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Positive feedback of G1 cyclins ensures
coherent cell cycle entry
Jan M. Skotheim1, Stefano Di Talia1, Eric D. Siggia1 & Frederick R. Cross2

In budding yeast, Saccharomyces cerevisiae, the Start checkpoint integrates multiple internal and external signals into an
all-or-none decision to enter the cell cycle. Here we show that Start behaves like a switch due to systems-level feedback in
the regulatory network. In contrast to current models proposing a linear cascade of Start activation, transcriptional positive
feedback of the G1 cyclins Cln1 and Cln2 induces the near-simultaneous expression of the ,200-gene G1/S regulon. Nuclear
Cln2 drives coherent regulon expression, whereas cytoplasmic Cln2 drives efficient budding. Cells with the CLN1 and CLN2
genes deleted frequently arrest as unbudded cells, incurring a large fluctuation-induced fitness penalty due to both the lack
of cytoplasmic Cln2 and insufficient G1/S regulon expression. Thus, positive-feedback-amplified expression of Cln1 and Cln2
simultaneously drives robust budding and rapid, coherent regulon expression. A similar G1/S regulatory network in
mammalian cells, comprised of non-orthologous genes, suggests either conservation of regulatory architecture or
convergent evolution.

Positive feedback in genetic control networks can ensure that cells do
not slip back and forth between either cell cycle phases or devel-
opmental fates. For example, commitment to sporulation in budding
yeast is driven by transcriptional positive feedback of the meiotic
inducer IME1 (refs 1–3). In Xenopus laevis, positive feedback under-
lies the all-or-none characteristics of oocyte maturation4,5 and
mitotic entry6,7, suggesting the frequent use of positive feedback to
regulate cellular transitions.

Absent from this list of examples is the well-studied Start check-
point controlling cell cycle commitment in budding yeast. Nutrient
limitation and pheromone exposure arrest cells before DNA replica-
tion, whereas size control extends G1 in small daughter cells8–11.
Beyond Start, cells proceed through division almost independently
of size and environment9. Previous experiments suggested that Start
represents a feedback-free cascade of events12 (see schematic in
Fig. 1a; omitting red arrows). The transition is initiated by the G1
cyclin Cln3 (refs 13–15), which in complex with Cdc28 activates the
transcription of about 200 genes16 by phosphorylating promoter-
bound protein complexes that include the transcription factors
SBF and MBF17 and the transcriptional inhibitor Whi5 (refs 18 and
19). Phosphorylation and inactivation of Whi5 is rate-limiting, and
phosphorylated Whi5 rapidly exits the nucleus. The G1/S regulon,
which includes two additional G1 cyclins CLN1 and CLN2, contri-
butes to the activation of B-type cyclins, DNA replication, spindle
pole body duplication and bud emergence. Mitotic B-type cyclins
then inactivate SBF20 and, with NRM1, inactivate MBF21, thus turn-
ing off the G1/S regulon.

Any one of the three G1 cyclins suffices to activate the regulon,
suggesting that there is potential for transcriptional positive feedback
of CLN1 and CLN2 on their own expression22,23. However, analysis of
synchronized populations led to the conclusion that positive feed-
back, defined as Cln1 and Cln2 advancing transcription from the
CLN2 promoter, did not occur in wild type; instead, Cln3 was the
sole activator of firing14,15.

In sharp contrast to the prevailing linear model, we demonstrate
that Cln1- and Cln2-dependent positive feedback is central to Start
control. We use single-cell time-lapse fluorescent microscopy to

show that Cln1 and Cln2 advance timing and reduce variability in
the activation of CLN2, and of the entire G1/S regulon. We further
explore the mechanisms and functional significance of this control.

