
Positive Eigenvectors of Wedge Maps (*). 

~Amo ~A~T~LL~ 

Summary. - I n  this paper we investigate the existence o/posit ive eigenvalues and corresponding 

eigenvectors of nonlinear and noneompaet maps de]ined in a wedge W o] a Banach space E. 

The results are established using the theory o] O-epi maps introduced by .Furi-Martelli- 

Vignoli [10]. We prove a conjecture o/ I .  Massabo - C. Stuart [23] and we obtain a non- 

linear version o] the celebrated Krein-Rutman [18] theorem, which brings about the di]/erent 

role of the two properties 

](tx) = t/(x) and /(x -~ y) = ](x) § ](y).  

O. - I n t r o d u c t i o n .  

This paper has three main purposes. The first is the study of the fundamental 

properties of a very large class of maps acting on cones or, more generMly, on 

wedges in Banach spaces. This class includes compact vector fields and other vector 

fields whose non-iinear part is not compact. This study follows and expands the 

ideas of a previous paper by }I. F ~ I ,  ~ .  ~ARTELLI, A. VIGNOLI [10] and of some 

extensions and generalizations of it (see [15], [14], [11], [12], [13]). 

The second purpose is to prove a conjecture of I. MASSABO and C. STrum [23] 

along with other results which can be obtained from the theorems of the first part. 

We point out that  degree and index theory techniques were used in [23], while our 

approach is considerably simpler, being essentiMly based on Brouwer's fixed point 

theorem and suitable continuation principles. 

The third purpose is to obtain a theorem on eigenvectors of positively homo- 

geneous, order preserving and non-compact maps acting on cones, which is as close 

as possible to the extension of the classical KREIN-I~uTMAN [18] theorem to linear 

non-compact maps. The result brings about the key points where the consequences 

of the property 

(0.1) /(x + y) =/ (x)  + l(y) 

(*) Entrata in Redazione i l  25 m a g g i o  1985. 
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are crucial and should be subst i tuted by  suitable assumptions in the case where ] 

is oaly posit ively homogeneous. As a consequence of our results we obtain more 

precise s ta tements  of already existing theorems.  For  example 1~. :NussBA~ [25] 

recent ly  proved tha t  if ]: K -* X, where K is a cone in a Banach space E, is an 

a-contract ion and there  exists IluH = 1, u e l i :  such t h a t  

(0.2) {lli ( )ll} 

is unbounded,  then there  exists I[x0[[ = 1 such tha t  

(0.3) /(x0) ----)~xo 

for some ~ ~1 .  Here  we are able to give a be t te r  es t imate  of the  value of ~ ap- 

pearing in (0.3) and, in some cases, we are able to provide its exact  value. 

A few more words should be said before we start .  Our theorems of the  second 

an4 th i rd  par t  are based on the theory  developed in the  first par t .  No degree theory  

or index theory  is used. Nevertheless we are able to prove a conjecture and improve 

results which were formulated within the  f ramework of degree and index theory.  

This fact  seems to suggest t ha t  the skepticism of some researchers towards the  

ideas and methods presented by  FU~I-I~A~TET.LI-VIG~0nI in [10] and later  used 

and improved in [15], [14], [13], [12], [30], [11] were at  least premature .  ~o reo v e r  

the methodology aspect should not  be neglected e i ther .  To build index theory  for 

non-compact  maps requires a lengthy construction based on a suitable l imiting 

process [26]. This construction becomes more complex when mult ivalued maps are 

involved [8]. 

Our approach is definitely simpleri and it  provides, at  least in this case, be t t e r  

results. ~5oreover it caa be extended t o  the mult ivalued case in a s traightforward 

manner .  

1.  - N o t a t i o n s  a n d  d e f i n i t i o n s .  

A cone ti: in a Banach space E is a closed subset of E such tha t  

(i) x, y e K ,  a, b>~O implies ax d- by e X ;  

(ii) x e K  a n d - - x e K i m p l i e s  x = 0 .  

A wedge W in a Banach space E is a closed subset of 2~ which satisfies (i). 

A cone ti: or a wedge W are said to  be normal if there  exists a constant  y > 0 

such tha t  

(1.1) llx + y]l >:d ll 

for every  x, y e K  or x, y e W .  Notice tha t  y~<l. 
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A cone K or a wedge W axe said to be quasi-normal [27] if there  exists xoe ~: 

(xo~W) and 7 ~ 0 such t h a t  

(1.2) ]I x + Axoll >Y[[xi] 

for every  x ~ K ( x c W )  and A>~0. 

E v e r y  normal  cone is obviously quasi-normal.  The cone h ~ of non-negat ive  func- 

t ions in C[0, 1] or Z~[0, 1] for l < p <  c~ is normal .  The same cone in C~[0, 1], k~>l 

is not  normal  bu t  i t  is quasi-normal.  E v e r y  cone / f  in a Hi lber t  space H is quasi- 

n o r m a l  w i t h  y : ~  t (see Proposi t ion 3.1). 

A cone K induces a par t ia l  ordering, < ,  in E b y  set t ing 

(1.3) x d y  iff y =- x e K .  

A m a p  ]: K ->/ i :  is order preserving if 

(1.4) x < y  ::> / (x)</(y) .  

I f  ] ~ i5, a l inear operator ,  t hen  it  is order preserving.  I n  fact  if x d y or y - -  x > 0 

then  Z(y - -  x) ~ K a n d  

(1.5) L(y --  x) ~ Ly --  Lx ~ I f  or L x d - S y .  

Let  :5 be  the  family  of all bounded  subsets of ~ cone X. A generalized measure  

of non-compactness  on :B is a funct ion 0 : : 5  -> [0, ~ c~) such t h a t  

(1) O(A) = 0 if and  only if A is compac t ;  

(2) 0(~5 A ) =  O(A), where ~5 A denotes  the  convex closure of A;  

(3) O(A U B) -~ m a x  (O(A),O(B)); 

(4) O(tA)= tO(A) for every  t > 0 ;  

(5) O(A + B) dO(A) ~- O(B). 

The funct ion ~: :5 -+ [0, Jr co) defined b y  

~(A) -~ inf {s ~ 0 such t ha t  A can b e  covered b y  a finite 

fami ly  of sets of d iamete r  de}  

was first proposed b y  KURATOWSKI [19] and  it  s~tisfies (1)-(5) (see G. DARBO [4] 

for the  first proof  of (2)). 

I f  the  word <( sets )) is replaced b y  <( spheres >> we obt~in another  measure  of non- 

compactness ,  which is f requent ly  denoted by  y. I t  is easy to see t h a t  

0 .6)  7(A) d~(A)  d ~ 7 ( A ) .  
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~ .  F ~  and A. W a ~ o ~  [lS] proved tha t  if S = {x e ~ :  Ilxll = 1} then  a(S) = e. 

In  this paper  we shall always use the Kuratowski  measure of non-compactness 

unless otherwise stated.  The results can be easily generalized to arb i t rary  measure 

of non-compactness.  

