POSITIVE FUNCTIONS ON C*-ALGEBRAS

W. FORREST STINESPRING

1. Introduction. Let X be any set, let S be a Boolean σ-algebra of subsets of X, and let F be a function from S to non-negative operators on a Hilbert space $\mathfrak{K C}$ such that $F(X)=1$ and F is countablyadditive in the weak operator topology. Neumark [2] has shown that there exists a Hilbert space K of which $\mathfrak{H C}$ is a subspace and a spectral measure E defined on S such that $F(S) P=P E(S) P$ for all S in S, where P is projection of K on \mathfrak{H}. Let us rephrase this situation so that we speak of algebras rather than Boolean algebras and linear functions rather than measures. Thus, we consider, instead of the Boolean σ-algebra S , the C^{*}-algebra \mathcal{A} of all bounded functions on X which are measurable with respect to \mathcal{S}. A C^{*}-algebra is defined as a complex Banach algebra with an involution $x \rightarrow x^{*}$ such that $\left\|x x^{*}\right\|=\|x\|^{2}$ for all x in the algebra. The measure F is supplanted by the linear function μ on \mathcal{A}

$$
\mu(f)=\int f(\gamma) d F(\gamma), \quad f \in \mathcal{A},
$$

where the integral is to be taken in the weak sense. The theorem now asserts that $\mu(f) P=P \rho(f) P$, where

$$
\rho(f)=\int f(\gamma) d E(\gamma), \quad f \in \mathcal{A}
$$

In the original formulation, E was an improvement over F because E was a spectral measure; in the reformulation, ρ is an improvement over μ since ρ is a ${ }^{*}$-homomorphism. When the situation is phrased in this manner, the question naturally occurs: "Is it essential that the algebra \mathcal{A} be commutative?" The present paper is devoted to a discussion of this point.
2. The main theorem. If \mathcal{A} and \mathcal{B} are C^{*}-algebras and μ is a linear function from \mathcal{A} to \mathcal{B}, we shall say that μ is positive if $\mu(A) \geqq 0$ whenever $A \in \mathcal{A}$ and $A \geqq 0$. The algebra of $n \times n$ matrices with entries in \mathcal{A} is also a C^{*}-algebra, which we shall denote by $\mathcal{A}^{(n)}$. By applying μ to each entry of an element of $\mathcal{A}^{(n)}$, we obtain an element of $\mathcal{B}^{(n)}$; this linear function from $\mathcal{A}^{(n)}$ to $\mathcal{B}^{(n)}$ will be denoted by $\mu^{(n)}$. We shall say that μ is completely positive if $\mu^{(n)}$ is positive for each positive integer n.

[^0]Theorem 1. Let \mathcal{A} be a C^{*}-algebra with a unit, let $\mathfrak{F e}$ be a Hilbert space, and let μ be a linear function from \mathcal{A} to operators on \mathfrak{H}. Then a necessary and sufficient condition that μ have the form

$$
\mu(A)=V^{*} \rho(A) V \quad \text { for all } A \in \mathcal{A}
$$

where V is a bounded linear transformation from $\mathfrak{F C}$ to a Hilbert space K and ρ is a^{*}-representation of \mathcal{A} into operators on K, is that μ be completely positive.

Proof of necessity. Suppose that $\mu(A)=V^{*} \rho(A) V$. Let $M=\left(A_{i j}\right)$ be a non-negative matrix in $\mathcal{A}^{(n)}$. Then $\mu^{(n)}(M)$ is an operator on the direct sum of $\mathfrak{H C}$ with itself n times. What we have to check is that

$$
\sum_{i, j}\left(\mu\left(A_{i j}\right) x_{j}, x_{i}\right) \geqq 0
$$

whenever x_{1}, \cdots, x_{n} are vectors in \mathfrak{K}. Since ρ is a *-representation, the matrix $\left(\rho\left(A_{i j}\right)\right)$ is a non-negative operator on $K \oplus \cdots \oplus K$; and therefore,

$$
\sum_{i, j}\left(\mu\left(A_{i j}\right) x_{j}, x_{i}\right)=\sum_{i, j}\left(\rho\left(A_{i j}\right) V x_{j}, V x_{i}\right) \geqq 0 .
$$