Positive feedback of G1 cyclins

Positive feedback of Cln1 and Cln2 on their own transcription should
yield faster accumulation of CLN2 messenger RNA in wild-type cells
than in cln1D cln2D cells. Although Cln1- and Cln2-dependent positive
feedback was clearly demonstrated in the absence of Cln3 (refs 22–24),
this does not indicate that wild-type cells function similarly. In synchro-
nized populations, near-identical timing of onset of CLN2 promoter
activity was observed in the presence or absence of CLN1 and CLN2,
leading to the linear model14,15. Here we revisit this issue using single-cell
assays. We used unstable green fluorescent protein (GFP) driven by the
CLN2 promoter (CLN2pr-GFP) as a reporter for CLN2 transcrip-
tion24,25 (see Methods and Supplementary Figs 1 and 2). Birth time
was determined using the disappearance of the Myo1–GFP myosin
ring11, a marker for cytokinesis that did not influence the CLN2pr-
GFP signal. The timing of CLN2 promoter induction in individual cells
is sharp and easily quantified computationally (see Methods, Fig. 1b–e
and Supplementary Figs 1 and 2). Because cln1D cln2D cells are larger
than wild type, we integrated MET3pr-CLN2 in both strains to con-
ditionally express Cln2 before time-lapse imaging so that initial sizes
were comparable14 (see Methods and Supplementary Figs 3 and 12 for
controls). Thus, we can assay for positive feedback by comparing the
time interval from birth to transcriptional activation of CLN2pr-GFP
transcription in the first cell cycle after MET3pr-CLN2 is turned off in
wild-type and cln1D cln2D cells.

Positive feedback should advance CLN2 promoter activation in
wild-type compared to cln1D cln2D cells14,15. In daughter cells, the
average time between birth and CLN2 promoter activation (ton;
Fig. 1d–f) was much shorter for wild type (41 min) than for
cln1D cln2D (83 min). Furthermore, CLN2pr-GFP activation was
much less variable for wild-type than for cln1D cln2D cells (standard
deviation of 21 min versus 47 min). CLN2pr-GFP transcription was
Cln3-dependent in cln1D cln2D cells because cln1D cln2D cln3D cells
failed to induce CLN2pr-GFP. Qualitatively similar results were
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obtained in mother cells and also in cells growing in glycerol and
ethanol instead of glucose. In all cases, the interval from birth to
CLN2pr-GFP activation was smaller and less variable in wild type
than in cln1D cln2D, indicating strong positive feedback of Cln1
and Cln2 on their own transcription independent of nutrient condi-
tions or cell type (Supplementary Table 3; P , 1024).

We explored the potential redundancy of CLN1 and CLN2 in
activating the feedback loop. Although budding is slightly delayed
in cln1DCLN2 and CLN1 cln2D cells compared to wild type, the
timing of CLN2 promoter activation is similar (Supplementary

Table 3), indicating that CLN1 and CLN2 form redundant conduits
for positive feedback.

Our data can be reconciled with previous work14,15 arguing against
positive feedback because measurements averaged over a population
of cells necessarily lose information. In addition to delayed onset of
transcription, cln1D cln2D cells express a more intense and prolonged
CLN2pr-GFP signal. The larger peaks are probably due to a delay in
the Clb2-mediated repression of SBF/MBF14,15,20,21 (Fig. 1d, e),
because the average time between induction of CLN2 and CLB2
was much larger in cln1D cln2D strains (measured using a CLB2pr-
GFP cassette; Fig. 1f and Supplementary Fig. 13), and Clb2 accumula-
tion is known to be delayed in cln1D cln2D strains14.

Therefore, imperfect synchrony11 allows the high and lengthened
transcriptional response from the first cln1D cln2D cells firing the
CLN2 promoter to mask the delayed response of the majority. This
effect is reconstituted in Fig. 1g by averaging our measured single-cell
data, and explains why positive feedback was not detected in mea-
surements of mRNA levels in populations of synchronized daughter
cells14,15.

Coherent regulon expression

Once a cell senses the signal to initiate the cell cycle, it must actuate all
the machinery effecting the cell cycle transition. At Start, this requires
activation of many SBF- and MBF-regulated genes16 encoding pro-
teins involved in DNA replication and bud-site formation. However,
noise in protein expression in individual cells26 could interfere with
expression of this large regulon. In particular, the delayed and vari-
able induction of the CLN2 promoter in cln1D cln2D cells suggested
that G1/S regulon expression might be severely disrupted in these
feedback-free cells.