A funct ion ]: K - + K  is a-Lipschitz (this t e rm was first used by  A. _4~BgO- 

SETTI [1]) with constant  p if 

(1.7) a(/(A))  <pa(A)  

for every  A e :B. I f  p ---- 1 we say tha t  ] is a-nonexpansive.  I f  p < 1 we say tha t  ] 

is an a-contraction.  I f  

(1.8) aft(A)) < a(A) 

for every A e ~ ,  a ( A ) r  0 then  ] is said to  be condensing. The constant  q = fl(])>0 

is defined as the sup of all non-negative real numbers  r such tha t  

(1.9) ra (A  ) < a ( l (A  )) �9 

Let  1: / i :  -+ K be posit ively homogeneous, i.e., ](tx) -~ tl(x) for every t~>0. Sup- 

pose ] sends bounded sets into bounded sets. Theu we can define 

(1.10) ll]ll = sup {ll/(~)II: IIxIl = 1, x ~ K } .  

We really should use It]I]K, bu t  no confusion will be possible since we are working 

on cones. Therefore we shall drop the subscript. 

Observe tha t  [1]2[I <I[]It 2. Therefore we can define 

(1.11) r( l  ) = l im sup l]l']I TM . 
~t*--> -b c ~  

and obviously r(l)<lt/ l l .  
I t  can be shown that if I is positively homogeneous than its restriction, ], to 

the  set 

~KI= {z~K: Ilxtt = 1} 

is a-Lipsehitz with constant  p iff ] is a-Lipschitz with the same constant .  Therefore 

we define 

(1.12) an) = sup [a(h~)) } [ a(A) : a ( A ) ~ 0 ,  A c ~ K 1  �9 

Since 

a(p) < (a(t)) 2 
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we obtain 

(1.13) co(/) = lim sup [~(].)]~1. < a( / ) .  

In  the  case where ] is a l inear operator,  L, the  more accurate symbols 

(z.14) rK(z )  , aK(L) , co,,(S) 

will be used to avoid confusion with 

(1.15) r(L) , co(L), Co(Z). 

I t  is easy to ver i fy  t ha t  

(1.16) r~(Z) = lim llZ-ll 1l~ 

(1.17) ~o~(L) = lim [~(Z-)]~/- . 

2. - Definition and properties of  0.epi maps. 

Let  K,  W c E be respect ively a cone and  a wedge in a Banach space E. 

W~,JKr and the like. 

L e t  r > 0. Denote  b y  

Set 

(2.1) 

Dr = {x ~ ~ :  llx]I < r} 

B~ = .D~\S~ .  

W~-~ W ~ Dr , 

K~ --- K n D~, 

A subset ~ c W is relatively open if there  exisr an open set O c E such tha t  

~ = O n W .  

The relative border of f2, denoted by  0.(2, is the set 
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where ~q is the  closl~re of .Q, and ~2~ W~f ) .  For the sake o/ simplicity we shall 

say that D is open and ~.0 is its border. 

p-O-epi maps 

DEFrNITION. -- Le t  f2 c W be an open and bounded set. Le t  T:  ~ -+ E be oon- 

t inuous and such tha t  T(x) V: 0 for every  x e ~fP. We say tha t  T is p-0-epi in ~q if 

for every  continuous map h: ~ - + .  W such tha t  

(i) h is ~-Lipsehitz with constant  < p ;  

(ii) h(x)= 0 for every  x e~fP, 

the  equation 

(2.2) T(x) = h(x 

has at  least one solution (see [30] for the  case when h is compact) .  

I f  T is p-0-epi in ~ then  obviously T is q-0-epi for every  q<p. 

I f  T is 0-0-epi then  we shall simply say tha t  T is 0-epi. 

Existence results 

PI~OPOSlTION 2.1, - .Let T: ~ -+ E be p-O-epi in ~.  Then the equation T(x) ~ 0 

has a solution xoe fP. 

PROOF. - The funct ion h: ~ - ~  W defined by  h(x)-~ 0 for every  x e tq satisfies 

(i) and (ii). Q.E.D. 

Pl~oPosITIol~ 2.2. - Let 0 ~ [2. Then the identity is ( 1 -  e)-O-epi in ~ /or every 

0 < e < l .  

P~ooF. - Let  h: ~q -~ W be an ~-eontraetion such tha t  h(x) = 0 for every  x e ~9. 

Le t  r > 0 be such tha t  

IIh(x)lI<r f o r  every  x e ~  

t[xtI<r - for every  x e ~fP. 

Ex t end  h 'to an:a-contract ion:  hi:. Wr :+ W; by setring 

h(x) if x e 

h i ( x ) =  0 i f x r  

Then hi has a fixed point  [4], which is obviously a fixed point  of h since 0 e ~ .  
Q.E.9, 
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The following example  shows t h a t  the  iden t i ty  is not  1-O-epi in ~ ,  0 E/2. 

EXAiVgPLE 2.1. - Le t  12 be the  Hi lber t  space of square summable  sequences of 

real  : :umbers and  let  W be the  wedge of sequences having  non-negat ive  entries.  

Le t  ~ = W2. Define 

{( ~ - Ilxll~ Xl, x~ , . . . )  if ]!xll <1  

h(x)---- (2- - I [x[] ) (O,x~,x~, . . . )  if 1<]1x] ]<2 .  

Then h is ~-nonexpansive.  l~Ioreover if ]]Xll = 2 then h(x) = O. 

The equat ion 

(2.3) x = h ( x )  

does not  have  a solution. I n  fact  if nx]] < 1 then  Hh(x)tl = 1, and  if Hx]I > 1 then  

[]h(x)l I < 1. Hence  the only solutions can be in ~W~. B u t  if nx[t = 1 then  

h(x) = (0, x~, x~ , . . . )  = (x~, x~ , . . . )  

only if xl = x2 . . . . .  0. 

PRO1)OSITIO~ 2 . 3 . -  _Let Xo~E and 0 < ~ < 1 .  Then the map T ( x ) = x - - x o  is 

(1--e)-O-epi in ~ c W i] xo~ /2 and is not O-epi i] xo~ /2. 

P]~oor. - I f  Xo ~ ~ then  the  equat ion Y(x) = 0 does not  have  any  solution in /2 

and  therefore  T is not  0-epi in tg. 

I f  Xo e ~/2 then  T does not  sat isfy the requ i rement  T(x) V: 0 for every  x e ~/2. 

I f  xoe /2  and  h: t~ -+ W is an a-contrac t ion  such t h a t  h(x) = 0 for every  x e ~9,  

then  we can choose r > 0 so t h a t  

,'>llh(x)lt + ][xoil for every x ~  

r > s u p  (li~ll : x ~ ~ /2} .  

Then we can ex tend  h to a map  hi: W~-+ Wr as in Proposi t ion 2.2, and we can 

consider the a-contrac t ion  k: W~-> W~ defined by  

(2.~) k(x) = hi(x) + Xo. 

