4 we can find a subsequence of

_ fm(w)
(4.14) {”Um = Hf’”(%)ﬂ}
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which converges to some vector |[v] = 1. Let ¢ > 0 and consider the equation
(4.15) @ = Af, (@) + ef,(w)] .
Since «(f,(4)) = (1/e)x(f(4)) < (a(f)/e) x(4) = pa(4), p < 1, there is, according to

Proposition 4.2, a connected branch of solutions joining (0, 0) € K X [0, + oo) with
0H, for every 1 < g < 1/p.

From
@ = Mf,(@) + &, (u)]
we obtain
(4.186) o> M (x), @> lef,(u).

By induction we find
@ > A"efp(u)

or
x u. Jolt)

T~ 2 e I

Using the convergent subsequence {m} we get

Qm

(4.17) W’"_(u)_][w N /N
Thus

ofm_om
(+18) [w] 2]

If (o/A6)" — 0 we reach the contradiction

e <0 .
Thus ¢/A0>1 or A<p/d < 1. This implies the existence of |z:| = 1 such that
(4.19) : w, = Alf,(®,) + &f (w)] .
Set ¢,=1/n and get 1,€(0,1) such that

(4.20) C &= An [fg(wn) + %fg(u)] .

The sequence {w,} is obviously compact. Hence there exists o, = 1 and 4, such
that

(4.21) By = Aof,(%o) -



MArIo MARTELLI: Positive eigenvectors of wedge maps 25

This implies

(4.22) Hwo) = 2, .
0
Since
Aﬁn>a we obtain z%>a.
Moreover

L | fo(ay)] e =§- <lim sup Jf*]»=#(f). Q.E.D.

f—> + 00 0 n—>+ 00

COROLLARY 4.1. — Let f: K — K be positively homogeneous and order preserving.
Assume that | is an a-contraction and there ewists |u| = 1 such that

{Ilf" )]}  ds unbounded .

Let s = lim sup ||fr(u)]|/». Then there exists |m,) = 1 such that

n—> + oo
(4.23) f(ao) = A,
for some s<A<r(f).

ProOF. — Since [f*(u)] — 4 oo we have

lim sup |f*(u)|*=s>1.

n— + co
Hence »(f) >lim sup |f*(u)|*» = s>1 > a(f). Then
N>+ 00

lim supw =1

nstoo S
and, according to Theorem 4.1 there exists [[4,] =1 such that
f(@o) = Az,
for some Aels, r(f)]. Q.E.D.

CoROLLARY 4.2 [25]. — Let f: K — K be positively homogeneous and order preserv-
ing. Assume that f is an a-contraction and there ewists |ul| = 1 such that

{i~w)]}
is unbounded. Then there exists x| =1 and A>1 such that

(o) = A, .
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Proor. — See Corollary 4.1 where it is 'established that

A>lim sup [f*(u)[*">1.

n—> + o0

COROLLARY 4.3 [23]. — Let f: K - K be a-Lipschits with constant p, order preserving
and positively homogeneous. Assume that there ewists |[u| = 1 such that

(4.24) fr(u) > ou
for some ne N omd.some ¢ > p". Then there ewists |w,|| = 1 such that
(4.25) Flay) = Aw,
for some A€ [e¥", #(f}].
Proor. — Let p7< p < ¢, d = g¥* and define
(4.26) g(z) =5 fl@) .

Then

a(g(4)) = - af(d) < Lold) = qa(d), q<1.

and

Since (of¢)*— 0 as k —> + oo we must have that

{lgm@)|}
is unbounded.
More precisely

7(g)>lim supw >1  with 6= (g)l/n .

m—> -+ oo 6m

Thus there exists ||#,] =1 and u e [(¢/g)*'*, r(g)] such that

9(%y) = p, .
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Hence

fa) = dglas) = p dory = Iz,

with e¢V*<l<r(f). Q.E.D.

The following example shows how crucial is the assumption

there exists |u| =1 such that lim sup I'Jf”(ff)ﬂ

n—> 4 co

>0

for some -~ a(f) < o<<r(f).

EXAMPLE 4.1. — We are looking for a non-trivial solution of the global « Cauchy »
problem depending on a parameter

(%) @' (1) = AVe(l) a2l — 1), @(0) =0
with t € [0, 1].