To investigate regulon expression in individual cells, we compared
induction of CLN2pr-GFP and RAD27-mCherry, another member of
the regulon16 (Fig. 2a–d and Supplementary Figs 7 and 8). RAD27
expression is Cln-dependent (Supplementary Fig. 11). CLN2 and
RAD27 are synchronously induced in wild type, whereas there is a
long and variable period of time between the inductions of the two
genes in the cln1D cln2Dmutant (Fig. 2e, f). Out of the 86 cln1D cln2D
cells studied, 11 failed to produce a detectable increase in Rad27–
mCherry and 4 failed to produce a detectable increase of either mar-
ker. We performed identical experiments on strains containing
CLN2pr-GFP and RFA1-mCherry, another regulon member16, and
obtained similar results (Fig. 2g, h). Our conclusions are valid even
after excluding outlying points (P , 0.01). Thus, Cln1- and Cln2-
dependent positive feedback probably promotes coherent and effi-
cient transcription across the SBF/MBF regulon.

Further comparison of these three promoters in cln1D cln2D cells
reveals that CLN2 is almost always the first of the three to be acti-
vated, whereas the times to subsequent RFA1pr and RAD27pr induc-
tions are significantly different from each other (P 5 0.004;
Supplementary Table 3). This suggests that the CLN2 promoter is
the easiest for Cln3 to induce, followed by the RFA1 promoter and
then the RAD27 promoter. We note that two MBF targets27–29,
RAD27 and RFA1, show different induction timing.

To address whether the lack of coherence in cln1D cln2D cells simply
comes from low G1 cyclin levels, we analysed cln1D cln2D 63CLN3
cells (containing an extra five tandem integrated copies of CLN3).
Although the expression of both the CLN2 and RAD27 promoters
was significantly accelerated by extra CLN3, these cells still showed
strongly incoherent expression compared to wild type (Fig. 2i).

To directly short-circuit the proposed positive feedback loop, we
examined gene expression in cln1D cln2D cln3D MET3pr-CLN2 cells
on methionine-free medium (MET3pr-CLN2 on). Although induc-
tion of CLN2pr-GFP and RAD27-mCherry was strongly accelerated
by constitutive CLN2 expression, incoherent expression compared to
wild type was still observed (Fig. 2j). Notably, this incoherence was
due to RAD27-mCherry induction before CLN2pr-GFP, compared to
nearly simultaneous expression in wild type (28 6 2 min compared
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Figure 1 | Positive feedback drives the Start of the budding yeast cell cycle.
a, Schematic of the Start transition; new interactions demonstrated in this
paper are shown in red. b, c, Combined phase and fluorescence images for
CLN2pr-GFP MYO1-GFP MET3pr-CLN2 cells, either wild type (WT; b) or
cln1D cln2D (c), grown without methionine (inducing) and plated on
methionine (repressing) to normalize initial conditions6 (Supplementary
Fig. 3). Green arrows indicate approximate peak GFP expression from
CLN2pr-GFP. d, e, Single-cell fluorescence intensity (in arbitrary units, a.u.)
for four characteristic cells of each genotype; cells are synchronized at birth
and marked by the disappearance of a Myo1–GFP ring at the bud-neck
(purple arrow in b). The time from birth to CLN2 promoter activation (as
defined in Methods), ton, for each individual cell is indicated by length of the
corresponding line. f, Cumulative distribution of CLN2pr-GFP (solid lines)
induction indicates that Cln1- and Cln2-dependent positive feedback
contributes substantially to the early expression of CLN2; dashed lines
indicate induction of CLB2pr-GFP marking the onset of negative regulation
of CLN2. g, Average fluorescence intensity for 87 wild-type and 83
cln1D cln2D daughter cells aligned at birth simulates a population study,
which would obscure the effect of positive feedback. The results shown are
for daughter cells in glucose; changes in cell type or nutrient conditions do
not qualitatively influence the results (Supplementary Table 3). Error bars,
s.e.m.
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to 2 6 1 min (mean 6 s.e.m.); P , 1023), perhaps owing to differ-
ential loading of SBF (CLN2) and MBF (RAD27) regulated
genes21,27–30.

Overall, these experiments suggest that the positive feedback archi-
tecture is a particularly effective way to promote coherent regulon
expression.