Let  ~ be a fixed point  of k, Then 

(2.5) ~ = h~(~) + x 0 . 
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I f  ~ / 2  then  h,(~) = 0 and ~ = xo, which is impossible since xoe /2 .  Hence ~e/2~ 

and 

(2.6) ~ -  Xo = h~(~) ---- h(~).  Q.E.D. 

Additivity 

P~OPOSlTmN 2.4. - Let /2 c W be open and bounded. .Let  T:  ~ - -~  E be p-O-epi 

in Q. Assume that V~, V~ are two open subsets o / / 2  such that ]71N V~-~ 0 and 

. . . .  T - - l ( 0 )  C . . V  1 W "V 2 . 

Then T is p-O-epi in either Vx or V~. 

PRool~. - Assume tha t  T is not  p-0-epi in F~. Then there  exists hi: Vz --~ W such 

tha~ h~(x)----0 for every  x e  ~Vx, h is a-Lipsehitz with constant  p and 

T(x) ~ h~(x) 

for every  x e V~. Similarly if T is not  p-0-epi in F~ we can find h~ with similar 

properties.  Define 

h(x) = 

h~(x) i f x e V ~  

h~(x) if x e Vs  

0 otherwise.  

Notice tha t  h is continuous and ~(h) = p. Hence the equat ion 

T ( x )  = h(x) 

has a solution. Since T(x) va 0 if x ~ V1 t_) V~ and T(x) V: h~(x) if x e V1 t3 V~ we 

reach a contradiction. Thus T is p-0-epi in ei ther Vl or ~'~. 

Continuation Principles 

P~OPOSlTI0~ 2 . 5 . -  Zet /2 c W be open and bounded and T: ~ - + E  be p-O-epi 

in ~.  Assume that fl(T) > O. Zet ]~: ~ :+ E be such that 

(i) ~ ( R - -  T) = q < fl(T) = s and q < p ;  

(ii) R - -  T:  f2 -+ W; 

(iii) T(x) + t(R(x) - -  T(x)) V= 0 /or every x e ~/2 and t e (0, 1]. 

Then R is at least r-O-epi, where r < s - -  q, r < p - -  q. 
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P ~ o o g .  - L e t  h: ~ -*  W be an  g-Lipschi tz  m a p  wi th  c o n s t a n t  r and  such t h a t  

h(x) = 0 for every  x ~ 8.Q. W e  m u s t  show t h a t  the  e q u a t i o n  

(2.7) R(x)  = h(x) 

has a solut ion.  L e t  Z = {(x, ~) e ~ • [0, 1]: T(x) -~ t(R(x) --  T(x)) = h(x) for  some 

t E [0, 1]}. T h e n  X : ~  0 since for  t = 0 the  e q u a t i o n  T ( x ) =  h(x) has  a solution.  

~r X is closed. 

Let us show now that X is compac t .  Put 

A -= {x e ~:  (x, t) e X for  some t e [0, 1 ]} .  

T h e n  - -  T(A) c [0, 1] • (R - -  T){A) - -  h(A). H e n c e  

s:r <-<~(T(A)) <~(R --  T)(A) + oc(h(A)) < (q + r)a(A) . 

Since q § r <  s we m u s t  have  ~ ( A ) =  0. Thus  A is t o t a l l y  bounded .  

implies t h a t  Z is c o m p a c t  a nd  A is compac t .  ~ o r e o v e r  A (~ ~9  ~ 0. 

L e t  r  ~ - *  [0~ 1] be  a Urysohn~s i u n c t i o n  such t h a t  

and  define 

1 if x ~ A  

r  0 if x c ~  

This 

(2.10) 

]or every x ~ 8f2 and t ~ [0, 1]. 

(1 - -  s)-O-epi i] xo~ ~2. 

x - -  t ] ( x )  - -  Xo~:  o 

Then T = I - - x o - - ]  is not O-epi i] Xor ~ and it is 

k(x) = - r  - T(x))  + h ( x ) .  

T h e n  k(x) = 0 if x ~ ~t9 a n d  k is :r  wi th  c o n s t a n t  < r  + q<p.  Hence  the  

e q u a t i o n  

(2.8) T ( x )  = k ( x )  

has  a solut ion ~ e ~9. Since r e [0, 1] we see t h a t  ~ e A.  Thus  r ~-- 1 and  

(2.9) R(~) = h(~) .  Q.E.D.  

P~OI~OSlTIOX 2.6. - Let [2 c W be open and bounded and ]: ~ -* W be ComTaet. 

.Let Xo~ W and 0 < e < l .  Assume that 
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PI~O0F. - Le t  x 0 ~ .  Obviously X o ~ .  Assume I - - x o ~ ]  is 0-epi. Then S :  

(x: x - -  tf(x) - -  xo -~ 0 for some t ~ [0, 1]} is compact  and S (~ ~2  ---- 0. Le t  4: ~ -~- 

--> [0, 1] be  a Urysohn ' s  funct ion such t ha t  

1 if x e S  

r -~ 0 if x e  ~ .  

Define h ( x ) ~ - - r  Then h: ~ - > W  is compac t  and  h(x)-~ 0 for every  x e  

e ~2. Therefore  the  equat ion 

(2 .10)  

has a solution. 

(2.11) 

Thus 

x - l ( x ) - X o =  h(x ) .  

x - (1 - r  l(x) - Xo = o .  

Since r  [0, 1] it  follows t h a t  x ~ S. Hence  ~(x) --~ 1 and  

(2.12) x : Xo 

which is impossible. 

T o w  let  xo~ ~2. Then x - -  xo is (1 - -  s)-0-epi. Le t  h: ~ --~ W be an ~-contract ion 

such t ha t  h ( x ) ~ - 0  for every  x e ~ .  Define 

s = { x e ~ :  x - X o - q ( x )  = h ( x ) } .  

Then S r O and compact .  ~r S (~ ~ ~ 0. Le t  r be a Urysohn ' s  function 

as before and consider the equat ion 

(2 .13)  x -  xo = r + h(x) 

which has z solution. Then r  and x ~ X o - - / ( x ) =  h(x). Q.E.D. 

The following proposi t ion extends the result  of Proposi t ion 2.6 to :c-contractions. 

P!~OPOSITION 2.7. - Let ~2 c W be open and bounded. Zet ]: ~ -~ W be an a-con- 

traction with constant p. Zet xoe W and 0 ~ e<p.  Assume that 

(2.14) x - xo--  t](x) ~ o 

for every x ~  ~.(2, r e [ 0 ,  1]. Then I - - X o - - ]  is ( 1 - - p - - e ) - O - e p i  i] Xo e~ .  I]  xo~[2 

then I ~ Xo--]  is not p-O-epi in ~ .  
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PgOOF. - Le t  Xo~ ~ .  

and let @ be such that 

Then % ~ .  Let  

= inf {l[x - -   oli: x ~ ~p.} 

for every  x e .Q. We m a y  assume @ < 1. 