Proof of sufficiency. Suppose that μ is completely positive. Consider the vector space $\mathcal{A} \otimes \mathfrak{K}$, the algebraic tensor product of \mathcal{A} and \mathfrak{C}. For $\xi=\sum_{i} A_{i} \otimes x_{i}$ and $\eta=\sum_{j} B_{j} \otimes y_{j}$ in $\mathcal{A} \otimes \mathscr{H}$ we define

$$
(\xi, \eta)=\sum_{i, j}\left(\mu\left(B_{j}^{*} A_{i}\right) x_{i}, y_{j}\right)
$$

Since μ was assumed to be completely positive, it follows that

$$
(\xi, \xi)=\sum_{i, j}\left(\mu\left(A_{j}^{*} A_{i}\right) x_{i}, x_{j}\right) \geqq 0 .
$$

Hence (\cdot, \cdot) is a positive Hermitian bilinear form. There is a natural mapping ρ^{\prime} from \mathcal{A} to linear transformations on $\mathcal{A} \otimes \mathscr{H}$ given by

$$
\rho^{\prime}(A) \sum_{i} B_{i} \otimes y_{i}=\sum_{i}\left(A B_{i}\right) \otimes y_{i}
$$

We shall show that for all A in \mathcal{A} and ξ in $\mathcal{A} \otimes \mathcal{H}$

$$
\begin{equation*}
\left(\rho^{\prime}(A) \xi, \rho^{\prime}(A) \xi\right) \leqq\|A\|^{2}(\xi, \xi) \tag{1}
\end{equation*}
$$

If (1) were not universally true, we could find A in \mathcal{A} and

$$
\xi=\sum_{i} B_{i} \otimes x_{i}
$$

in $\mathcal{A} \otimes \mathscr{H}$ such that $(\xi, \xi) \leqq 1$ and $\|A\|<1$, but $\left(\rho^{\prime}(A) \xi, \rho^{\prime}(A) \xi\right)>1$.

Then $\left(\rho^{\prime}\left(A^{*} A\right) \xi, \xi\right)>1$, which implies, by the Schwarz inequality, that $\left(\rho^{\prime}\left(A^{*} A\right) \xi, \rho^{\prime}\left(A^{*} A\right) \xi\right)>1$. By continuing in this manner, we find that

$$
\left(\rho^{\prime}\left(\left[A^{*} A\right]^{2^{k}}\right) \xi, \xi\right)>1 \quad \text { for } k=1,2, \cdots
$$

Since μ is positive and $-\|C\| 1 \leqq C \leqq\|C\| 1$ whenever C is a selfadjoint element of \mathcal{A}, it follows that $-\|C\| \mu(1) \leqq \mu(C) \leqq\|C\| \mu(1)$ and hence that $\|\mu(C)\| \leqq\|C \mid\|\|\mu(1)\|$; this inequality shows that μ is uniformly continuous on the self-adjoint elements of \mathcal{A}, and it is easy to see from this that μ must be uniformly continuous on all of \mathcal{A}. The uniform continuity of μ together with the fact that $\|A\|<1$ shows that

$$
\left(\rho^{\prime}\left(\left[A^{*} A\right]^{2^{k}}\right) \xi, \xi\right)=\sum_{i, j}\left(\mu\left(B_{j}^{*}\left[A^{*} A\right]^{z^{k}} B_{i}\right) x_{i}, x_{j}\right)
$$