Stochastic cell cycle arrest

In addition to showing incoherent gene expression, 26% of
cln1D cln2D cells fail to bud (Fig. 3a). We hypothesized that incoher-
ent gene expression has a role in this sporadic unbudded arrest.
Twenty out of 143 assayed cln1D cln2D cells were ‘strongly incoher-
ent’: they failed to transcribe one or both of their two transcriptional
markers (Fig. 2f, h); 90% of the strongly incoherent cells arrested
unbudded, compared to 26% of all cln1D cln2D cells (P , 0.003;
Fig. 3a). Thus, a lack of coherence in the SBF/MBF regulon is a strong
predictor of unbudded arrest within the cln1D cln2D population.
6xCLN3 reduced unbudded arrest in cln1D cln2D cells, perhaps
because of accelerated regulon expression (Fig. 2i). Thus, unbudded
arrest in cln1D cln2D cells may result from highly delayed expression
of some regulon members.
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We hypothesized that in strongly incoherent cells, activation of only
some regulon members might lead to activation of mitotic Clbs, which
would then inactivate further SBF/MBF-regulated expression20 (Fig. 1a
and Supplementary Fig. 9). If the genes required for budding in the
absence of CLN1 and CLN2, such as PCL1 and PCL2 (ref. 31), had not
yet been expressed by the time of Clb activation, unbudded arrest might
ensue. Indeed, 20 out of 20 arrested cln1D cln2D cells contained large
amounts of nuclear Clb2–yellow fluorescent protein (YFP) (Fig. 3b, c).

To test the role of transcription in unbudded arrest further, we
deleted the rate-limiting SBF inhibitor CLB2 in a MET3pr-CLN2
cln1D cln2D strain and observed a decrease in unbudded arrest from
26% to 13% (Fig. 3d). Additionally, we integrated unphosphorylata-
ble Cdh1 under galactose control (GALL-HA3-CDH1-m11) into a
cln1D cln2D MET3pr-CLN2 strain to induce rapid degradation of all
mitotic cyclins on galactose induction32. This reduced the unbudded
arrested fraction to 4% in the first cell cycle after galactose induction
(Fig. 3d). Because the timing of CLB2pr-GFP induction in cln1D cln2D
cells was similar whether they arrested or not (P 5 0.91), the
unbudded arrest was not due to unusually early CLB2 induction.

Thus, mitotic cyclins promote unbudded arrest specifically in
highly incoherent cln1D cln2D cells, probably owing to insufficient
regulon expression before Clb-dependent SBF/MBF inactivation.

Cln1 and Cln2 inactivate the transcriptional inhibitor WHI5

We wanted to determine if Cln1- and Cln2-dependent positive feed-
back operated through Whi5, a transcriptional inhibitor of the G1/S
regulon18,19. Whi5 inactivation is rate-limiting for CLN2 transcrip-
tion and occurs by means of Cln-dependent phosphorylation, which
leads to nuclear exclusion19.

First, we developed a quantitative assay for nuclear levels of Whi5–
GFP by marking the nucleus with HTB2-mCherry (histone H2B) and
measuring the difference between nuclear and cytoplasmic GFP
fluorescence intensity (Fig. 4a–c). Whi5 entered the nucleus rapidly
in both wild-type and cln1D cln2D cells. In wild-type cells, Whi5 also
exited very rapidly; in cln1D cln2D cells, Whi5 exited much more
slowly (Fig. 4d–g, i) consistent with biochemical data showing that
Whi5 remains on the CLN2 promoter longer in cln1D cln2D than in
wild-type cells18. Because Whi5–GFP remained nuclear in
cln1D cln2D cln3D cells (Fig. 4h), the slow Whi5 exit in cln1D cln2D
cells is Cln3-dependent (this also excludes photobleaching artefacts).
Thus, Cln3 initiates the slow exit of Whi5 from the nucleus, whereas
Cln1 and Cln2 rapidly remove the remainder.

Because Whi5 exit and CLN2 induction are tightly correlated in
wild-type cells (Fig. 4j), translocation occurs shortly after Whi5 inac-
tivation and coincides with activation of transcriptional positive
feedback. CLN2 promoter activation and Whi5 exit were less tightly
correlated in cln1D cln2D cells consistent with the gradual exit of
Whi5 (Fig. 4k and Supplementary Figs 5 and 6).