Assume t h a t  I - -  Xo-- ] is p-0-epi.  Then the  set S = {x  ~ [2: x - -  x o - -  t](x) = 0 

for some t ~ [0~ 1] and x e t~2} is non e m p t y  and  compact .  Moreover  S (3 ~t) ---- 0. 

Le t  r be a Urysohn~s funct ion such t h a t  

1 i f  x ~ S  

r  0 if x e ~  

and define k(x) -~ (1--@)~5(x)](x). Then the  equat ion 

(s.15) X-Xo-t(x) = - k ( x )  

has a solution since k is an a-contract ion with  constant  (1 - -  @)p < p and  k(x) : 0 

for every  x e ~ .  Thus 

(2.16) X - - X o - - e ] ( x )  = O. 

Since @]]](x)] l < ~ we get  a contradict ion.  Hence  x - - % - - ] ( x )  is not  p-0-epi.  

The proof t ha t  I - - x o - - ]  is ( 1 - - p -  e)-0-epi when xoe ~ follows the  same pa t -  

te rn  of the similar pa r t  in Proposi t ion 2.6 and  it  will be omit ted.  Q.E.D. 

3. - Quasi-normal wedges and eigenvectors. 

In  section 1 we said t h a t  a cone K (or a wedge W) is quasi -normal  if there  exist  

Xoe K (xoeW),  x o #  0, and  7 > 0 such t ha t  

t]x + ~xoll >YElx]I 

for every  ~ > 0  and every  x e K.  

The definition of quas i -normal i ty  encountered in the  l i te ra ture  is appa ren t ly  

weaker,  because it  requires the  existence of xo e ~ ,  xo # 0, such tha t  

II ~ + ~o1[ >ylIxll 

for every  x ~ K .  
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But  the  two definitions are real ly  equivalent ,  since given x e X and given ~ > 0 

there exists y e K such t h a t  x = ~y. F r o m  

we get  

and therefore 

II~J + xolI >~llyll 

II~.y + ~xoll >~ll~.y;l 

It~ + ~xo]l >~llxI1 �9 

A cone K is said to be normal  if there exists • > 0 such t h a t  

for every  x, y ~ ~ .  

The constant  y is called the  normal i ty  or quas i -normal i ty  constant  of the  cone 

respectively.  

A normal  cone is obviously quasi-normal.  The converse is false as the following 

example  shows. 

EXAlVIPLE 3.1. -- Le t  O~[O, 1] be the  Banach  space of real  functions of class C k 

in [0, 1] endowed with  the  norm 

k 

blI~ = ~ tlx")tl 
i = 0  

where 

[l~,,~iI = max { W,)(t)l: t e [o, 1]} 

and x(O)(t) : x(t). 

Consider the cone • of nonnegative functions. Then K is not normal. 

In fact take x(t)=t ~ and y(t)=l--t< Then 

ll~ + yll,~ = 1. 

But 

t lxl l ,> 1 + ~. 

The cone /i: is quasi-normal.  I n  fact  let  xo(t) ~ 1. 

and  y : 1. 

Then it is easy to see that 
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PROPOSITION 3.1 ([20], [3], [5]). -- Let K be a cone in a Hilbert space H.  Then .K 

is quasi-norton 4 with y = 1. 

P~ooF.  - W e  m a y  assume~ w i t h o u t  loss of genera l i ty ,  t h a t  /i: is no t  con ta ined  

in a p r o p e r  subspace  of H.  There  exists a con t inuous  l inear  func t iona l  r  H - +  R 

such that  [1r = 1 and 

(3.3) r > 0 

for  e v e r y  x ~ K [6]. 

Let IIyll = 1 bc ~uch that  

for  e v e r y  x e K.  

I f  y be longs  to  /~, set  x0 = y. 

(y ,  x> = r 

Then write 

x = x~ q-/~xo 

wi th  # = (x ,  Xo}. W e  ob ta in  

Thus  

IIx + ~.oll > II<. 

I f  y ~ K ,  let  z be  t he  po in t  in  K which  is closest  to  y [17]. I t  is easy  to  see t h a t  

0 < I[zI] < 1 s i n c e / i :  is n o t  con t a ine4  in  a p rope r  subspace.  Moreover  it is k n o w n  

that 

(3.4) <y - -  z, x - -  z> < 0 

for  eve ry  x ~ K ,  a n d  (z, y -  z> = O. W e  the re fo re  ob ta in  

(3.5) <y, x> < <z, x>. 

Set x 0 =  ~/ll<t. Q . e . D .  

W e  see t h a t  y = 1. I t  is k n o w n  t h a t  this  fac t  charac ter izes  l~ilbert  spaces ([3], 

[5]) if d i m  H > 3  a nd  t h a t  eve ry  cone in a B a n a c h  space E is quas i -normal  [20]. 

PROPOSITION 3.2. -- Let J~ be a cone and ~ c t(. be an open and bounded set such 

that 0 e Y2. Zet ~ = sup {HxIl: x e ~ Q } . . L e t  f: ~ -~ K be compact and such that 

Then I -  ] is not O-epi in ~ .  
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PROOF. - We may  assume, wi thout  loss of gener~ i ty ,  t ha t  jlj(x)][ ---- 3 for every  

x e ~.Q. Let 

= snp (/[~li + H/(x)li: x e . V }  

and choose e such tha t  

(3.6) ~ > e ~- e .  

Let  y :~ 0, y e K,  IlYl] < e. Define g(x) = / ( x )  + y. 

xe~q.  Let  T: K,[{0}-~ ~K~ be 4efined by  

Consi4er the  map h(x) = ~(g(x)). 

t e [0, 1] and x e ~/2 we have 

X 

~(x) = 2r II~I-7 

Observe that g(x) =/= 0 for every  

Using (3.6) it can be easily shown tha t  for every  

Define 

q ( x )  = ~ ( x )  k ( x )  . 

Then q is compact  and q(x) = 0 for every x e ~f2. 

X o -  l(Xo) = q(xo) = ~ ( X o ) k ( x 0 ) .  

Then xoe S and ~O(Xo)----1. Thus 

This implies 

But  II~oll < e  < r < Ilh(~o)H. 

X o -  / (x~  = h(xo) - t(Xo) . 

Xo = h(xo)  . 

Hence I - - /  is not  0-epi. 

O if x e ~D 

~o(x)= 1 if x e S  

Thus there  exists Xo such tha t  

Q.E.D. 

and tha t  k = h - - /  maps ~ into X. Let  S - -  { x e ~ :  x : / ( x )  § t(h(x) - -  /(x)) }. 

I -  ] is 0-epi then  S =A 0 and it  is compact.  Moreover S (~ ~D = 0. 

