POSITIVE FUNCTIONS ON C*-ALGEBRAS
W. FORREST STINESPRING

1. Introduction. Let X be any set, let S be a Boolean o-algebra of
subsets of X, and let F be a function from § to non-negative opera-
tors on a Hilbert space 3¢ such that F(X)=1 and F is countably-
additive in the weak operator topology. Neumark [2] has shown that
there exists a Hilbert space K of which 3C is a subspace and a spectral
measure E defined on § such that F(S)P=PE(S)P for all S in §,
where P is projection of K on 3C. Let us rephrase this situation so
that we speak of algebras rather than Boolean algebras and linear
functions rather than measures. Thus, we consider, instead of the
Boolean o-algebra S, the C*-algebra A of all bounded functions on
X which are measurable with respect to S. A C*-algebra is defined
as a complex Banach algebra with an involution x—x* such that
||2x*|| =||«]|? for all x in the algebra. The measure F is supplanted
by the linear function u on <4

wn) = [ semare), fEA,

where the integral is to be taken in the weak sense. The theorem now
asserts that u(f)P = Pp(f)P, where

o) = [ 1), red

In the original formulation, E was an improvement over F because E
was a spectral measure; in the reformulation, p is an improvement
over u since p is a *-homomorphism. When the situation is phrased
in this manner, the question naturally occurs: “Is it essential that the
algebra <4 be commutative?” The present paper is devoted to a dis-
cussion of this point.

2. The main theorem. If <4 and B are C*-algebras and u is a linear
function from 4 to B, we shall say that u is positive if u(4) =0 when-
ever A €4 and 4 0. The algebra of #Xn matrices with entries in
oA is also a C*-algebra, which we shall denote by 4™, By applying u
to each entry of an element of «4™, we obtain an element of B™;
this linear function from 4™ to B™ will be denoted by u™. We shall
say that p is completely positive if u™ is positive for each positive
integer n.

Received by the editors March 29, 1954.
211

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



212 W. F. STINESPRING [April

THEOREM 1. Let oA be a C*-algebra with a unit, let 3¢ be a Hilbert
space, and let u be a linear function from <A to operators on 3C. Then a
necessary and sufficient condition that u have the form

w(4) = V*p(4)V forall A € A,

where V is a bounded linear transformation from 3C to a Hilbert space
K and p is a *-representation of <A into operators on K, is that p be
completely positive.

PROOF OF NECESSITY. Suppose that u(4) =V*p(4) V. Let M =(4.;)
be a non-negative matrix in «4™, Then u™ (M) is an operator on
the direct sum of JC with itself » times. What we have to check is that

Z (u(Aip)xj, 2) 2 0

whenever x;, -+ - -, x, are vectors in 3C. Since p is a *-representation,
the matrix (o(4:;)) is a non-negative operator on K& - - - @K ; and
therefore,

> (w(di)xs, %) = 2 (0(4i))Vj, Vi) 2 0.

i Y]
PROOF OF SUFFICIENCY. Suppose that u is completely positive.

Consider the vector space «4®3¢, the algebraic tensor product of <4
and 3¢. For = Y A;®x; and n=D_; B;®y; in A ®3C we define

%*
(Ev 7’) = E (“(BiAi)x"v yi)'
i
Since p was assumed to be completely positive, it follows that

*
(&8 = 2 (w34 %, %5) Z 0.
5.
Hence (- , ) is a positive Hermitian bilinear form. There is a natural
mapping p’ from <A to linear transformations on <4 ®3C given by

p'(4) Z B;® y; = Z (4B:) ® y..

We shall show that for all 4 in <4 and £ in A ®3C

(1) (0'(4)%, p'(A)8) < 4], 9.
If (1) were not universally true, we could find 4 in <4 and
= Z B; ® x5

in A® 3¢ such that (£, £) <1 and “A” <1, but (p’(4)%, p'(4)E) > 1.
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Then (p'(A*A4)%, £) >1, which implies, by the Schwarz inequality,
that (p’(A*4)E, p’(A*A4)E) > 1. By continuing in this manner, we find
that

('([4*4]H)E 5 > 1 fork=1,2---.

Since u is positive and —||C||[1<C<||C||1 whenever C is a self-
adjoint element of </, it follows that — || C||u(1) Su(C) é” C”/.c(l) and
hence that ||u(C)|| =||C]||lu(1)||; this inequality shows that u is uni-
formly continuous on the self-adjoint elements of <4, and it is easy to
see from this that u must be uniformly continuous on all of <4. The
uniform continuity of u together with the fact that ||4|| <1 shows
that

('([4*41%)¢ ) = X (u(Bj[4*4]*B)=, =)

converges to 0. This contradiction proves (1).

Let N be the set of all £ in <4/®3C such that (§, £) =0. By the
Schwarz inequality, N is a linear manifold and by (1), N is invariant
under p’(cA). Therefore, the quotient space <4 ®3¢/N is a pre-Hilbert
space, and each 4 in <4 naturally induces a bounded operator on the
completion K of 4/ ®3¢/N. Let

Ve=1Q® «+N for all x € 3¢C.