To examine the role of Whi5 phosphorylation in positive feedback
and regulon coherence, we used a WHI56A allele19 lacking 6 of the 12
Cln-dependent phosphorylation sites. Although Whi56A was reported
to be constitutively nuclear19, we observed significant, but slower and
incomplete, shuttling of Whi56A–GFP out of the nucleus at Start and
again at nuclear division (10 out of 10 cells; Fig. 4l). CLN2 and RAD27
induction are less coherent in WHI56A than in wild type (Fig. 4m; but
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more coherent than cln1D cln2D), correlating with the poor nuclear
transport of Whi56A. Thus, interfering with the positive feedback loop
by reducing the ability of Cln proteins to phosphorylate Whi5 reduces
regulon coherence, even with all three G1 cyclins present.

The addition of WHI56A to cln1D cln2D cells increased the fre-
quency of unbudded arrest from 26% to 51%, consistent with the
idea that unbudded arrest is a consequence of incoherent regulon
expression in cln1D cln2D cells.

Overall, these results indicate that Whi5 is a Cln1 and Cln2 sub-
strate in wild-type cells, and that this phosphorylation contributes to
positive feedback. To determine whether Whi5 was the only such
substrate, we compared timing of CLN2 promoter activation for
whi5D and cln1D cln2Dwhi5D cells (Supplementary Fig. 14 and
Supplementary Table 3). Deletion of WHI5 advances CLN2 pro-
moter induction in both wild-type and cln1D cln2D cells. Because
cln1D cln2D whi5D cells delayed CLN2pr induction relative to
CLN1 CLN2 whi5D cells, Cln1 and Cln2 probably act through
Whi5-dependent and -independent mechanisms to promote positive
feedback. Previous results indicated a Whi5-independent Cln3
requirement for SBF activation19, possibly acting through Swi6 (refs
19 and 33); a similar mechanism may be used by Cln1 and Cln2.

Separable Cln2 functions

Cln1 and Cln2 are pleiotropic effectors of Start that have important
nuclear and cytoplasmic functions34,35, complicating the inter-
pretation of cln1D cln2D phenotypes. Therefore, we tested forced-
localization CLN2 alleles, expressed from the wild-type CLN2
promoter, that restrict Cln2 to either the nucleus (CLN2-NLS) or
the cytoplasm (CLN2-NES)34. cln1D cln2D CLN2-NLS cells show
coherent regulon expression (P 5 0.45 compared to wild type), but
cln1D cln2D CLN2-NES cells are highly incoherent compared to wild

type (P , 1027); this indicates that coherent gene expression is prim-
arily a nuclear function of CLN2 (Fig. 5a, b (compare to Fig. 2), and
Supplementary Table 3).

Consistent with a role of cytoplasmic Cln2 in budding34,35, integ-
ration of CLN2-NES into cln1D cln2D cells strongly reduces arrest (to
3%) in spite of less coherent gene expression. Furthermore, exogenous
expression of CLN2 drives cell cycle progression in previously blocked
cln1D cln2D cells (Supplementary Fig. 10) and restores viability of
mbp1D swi4D cells, which lack SBF and MBF and have very low regulon
expression36,37. The localization mutants also have different efficacy for
relieving unbudded arrest. Integration of CLN2-NLS into cln1D cln2D
cells, providing coherent gene expression, led to a partial but significant
reduction of unbudded arrest (from 26% to 19%; P 5 0.04).

Thus, cell morphogenesis and budding can be driven by two par-
tially redundant pathways: by cytoplasmic Cln1 and Cln2 (refs 34 and
38), or by other genes in the G1/S regulon such as PCL1 and PCL2
(ref. 31; Fig. 5c). Having Cln1 and Cln2 coherently activate the G1/S
regulon and directly drive bud emergence provides a compact solu-
tion to ensure efficient and timely morphogenesis and G1/S regulon
expression, before subsequent Clb activation.