Le t  ~: ~ - +  [0, 1] be a Urysohn's  funct ion such tha t  

x ve (1 - -  t)/(x) § th(x) = / ( x )  + t(h(x) -- /(x))  

I f  
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We  are now r e a d y  to  ob ta in  our  first t h e o r e m  on posi t ive  e igenvalues  and  

(3.9) 6 ---- inf  {ll/(x)ll : x e 3~} > -Q 

(3.8) 1(x) = ~x  

for  some 2~->6/@ a nd  x ~ ~f2. Q .E .D.  

W e  now t ake  up  t he  n o n c o m p u e t  ease. l~ecall t h a t  a cone K c E is u lways  

quas i -normal .  

PROPOSITIO~ 3.3. - Let W c E be a quasi-normal wedge or a cone and let ~ c W 

be an open and bounded neighborhood o/ O. Let /: ~-->.K be an ~-eontraction with 

constant p. 

Assume that 

where ~ = sup {lIxll:x e ~ }  and k is the quasi-normality constant o/ the wedge. 

Then I -  ] is not O-epi in ~ .  

eigeaveetors .  

TttEOREM 3.1. - Let ]: ~--> K be compact and such that 

(3,7) in f  {ll/(x)]; : x ~ ~ }  = 6 > 0 ,  

Let @ ~- sup {l[xl}: x e ~ } .  Then there exists x e ~Q and 2>6/@ such that 

(3.8) / (x)  = ~ x .  

PROOF. - Assume  / ( x ) ~ - t x  for  eve ry  x e ~f2 and  every  t>~6/@. T h e n  I - - f  is 

0-epi in  ~ v ia  the  h o m o t o p y  

x = q ( x )  

(see P ropos i t i on  2.6 wi th  Xo = 0). Def in ,  ~ 

g(x) = e + 
6 S/(x)"  

Then  inf {llg(x)l]: x e 3Y2} > @. 5Ioreover  

x - / ( x )  - t (g ( z )  - ](x))  # o 

for  eve ry  t ~ [0, 1] and  every  x e ~.Q. B y  Propos i t ion  2.5 x - -  g(x) is 0-epi. B u t  b y  

P ropos i t ion  3.2 i t  is no t .  H e n c e  
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P~oo~. - Let [[xoll : 1, Xoe ~ be such t h a t  

(3.1o) lI~ + ~ol]  >rt t~ l l  

for every  x e  W and  ~ > 0 .  

t h a t  

Le t  ~: E -* R be a l inear cont inuous funct ional  such 

(3.11) ~(xo) = 1 ,  

Define to(x) = ~ ( l ( x ) )  xo and. t1@) = l (x )  - -  re(x). 

c oose D > 0 so t h a t  

and 

Ilvll = 1 .  

Since I m /  is bounded  we can 

D > sup {11~- ll(x)]l : ~ e ~ } .  

:But 

This contradict ion shows t h a t  I -  I is not  0-epi. 

h(x) = [D  - v( t (x ) )Do  �9 

Then  h is compac t  and I m  h c W. Observe t h a t  

x - l ( x )  r t h ( x )  

for every  t e [0, 1] and every  x e 8S2. I n  fac t  if x e 8Q then  I[xll < e. Bu t  

II1(~) + th(x)l[ >vll/(~)ll >~,~ > e 

s ince  @ - -  ~(1(~))) = 4 > 0 .  

Define T ( x )  = x - -  ](x),  R ( x )  ----- x - -  ]1@) - -  D x , .  Then  

x - l ( x )  - t ~ ( x )  = ~r(x)  + t ( R ( x )  - T ( x ) ) .  

Moreover  a(R - -  T) : ~(h) : 0 < f l (T)  since fl(T) ~> 1 - -  p. 

Hence,  b y  Proposi t ion 2.5, R is 0-epi. I n  par t icular  there  exists �9 such t h a t  

Y~ - h ( ~ )  = D x o  . 

I 1 ~ - l ~ ( ~ ) l l  < D = DIl~oll �9 

Q.E.D. 

Le t  

z)> I~,(l(x))I, Vxe.~ 
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In [23] I. M~sshno and C. STUART proved  t h a t  if K is a normal  cone with 

normal i ty  constant  y and if /: D -~ K is an ~-eontraction with constant  p such tha t  

= i n f  { [ l l ( x ) l l  : x +  ~}>@ 
Y 

where ,(27 0, Y are as in Proposit ion 3.3, t hen  there exists x ~  8D and ).>(~/~ such 

tha t  

l(x) - -  2 x .  

They  conjectured tha t  the  normal i ty  of the  cone was unnecessary.  

The following theorem shows tha t  the i r  conjecture is t rue.  

THEOREM 3.2. -- Let W be a quasi-normal wedge or a cone and ~ c W be a bounded 

and open neighborhood o/ O. •et 1: ~ --> W be ~-Zipsehitz with constant p. Assume 

that 

(3.13) (~ = inf {]]/(x)ll : x e  ~D) > P C  
Y 

with 0, Y as in _Proposition 3.3. Then there exists x e ~[2 and • >~ (~/~ such that 

(3.14) ](x) -~ 2x .  

PROOF. -- Assume ](x)V: 2x for every  2>(~/~ and x e $~. Then obviously 

](x) ~ 

for every  ~ > 0  and x ~  ~D, since for 2 <  (~/~ we cannot  have 

< IIl(x) ll =  llxll 

Dearie g(~)== (e/;,~)f(x). Then 

~P (3.15) ~(g(A)) < ~ a ( I ( A ) )  < - ~ ( A ) .  

Hence  g is an a-contract ion since ~p/y~ : r < 1. ~ o r e o v e r  inf {llg(x)ll : x e ~Q) > ~/y. 

Now observe tha t  

x r tg {x) 

for every  t e [0, 1] and x e ~Q. Therefore by  Proposit ion 2.7 with xo = 0 we have 

tha t  I ~ g  is 0-epi. But  according to Proposit ion 3.3 I - - g  is not  0-epi. This con- 
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t radic t ioa  shows tha t  there  exists Xoe 3,(2 and A~> d/@ such tha t  

(3.16) J(xo) = /<Xo. Q.E.D. 

Corollary 3.1 (I. ?r STUA~ [23]). 

Zet K be a normal cone ,n  a Banach space E, f2 C lg be an open neighborhood oJ O. 

Zet J: K -+ K be an c~-contraction with constant p. Suppose that 

(3.27) d = inf {]11(x)H : x e 3D} >p~o 
Y 

where ~ = sttp {llxll: x e ~ } ,  and y is the normality constant O] K.  Then there exists 

t > 0  and x e OD such that ] ( x ) =  tx. 

The following ~wo results do not  derive from the  theory  of 0-epi maps,  b u t  we 

shall include t hem here for completeness. 

The first is a theorem which can be proved using ei ther  the approach of 3{. MA~- 

TELJ, I [21], or P. ~/]:ASSAT [2~], Or G. FOUI~NIEt~ ~ n d : ) f .  IVfARTELLI [7]. 