Then ” Vx”2§ (#(1)x, x), so that V is a bounded linear transformation
from 3¢ to K. Now

(V*p(A)Vx, y) = (p(A) V2, Vy) = (p'(4)1 @ 1, 1 ® y)
= (A Rzx,1® y) = (I"(A)x: y)

for all x and y in 3¢, and therefore u(4) = V*p(4)V.

3. Remarks. The operator p(1) is a projection. We can take p(1)
to be 1, for we can replace V by p(1)V and then replace the space
K by the subspace p(1)K. Assuming that this has been done, we have
u(1)=V*V, so thatif u(1) =1, then V is an isometry. Since an isom-
etry can be considered as an embedding, the Neumark theorem fol-
lows from Theorem 1, provided we can show that when <4 is commu-
tative, positivity of u implies complete positivity. This fact will be
proved in the next section.

It might be thought possibly that positivity always implies com-
plete positivity. We give a counter-example to show that this is not
the case. Let <4 be the algebra of # X7 matrices with complex entries.
We denote by e;; the matrix with 1 in the sth row and jth column and
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with zeros elsewhere. The e;;'s are a basis for the vector space A.
We define a linear function u from <4 to <4 by specifying the values
of u on this basis: u(e;;) is to be a matrix whose (r, s)th entry is
(r—7)(s—1). Now u is positive; for let 4 =(a;;) 20 be an » X7 matrix
and let

X1

Xn
be any vector. Then
(w()z, 2) = 20 aiir — (s — D),

€,4.re

=X 0i:‘<2('—j)xr>(2(s— i)a‘c.) =0

7 r s

since 4 = 0.

On the other hand, u is not completely positive, for we shall show that
p™ is not positive, # being as above. Let E be the element of <A™
whose (Z, j)th entry is the matrix e;;. It is easily seen that E=0. But
w™(E) is not 20, for
2 (== Db =2 (i~ )G~ i) <O
1,5.7,8 t,7

4. Conditions for complete positivity.

THEOREM 2. If <A is a W*-algebra of finite type (see [1)), then the
center-valued trace t is completely positive.

ProoF. Suppose M =(4;;) is a non-negative matrix in ¢/™ and
suppose €>0. It is shown in [1] that there exist a finite number

Uy, - - -, U, of unitary operators in <4 and non-negative numbers
oy, -+, o with Zk o =1 such that
HA:;) — 3 axUrdAuUsl < e fori,j=1,-++,n
k
But then if x4, - - -, x, are any vectors,

Y Ay, 2) — X arUidiUsxs, 2) | S € 2 | (25 %) |
%) 1,5,k )

and it is clear that
> a(URAsUsxs, ) = 2 aw 2 (AiiUrzy, Usas) Z 0

5.k k L%}
since M 20. It follows that ¢™ (M) 20.
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THEOREM 3. If A is a C*-algebra and u is a positive linear function
with complex values, then u is completely positive.

ProoOF. Suppose M =(4;;) is a non-negative matrix in <A™, and
{\:} are complex numbers. We wish to check that
2o w(AX 2 0.
]
But Zi'i [J.(A,'j))\jx.'=[.t( Ei-i A,-,-)\jX;). Writing M=N*N with
N =(B;;), we see that
> Ak = X AKX T BBy
¥

-p(a) (sm) xo

and so u( X_:,; AiA;A:) 20 since u is positive.
Theorem 3 together with Theorem 1 gives the known fact that a
state of a C*-algebra induces a representation [3].

THEOREM 4. If A is a commutative C*-algebra and p is a positive
operator-valued linear function on <A, then u is completely positive.

PrOOF. We may take <A as the algebra of all continuous complex-
valued functions vanishing at « on a locally compact Hausdorff space
I'. Let M =(f:;) be a non-negative matrix in A™, If x,, - - -, x, are
vectors in the Hilbert space, we wish to verify that

2 (u(fii)xs %) 2 0.

1,7
By the Riesz-Markoff theorem, there exists a regular measure 7 on I
such that .: (u(f)x:, x:) = [rfdm for all fEeA. Then by the Riesz-
Markoff and Radon-Nikodym theorems, there exist measurable func-
tions k;; such that

(u(f)xj ) = frfh;,-dm for all f € oA.
Now the matrix (k:;(v)) is non-negative almost everywhere; for
frf > hARidm =0 forall f = Oined,
i
and hence Y . ; hi;(v)AX;20 for all r-tuples Ay, - - -, \, of complex

numbers with rational real and imaginary parts and for all y €T with
the exception of y&EN where m(N)=0. Also the matrix (fi;(y)) is
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non-negative for all yEI' by Theorem 3. Therefore,
2 fiMhily) 2 0 almost everywhere

L%}

and so

Z (u(fii)%s %) = j;‘ Zfiihiidm = 0.

i id
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