Discussion

The regulatory architecture of the G1/S regulon provides an effective
design to promote coordinated activation. The promoters are pre-
loaded during G1 with a complex of factors that are subsequently
rapidly activated by phosphorylation17,24,30, removing a potentially
rate-limiting step. Furthermore, the upstream cyclin Cln3 is intrins-
ically more capable of triggering the CLN2 promoter compared to
two other randomly selected promoters from the regulon (RFA1 or
RAD27; Fig. 2e–h). The high sensitivity of CLN1 and CLN2 to Cln3
means that positive feedback from the initial burst of Cln1 and Cln2
will ensure that all other genes fire together. Indeed, in our experi-
ments in wild-type cells, the genes are expressed too synchronously to
evaluate which comes first. We find it probable that positive feedback
will be a recurring motif in genetic control networks responsible for
the coherent temporal coordination of multiple downstream events.

The sharpness of the Start switch, defined by the rapid exclusion of
the transcriptional inhibitor Whi5 and the coherent expression of the
G1/S regulon, is principally due to CLN1- and CLN2-dependent
positive feedback (Fig. 5c, red lines) rather than a linear Cln3–
Whi5–SBF pathway14,15,18,19. Our data are inconsistent with the sharp-
ness of Start being primarily due to nonlinear increases in CLN3
translation39 or nuclear translocation40, or cooperative phosphoryla-
tion of Whi5 by Cln3 (ref. 19), because these mechanisms all predict a
sharp switch in feedback-free cln1D cln2D cells.

In budding yeast, Start is a fundamental point of commitment at
which physiological inputs such as nutrients, mating factor, size and cell
type are integrated to produce an all-or-none decision. We show here
that positive feedback provides robust switch-like cell cycle entry. Our
single-cell data suggest that the point of commitment to the cell cycle,
Start, is a very brief interval coinciding with the initiation of positive
feedback and Whi5 exclusion. Subsequent Cln-dependent events, such
as Sic1 phosphorylation and degradation41 leading to DNA replication,
could then be viewed as dependent on, rather than part of, Start.

This work also provides a molecular basis for understanding the
modular structure of G1 (ref. 11). Two temporally uncorrelated pro-
cesses in G1 are separated by the molecular event of Whi5 inactiva-
tion and nuclear exit. The upstream module is responsible for cell size
control, whereas the downstream size-independent module actuates
cell cycle progression11. Here, we showed that rapid Whi5 exit coin-
cided with initiation of Cln1- and Cln2-dependent positive feedback.
Once feedback is initiated, the rapidly accumulating Cln1 and Cln2
probably dominate cellular Cln-kinase activity, and Cln3, the rate-
limiting upstream activator, is rendered unimportant. In general, we
expect modularity, best shown by single-cell analysis, to be a sig-
nature of feedback-driven cellular control networks.
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Figure 5 | Function of nuclear Cln2 and a model for Start regulation by
positive feedback. a, b, Comparison of cln1D cln2D cells with either a
nuclear localized (a) or a nuclear excluded (b) CLN2 allele suggests that
nuclear Cln2 is necessary and sufficient for regulon coherence. Strains
contained CLN2pr-GFP and RAD27-mCherry. c, Model for regulon
activation and bud emergence; red lines indicate pathways generating
positive feedback.
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Our systems-level analysis of Start provides a template for further
studies of other checkpoints in yeasts or the G1/S transition in
mammals. The utility of feedback at Start leads us to expect similar
regulatory architecture across eukaryotes, even if the enabling genes
are not homologous.

METHODS SUMMARY
Strain and plasmid constructions. Standard methods were used throughout. All

strains are W303-congenic.

Time-lapse microscopy. Preparation of cells for time-lapse microscopy was per-

formed as previously described24. We integrated MET3pr-CLN2 to conditionally

express Cln2 (ref. 14). By pre-growing cells without methionine before plating on

media containing methionine (MET3pr-CLN2 off), we were able to begin our

time-lapse imaging experiments with similarly sized wild-type and cln1D cln2D
cells. We imaged the first Start in cells that were budded at the time of transfer and

that divided at least 30 min after methionine addition, to allow degradation of

Cln2 (refs 13 and 42) synthesized before MET3 promoter turn-off.