Changing the problem into an integral cquation we study the existence of an
eigenvalue and an eigenveetor of the operator

4
T(x)(t) :f\/xz(s) + a1 —s) ds.
[
Observe that T is compact, positively homogeneous and sends the cone, K, of non-
negative functions into itself.- Moreover ii
z<y then T)<T(y).

Hence 7T is order preserving.
Some caleulations show that

r=o(T)>0 and inf{|T()]: |z} =1}=0.
Moreover
i 17O
a—> + 00 Q

with ¢ = 1/v/2. Hence there exists u €[1/v/2,r] and |z,] =1 such that
T(x,) = um, .

A direct attempt at solving (%) results in the diseovery that no non-trivial solutions
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are possible for 174 v/2 In (1 +-/2) and that for 2 = /2 In (1 --4/2) there is one
and only one solution defined by

o(t) = a(sin A{21n (1 +V2)¢ +1n (—1 +V2)] + 1)

where a = 2(}).
Since sxz(f) is a solution of (%) if and only if x(f) is, we may assume o =, in
which case

o] =1.
Notice that
V2In (1 +v2)<vV2.

Hence the eigenvalue 4 = 1/v/21n (1 ++/2) belongs to the interval (1/v/2,7].
We are now interested in deriving a result similar to Theorem 4.1 for the case
when the map f is a linear operator L. The two conditions
(i} a(L) < rx(L);

(ii) there exists |#| = 1 such that lim sup ———

n—> 1 o

II” 19

ean be weakened somehow. The following two lemmas illustrate this fact and seem
to show that the greater generality of the new conditions is essentially based on
the property

L{z + y)y = L) + L(y) .

LemMA 4.5 [24]. — Let ag(L) << rx(L) and let ox(L) < o << rx(L). Then there exists a
generalized measure of non compactness B such that

for every A c K, and with ¢ < 1.
PRroOF. — There exists m such that

[ee(Lm)JHm < g

or

Define

pld) = 2 «(Ly(4) .
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It is easy to check that § is a measure of non-compactness and
B(L,(4)) <oB(4)

with e<1. Q.ED.

LEMMA 4.6. — Let vx(L) > 0. Then for every o < rx(L) there exists |[u| = 1 such
that

{1 L5 ()]}
s unbounded.

PROOF. — If we assume that for every |#| = 1 there exists a constant M such
that

&

[Ly@)]| <2,
then for every y we have

1Ze@)] = lvl

L (ELZW)” [ <[y My -

By the Uniform Boundedness Principle there exists an open set VcK anda
constant M such that

|1 L) <M

for every 2 €V and every n.
Let x,€V and consider the open neighborhood of the origin in K

Q={weK: w=x—ax for some zeV}.

We then have ¢ > 0 such that |w| = r, we K implies we 2. Thus
[ L) <[ La(wo)| + [ i) <2M .
Therefore

2M
Izl 22

But [ L], = 1/¢"[ L]y and |Lj[¥" =1/e[L"|}". Since

lim | ZY"| * = rg(L)

N> + 0o
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we see that
lim L) >1.

N> +'c0

This implies that {|L7|} is unbounded. Therefore there exists |u| = 1 such that
{1}

is unbounded. Q.E.D.

THEOREM 4.2 [24]. — Let L: K - K be such that
(1) wx(L) < rx(L).

Then there exists ||@] =1 such that

(4.27) Le = rg(D)z .

ProoF. - Select ¢, = #x(L) —1/n. Then by Lemma 4.5 and 4.6 L, = L, satisfies
the assumptions of Corollary 4.1. Thus there exists |«,| = 1 such that

(4.28) L. (x,) = 8,2,
where s,>1. Hence
L(wn) = 0p8ny
with
Qn<@nsn</"K(L) .
Now consider the set
A = {®,: Lty = QuSnfn} .

For every #,€ A we have

L(La,)

I
o
3

%
3

[:-]

S

E

and, after m steps, we obtain

Choose m so that

[a( L) < rg(L) -
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Then for n>n, we have

or

[oe(Lm)]" < gn

a(L™) < o™ .

Define 4, = {#,€ A: n>n,}. Obviously

a(A) = a(A,)<

and 4, is compact. Thus there exists o] =1 such that

Loy = re(L)z, . Q.E.D.
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