TIIEOlCEI~ 3.3. - Let K be a cone in a Banach space E and let J: ~K,,--> OKr be an 

zt-contraction or a condensing map. Then / has a ]ixed point. 

As a consequence of the  above result we get the following. 

T]~_EO~E~ 3.4. -- Zet .(2 c K~ be an open set such that ]or every ][xll = r there exists a 

unique t ~ [0, 2] with the property that t x e  3Y2. Let ]: s9--.'-1~ be e-Lipschitz with 

constant p (or condensing) such that 

( 3 . ~ s )  d = i n f  {lll(x)lI = x > p r .  

Then there exists xoe ~ and 2 ~  (3/r such t h a t  

(3.19) J(Xo) = ,~Xo . 

Pnoo~. - Le t  Jr: ~ / ~ - +  ~K~ be defined by  

(3.20) 

Then ]~ is continuous [25]. 

For  every  A c ~/i:~ define 

/~ (x )  = - -  
r / ( t ~ x )  

ll1(t~x)]i " 

A o = { t  x .  x e A } .  
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Then ~(Ao)<~(A).  Moreover  

(3.21) < 7 (Ao)< 7 (A) 

Since rp/6 < 1 we see t h a t  ], is an ~-contraction.  

t h a t  

Thus there  exists x e ~.K, such 

/ , ( ~ )  = 

o r  

(3.22) ,](Xo) = ),xo 

where Xo= t~5 and  A>~/r. I f  ] is Condensing and 

(3.23) 

we can use the same prool to obtain again an eigenvector corresponding to an 

eigenvalue ~ > (~/r. Q.E.D. 

4 . -  Krein-Rutman type theorems. 

We are now ready  to givh a non-linear version of the K r e i n - R u t m a n  the0rem,  

where the  full potent ia l  of the  homogenei ty  p rope r ty  is Used. 

Ptr 4.1. Le t / :  W •  [0, ~- c~) ~; W be compact. Assume that/(x,  O) = 0 

for every x e W .  Zet Z - ~  {(x,/l) e2~• ~ ) :  x = ] ( x , ) 0 } .  Then there is an un- 

bounded component o] Z containing (0~ 0). 

PxooF.  - Observe t ha t  H = W •  [0~ § c~) is a wedge in E •  endowed: wi th  

the norm II(x, ~)11 = max {[[xll , I),I}. Define H~ = {(x, 4) r H :  II(x, ~)]I <~} a~d set 

(4.1) aH~ = (W. x {n}) u (aW. • (0, h i ) .  

Let  C be the  connected componen t  of X which contains (0, 0). We want  to show 

t h a t  C intersects  ~H~. : 

In  fact  if this  is not  the  case t hen  we can find an  open set U c H,, = W,  x [0, n] 

such t h a t  3 U V ~ X : 0  and  C c  U[29] .  L e t  9 : H ~ - ~ [ 0 i l ]  be  a Urysohn ' s  func- 

t ion such t h a t  

o if (x, 4 ) ~ v  

(4.2) T(x, 4) ---- 1 if (x, 4) z X ~  U ,  
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Define h(x, 2) = (f(x, 9(x, 2)n), W(x, 4)n). Then h is compact and h(x, 4) -~ 0 if 

(x, 4 )e  ~Hn. Therefore the equation 

(4.3) (x, 2) = (/(x, V(x, 4)n), 9(x, 2)n) 

has a solution. 

I f  (x, 2 ) ~ U  then  ~0 (x ,A) :0 .  Thus 2 = 0 ,  and we get 

x = l ( x ,  o) = 0 .  

But  then (0, 0) e C and 90(0, 0) = 1. A contradiction. I f  (x~ 4) e U, then 

4 = 9(x, 4)n 

x = t ( x ,  2.). 

Thus (x, 2n) ~ Z and 9(x, 2n) = 1. Hence 2~ = n and 

x = t ( x ,  n ) .  

But  (x, n) e ~H, and qo(x, n) = 0. Again a contradiction. Then C intersects ~H~. 

Since this is t rue for every n it follows tha t  C is unbounded. Q.E.D. 

:For a different proof of Proposition 4.1 using degree theory see [28]. 

PROPOSTTION 4.2. -- L e t / :  W -+ W be o~-Zipsehitz with constant 19. Zet 2~ = {(x~ 2) 

e W•  + c o ) =  H:  such tha t  x = 2](x)}. Then there is a eonneeted eom2~onen$ C 

o/ Z which contains (0, O) and interseets ~H e / o r  every ~ < l ip .  

PROOF. - Observe tha t  

znH~ 

is compact. Therefore we can proceed as in the previous proposition. I t  is enough 

to observe t ha t  

h(x, 4) = (Q~(x, 4)t(x) ,  q~(x, 4)) 

is an ~-eontraction for every ~ < l iP.  Q.E.D. 

Let  /:  W - +  W be such tha t  

(4.4) l(tx) = ~](x) . 

or 2~E [0, n] and 
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Obse rve  t h a t  we can  cons ide r  f as t h e  r~diM e x t e n s i o n  of a m a p  g: ~W1-~  W,  b y  

s e t t i n g  

I /(x) = ['x][g if x ~ 0 

0 if  x ~ 0 .  

s u p v o s o  J/lll - -  sup  {tIl(x)/I: x = 1}  < + oo a n d  r e o a n  t h a t  

(4.6) r(]) = l i ra  sup  I[]"]l TM . 

L E n A  4.1. - Zet 1: W - >  W be positively homogeneous. 

HuH = 1 and 3 < r ( / )  such that 

.. tlP(u)l] (4.7) n m  sup ~ > 0 .  

JSet ~ < ~ and detine l~(x) =-1/~](x).  Then 

IIr 

is unbounded. 

PROOF. - W e  h a v e  

Assume that there exists 

1 ] (u) =~/o(u). 

Thus  

,lP(u)l, ,l/-(u)i, (~)  o 
l i /3 (u) l :=  e" - ~" " 

Since  ~/0 > 1 a n d  l i m s u p  I]ff(u)][/6" > o we ge  t t h a t  
n--++ 

{ l lr  

is u n b o u n d e d .  Q . E . D .  

LEmV~A 4.2 [2]. - Let {a,,} be an unbounded sequence o] positive numbers. 

there exists a subsequenae {a } such that ]or every i e N we have 

(4.8) am _, < a,% 

]or all m ~ > i. 

PROOF. - L e t  ml  = 1. Def ine  ms us t h e  s m a l l e s t  i n t e g e r  such  t h a t  

Then 

am ~ >1 aj 
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for every j <m2. Then define m~ > mz as the smallest integer such tha t  

for every /<m3 etc. Q.E.D. 

Let  /: W - >  W be positively homogeneous. Denote by ] the restriction of ] to 

~71 = K (3 D1. 

L E ~ i A  4.3. - .Let ] be a-Lipschi tz  with constant p, Then  ] is x -Zipschi tz  with the 

same constant. 