Image analysis. Automated image segmentation and fluorescence quantifica-

tion of yeast grown under time-lapse conditions were performed as previously

described11,24. We added a function to previously described custom software24 to

identify nuclei labelled with Htb2–mCherry (histone H2B).

Data analysis. Fluorescence time series were extracted from movies as previously

described24. Time series were fit using smoothing splines (Matlab) with a

smoothing parameter of 0.001. We defined the onset of transcription for a

G1/S fluorescent reporter by the maximum in the second derivative that fell

between birth and budding (scored separately), which accurately locates rate

changes in spite of noisy data and slow changes in the background fluorescence

(Supplementary Figs 3 and 4).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Strain and plasmid constructions. Standard methods were used throughout. All

strains are W303-congenic. In synchronized wild-type cells, GFP mRNA from

the CLN2 promoter and CLN2 mRNA follow similar kinetics, and accumulation

of cellular fluorescence follows with a slight delay24. WHI56A and WHI56A-GFP

strains with modified WHI5 at the endogenous locus were a gift from M. Tyers.

Plasmids for introduction of CLN2-NES and CLN2-NLS under control of the

CLN2 promoter were obtained from B. Futcher, and integrated at the ura3 locus

in a cln1D cln2D background. Histone H2B (HTB2) was carboxy-terminally

tagged with mCherry using PCR-mediated tagging with the template plasmid
pKT355 (ref. 43). RAD27 and RFA1 were tagged similarly. All other alleles were

from laboratory stocks described previously.

Time-lapse microscopy. Preparation of cells for time-lapse microscopy was

performed as previously described24. Because mutant cells are larger than wild

type, we integrated MET3pr-CLN2 to conditionally express Cln2 (ref. 14). On

media lacking methionine (MET3pr-CLN2 on), cells bud and divide at compar-

able sizes (Supplementary Fig. 3). By pre-growing cells without methionine

before plating on media containing methionine (MET3pr-CLN2 off), we were

able to begin our time-lapse imaging experiments with similarly sized wild-type

and cln1D cln2D cells. We imaged the first Start in cells that were budded at the

time of transfer and that divided at least 30 min after methionine addition, to

allow degradation of Cln2 (refs 13 and 42) that was synthesized before MET3

promoter turn-off. In brief, growth of microcolonies was observed with fluor-

escence time-lapse microscopy at 30 uC using a Leica DMIRE2 inverted micro-

scope with a Ludl motorized XY stage. Images were acquired every 3 min for cells

grown in glucose and every 6 min for cells grown in glycerol/ethanol with a

Hamamatsu Orca-ER camera. Custom Visual Basic software integrated with

ImagePro Plus was used to automate image acquisition and microscope control.
Image analysis. Automated image segmentation and fluorescence quantifica-

tion of yeast grown under time-lapse conditions were performed as previously

described24. Budding was scored visually, and cell birth was scored by the dis-

appearance of Myo1–GFP at the bud neck, generally with single-frame accuracy.

Background was measured as the average fluorescence of unlabelled cells and

subtracted from the measured pixel intensities. We added a function to prev-

iously described custom software24 to identify nuclei labelled with

Htb2–mCherry (histone H2B). The red signal was smoothed, disconnected frag-

ments were eliminated and the cells with nuclei that were too small, dim or oddly

shaped (area versus minimally enclosed rectangle) were eliminated. After back-

ground subtraction, the nucleus was defined to be where the fluorescence was

greater than 70% of maximum, which controls for cell variability and vertical

movement of the nucleus. The nuclear Whi5–GFP signal was the difference

between the average nuclear and cytosolic intensities.

Data analysis. P values using appropriate tests yielded P , 0.001 for all compar-

isons in the text, except where noted. Fluorescence time series were extracted

from movies as previously described24. Time series were fit using smoothing

splines (Matlab) with a smoothing parameter of 0.001. We defined the onset
of transcription for a G1/S fluorescent reporter by the maximum in the second

derivative that fell between birth and budding (scored separately). This method

was chosen because it accurately locates rate changes in spite of noisy data and

slow changes in the background fluorescence. The onset time was nearly

unchanged over a range of 103 in smoothing parameter (Supplementary Figs 3

and 4).
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