1)~ooF. - Obviously it is enough to show tha t  f is ~-LipsehlVZ m W, for every r. 

If  r > 1 we c~ll define 

],: ~W, -~  W 

by 

] ~ ( x )  = r . 

Since ], is a-Lipschitz with constant  p it  is enough to show tha t  

]: W~-> W 

is ~-Lipschitz with the same constant. For a proof of this fact see [21] and [9]. 

Q.E.D. 

Given ~ positively homogeneous function ]: W - >  W recall tha t  

(4.9) co(J) = lim-gup [e(]~)]~z~<e(]) . 
~ - - >  + c o  

LE~Y~A 4.4. - Let  ]: W --'~ W be posit ively homogeneous. A s s u m e  that co(J) < 1 and 

there exists llu[[ = 1 such that {H/~(u)ll} is unbounded. Then  the sequenee {v~ = 

= ]n(u)/I1/,(u)]l} admits  a convergent subsequenee. 

P~ooF.  - Let  {am= II/o(~)H}. Then  {an} is an  u n b o u n d e d  sequence  of pos i t ive  

numbers. Let  {a.~} be the sabsequence of Lemma 4.2 and let 

(4.10) ~ = {Vno} �9 

Let  m be any positive integer such ~hat  ~ ( / ~ ) =  p ~ <  1. Define 

Obviously 

An= {%: no> m}. 

~(A) = ~(A~)  
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for every m. Let  B~ 

= A~. Thus 

Take m ~. 

In  general 

= {i~-,~,(u)/lli~(u)ll: n~>  m}. Th+n B ~ c l ~ n  D~ and /=(B,,,) = 

e(A) : e(X~) <p ,~ (B~)  < p ~ e ( K , ) .  

Then e ( A ) =  e(Xm~ ) and 

~(A) < p ~ ( K j .  

(4.11) ~(A ) < p~ e (KJ  . 

Hence e ( A ) =  0 and A admits a convergent subsequence (see [25] for a similar 

result). Q.E.D. 

THE01CE~ 4.1. - Zet K be a cone and let j: K -* K be positively homogeneous and 

order preserving. Assume that 

(i) ~(1) < r(/); 

(ii) there exist ]luI[-~ 1 and (5 e (~(l), r(])] such that 

ll/~(u)l] > 0. lira sup ~, 
~ r +  + c o  

Then there exists Hx01] = 1 such that ](Xo) = #x0, ]or some # ~ [d, r(])]. 

PaooP. - Let  

(4.12) :r < @ < 

and define 

1 
(4.13) /dx) = ~ / ( x ) .  

By Lemma 4.1 {llt~<u)ll] ~s unbounded. B{oreover there exists a subsequence {hi} 

such that 

lim II/+~(u)]l--limsupHr ( l[,, ,-,u),,>0. 
i-~ +oo O n~ n~+oo ~ 

By Lomma 4.4 we can find a subsequence of 

lit ~(u)[l] 
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which converges to some vector HvI] = I. Let s > 0 and consi4er the equation 

(4.15) x = ~[]~(x) + ~]~(u)]. 

Since a(/e(A)) = (1/~)o:(](A)) <~ (o:(])/~)o:(A) -= pot(A), p < 1, there is, according to 

Proposition 4.2~ a connected branch of solutions joining (0, 0 )e  K •  [0~ -~ 00) with 

~H8 for every 1 < q < lip. 
From 

we obtain 

(4.16) 

By induction we find 

o r  

x = ~[fo(x) + ~/~(u)] 

x > ~n=tn~(U) 

x l~(u) 

/l/~(u) ll > ~n~ li/~(u) ll" 

Using the convergent subsequenee {m} we get 

~ m 

(4.17) ~mlll~(u)i I x > ~v~.  

Thus 

(~.18) ~ i1/m(u)l I x >  8v,n. 

If (@/2~)m_> 0 we reach the contradiction 

~v~  0.  

Thus @/~>1 or 2-<<~/(~ < 1. This implies the existence of ]]x~ll ----1 such that  

(4.19) x = ~ [/Q(x) + ~lo(u)]. 

Set ~----1/n and get 2~e (0, 1) such that  

1 
(4.20) x , =  ~ []~(x~)-~ n/~(u)] .  

The sequence (x.} is obviously compact. Hence there exists IlXoll -- 1 and 4o such 
that  

(4.21) Xo = ~0/~(xo). 
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This  implies  

(4.22) 

Since 

Moreover  

D 
f(xo) = ~ x o . 

Q > b we ob ta in  
L 

lira II/~(xo)[] ~/~ P < l i m  sup Ilt~[]~/~-~ r(]). Q.E.D.  

COI~OLLAI~Y 4 . 1 .  -- L e t  ]: I(_ --> K be positively homogeneous a n d  o r d e r  preserving. 
Assume that ] is an o,-eontraetion and there exists IIulI -~ 1 such that 

{[li-(u)l]} is unbounded. 

Let s : l i m s u p  II/'(u)]l ~/'. Then there exists I]xoH = 1 such that 
~--> + zo 

(4.23) ](Xo) = ~Xo 

]or some s<2<r(]) .  

P~OOP. - Since [[]~(u)l I --> + c~ we have  

lira sup ll]'*(u)]]l/~ = s > l .  
n---> + co 

H e n c e  r ( ] ) > l i m  sup ]Ip(u)[l 1/'--- s > l  > ~(]). T h e n  

l im sup ]L/~(u)l] 1 
n--+ + co S n 

and,  accor4ing to  T h e o r e m  4.1 the re  exists  []x0H-----1 such t h a t  

t(Xo) = ~Xo 

for  some ~ E Is, r(])]. Q.E.D.  

COI~OLLAI~Y ~ . 2  [ 2 5 ] .  -- .Let  ]: . K  --> . K  be positively homogeneous and order preserv- 

ing. Assume that ] is an o~-contraction and there exists ]lull = 1 such that 

is unbounded. Then there exists Ilx01] = z and ~ > 1  such that 

](xo) = ~Xo. 
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PROOF. - See Corol lary  4.1 where  it  is es tabl ished t h a t  

2 > l i m  sup [ l / ,,(u)]/,->l. 

COROLL~mY 4.3 [23]. - Let ]: K -* K be r with constant p, order preserving 

and positively homogeneous. Assume that there exists IIu]l = 1 such that 

(4.24) 

]or some n ~ N and some c > p~. 

(4.25) 

]or some ~ ~ [c"~, r(])]. 

PROOF. - Let p~ < @ < c~ d = @1/~ and define 

1 
g(x) = -~ ] (x) .  (4.26) 

Then 

1 p 
a(g(A)) = ~ ~(](A)) < ~ a(A) 

Thus  g is an g-cont rac t ion .  

]~(u) > cu 

Then there exists ][x0/l---- 1 such that 

?(Xo) = ;.Xo 

and 

Since (~ole)~-~ 0 as k -~ + ~ we m u s t  have  that 

is unbounded .  

~JC[ore preciselY 

IIgm(u)lF 
r(g) ~> lira sup d-----E--- > 1 wi th  5 = . 

~ - - >  § oo 

{frg (u)lE} 

Thus  the re  exists  Hxo]I - -  1 a n d / ~  e [(c/@) 1/', r(g)] such t h a t  

g(Xo) = ttXo. 

~ o r e o v e r  for  m = kn we ge t  

g~(u) = ~ / ~ ~  ~ u 

= q~(A) ,  q < 1 .  



~[ARI0 ~AI~TELLI: _Positive eigenveetors oj wedge maps  27 

Kence 

/(xo) = dg(Xo) = / ~  dxo = ~xo 

with c 1/~ ~< 2 < r(]). Q.E.D. 

The following example shows how crucial is the assumption 

there  exists [lu[[ = 1 such tha t  lira sup iI I/~;]~(u),~ > 0 

for some - ~ ( ] ) < @ < r ( ] ) .  

EXAMPLE 4.1. - We are looking for a non-trivial  solution of the  global (( Cauchy ~) 

problem depending on a pa ramete r  

(g$) x t ( t )  = ]~'~/X2(t) ~ -  X2(1 - -  t) , x(O) = 0 

with t e [0, 1]. 

Changing the  problem into an integral  equat ion we s tudy the  existence of an 

eigenvalue and an eigenvector of the  operator  

t 

= | V x ~ -  @ x2(1 -- S) ds .  T(x)( t )  
al  

0 

Observe tha t  T is compact,  posit ively homogeneous and sends the  cone~ K~ of non- 

negative functions into i t se l f .  1V[oreoVer if 

x<~y then  

Hence T is order preserving. 

Some calculations show tha t  

r = r(T) > 0 

Moreover 

with ~ = l /V2 .  

y(x) < T(y) .  

a . d  inf {lrz(x)i[: Jlxli = 1} = o .  

lira I [ ~ O ) l l >  o 

t t ence  there  exists # r [1/~/2, r] and IlxolI = 1 such tha t  

/'(Xo) = /~xo .  

A direct a t t emp t  at  solving ( , )  results in the discovery tha t  no non-trivial  solutions 
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are possib]e for i v a V'2 in (1 ~- V'2) and tha t  for ). = V 2  ]n (1 + V'2) there  is one 

and only one solution defined by  

x(t) ---- a(sin h[2 ]n (i H- V2) t + In (-- 1 -}- V2)] -}- 1) 

where a : x(�89 

SinGe sx(t) is a solution of ( , )  if and only if x(t) is~ we may  assume a = �89 in 

which c~se 

Notice tha t  

llxN = I. 

V~ in (i + V~) < v'~. 

t tonce the eigenvalue ~ = 1/V2 la (1 § V2) belongs to the interval  (1/V2, r]. 

We are now interested in deriving a result  similar to Theorem 4.1 for the  case 

when the  map / is a l inear operator  L. The two conditions 

(i) ~(Z) < rK(L); 

I{L~(u)]! (ii) there  exists ]lull = 1 such tha t  lim sup ~ 7  > 0 

can be weakened somehow. The following two lemmas i l lustrate this fact  and seem 

to show tha t  the greater  general i ty of the  new conditions is essentially based on 

the  p roper ty  

L(x + y) = L(x) + L(y) . 

L E M ~  4.5 [24]. - Set ~K(L) < rK(Z) and let ~ ( Z )  < ~ < r~(Z). Then there exists a 

generalized measure o/ non compactness fl such that 

~(L~(A)) < cZ(A) 

]or every A c K,  and with c < 1. 

P~ooF. - There exists m such tha t  

o r  

Define 

[~(L'~)] ~t'~< e 

~ ( L ~ )  - - -  < 1 .  ~m 

m--1 

~(A) = ~ ~(~(A)). 
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I t  is easy to check t h a t  fl is a measure  of non-compactness  and 

~(~ (A)) < e~(A) 

with c < 1, Q.E.D.  

LELgLgA 4.6. -- Let rK(L) :> O. 

that 

is unbounded. 

Then /or every ~ < r~(.5) there exists llul[ -~ 1 such 

{,~;(u)ll} 

PROOF. - I f  w e  assume  t h a t  for every  Ilxl] ---- 1 there  exists a constant  l ~  such 

t ha t  

then  for every  y we have  

IiL;(x)ll < M 

UL~(y)]l--]lyll L ~ [ ~ )  ]l <l[y]]Mv/j1~lE . 

B y  the Uni form Boundedness  Pr inciple  there  exists  an  open set  V c K  and  a 

constant  M such tha t  

for every  x e V and  every  n. 

Le t  Xoe V and consider the open neighborhood of the  origin in K 

t9 = {w ~ K :  w = Xo- -  x f o r  s o m e  x e V } .  

We then  have  r > 0  such t h a t  [[w]l ---- r, w e K i m p l i e s  w e ~ .  Thus 

II~(w)I1 < It~;(x0)/1 + ft~(x)lj < 2 M .  

Therefore 

2 M  

IIL;lI.< r 

But  [[L~II~= 1/~-llL~il ~ and  IIL~II~"= 1/~IIL'II~ ~. Since 

lim llLi/'II ~ =  r.(L) 
n - - ~  + c o  
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we see thu t  

lim IIL~II~/~ > I .  

This implies tha t  {I[L~II} is unbounded.  Therefore there  exists [lull----1 such tha t  

is unbounded.  Q.E.D. 

T~EOnE~ 4.2 [24]. -- Let L:  K -+ K be such that 

(i) ~ox(L) < rK(L). 

Then  there exists [Ix]l = 1 such that 

(4.27) Z x  = r ~ ( L ) x .  

PI~ooF. - Select @~ ~ rK(L) - - 1 / n .  Then by  Lemma 4.5 and 4.6 JL. 

the assumptions of Corollary 4.1. 

(4.28) L~(x~) -~ s~x~ 

where s . > l .  Hence  

with 

Now consider the set 

For  every  x~e A we have 

~nd~ after  m steps, we obtain 

Choose m so tha t  

--~ Lq. satisfies 

Thus there  exists tlx~[l = 1 such tha t  

@n < @~s. < r~(L).  

A = {x~: Lx~ = e . s . x . } .  

L ( L x . )  = (Q~s.)~x. 

1 
x ~ -  (o~s~) L~(x~) . 

[a(Lm)] 1/~ < r~ (L) .  
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T h e n  for n~>no we h~ve  

or 

Define A~0 = {x, e A : n/> no}. 

a n d  A,,o is compact .  

[ ~ ( L ~ ) ] ' / "  < ~o~, 

~(L ~) < e : .  

Obvious ly  

Th s t h e r e  exist  ilxoil = s u c h  

Lxo-~  r~:(L)xo. Q.E.D.  
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