converges to 0 . This contradiction proves (1).
Let \mathcal{N} be the set of all ξ in $\mathcal{A} \otimes \mathcal{H}$ such that $(\xi, \xi)=0$. By the Schwarz inequality, \mathcal{N} is a linear manifold and by (1), \mathcal{N} is invariant under $\rho^{\prime}(\mathcal{A})$. Therefore, the quotient space $\mathcal{A} \otimes \mathscr{H} / \mathcal{N}$ is a pre-Hilbert space, and each A in \mathcal{A} naturally induces a bounded operator on the completion K of $\mathcal{A} \otimes \mathscr{H} / \mathcal{N}$. Let

$$
V x=1 \otimes x+\mathcal{N} \quad \text { for all } x \in \mathfrak{K}
$$

Then $\|V x\|^{2} \leqq(\mu(1) x, x)$, so that V is a bounded linear transformation from \mathscr{H} to K. Now

$$
\begin{aligned}
\left(V^{*} \rho(A) V x, y\right) & =(\rho(A) V x, V y)=\left(\rho^{\prime}(A) 1 \otimes x, 1 \otimes y\right) \\
& =(A \otimes x, 1 \otimes y)=(\mu(A) x, y)
\end{aligned}
$$

for all x and y in \mathfrak{H}, and therefore $\mu(A)=V^{*} \rho(A) V$.
3. Remarks. The operator $\rho(1)$ is a projection. We can take $\rho(1)$ to be 1 , for we can replace V by $\rho(1) V$ and then replace the space K by the subspace $\rho(1) K$. Assuming that this has been done, we have $\mu(1)=V^{*} V$, so that if $\mu(1)=1$, then V is an isometry. Since an isometry can be considered as an embedding, the Neumark theorem follows from Theorem 1, provided we can show that when \mathcal{A} is commutative, positivity of μ implies complete positivity. This fact will be proved in the next section.

It might be thought possibly that positivity always implies complete positivity. We give a counter-example to show that this is not the case. Let \mathcal{A} be the algebra of $n \times n$ matrices with complex entries. We denote by $e_{i j}$ the matrix with 1 in the i th row and j th column and
with zeros elsewhere. The $e_{i j}$'s are a basis for the vector space \mathcal{A}. We define a linear function μ from \mathcal{A} to \mathcal{A} by specifying the values of μ on this basis: $\mu\left(e_{i j}\right)$ is to be a matrix whose (r, s) th entry is $(r-j)(s-i)$. Now μ is positive; for let $A=\left(a_{i j}\right) \geqq 0$ be an $n \times n$ matrix and let

$$
x=\left(\begin{array}{c}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right)
$$

be any vector. Then

$$
\begin{aligned}
(\mu(A) x, x) & =\sum_{i, j, r, s} a_{i j}(r-j)(s-i) x_{r} \bar{x}_{s} \\
& =\sum_{i, j} a_{i j}\left(\sum_{r}(r-j) x_{r}\right)\left(\sum_{s}(s-i) \bar{x}_{s}\right) \geqq 0
\end{aligned}
$$

since $A \geqq 0$.
On the other hand, μ is not completely positive, for we shall show that $\mu^{(n)}$ is not positive, n being as above. Let E be the element of $\mathcal{A}^{(n)}$ whose (i, j) th entry is the matrix $e_{i j}$. It is easily seen that $E \geqq 0$. But $\mu^{(n)}(E)$ is not $\geqq 0$, for

$$
\sum_{i, j, r, s}(r-j)(s-i) \delta_{i r i} \delta_{j s}=\sum_{i, j}(i-j)(j-i)<0
$$

4. Conditions for complete positivity.

Theorem 2. If \mathcal{A} is a W^{*}-algebra of finite type (see [1]), then the center-valued trace t is completely positive.

Proof. Suppose $M=\left(A_{i j}\right)$ is a non-negative matrix in $\mathcal{A}^{(n)}$ and suppose $\epsilon>0$. It is shown in [1] that there exist a finite number U_{1}, \cdots, U_{r} of unitary operators in \mathcal{A} and non-negative numbers $\alpha_{1}, \cdots, \alpha_{r}$ with $\sum_{k} \alpha_{k}=1$ such that

$$
\left\|t\left(A_{i j}\right)-\sum_{k} \alpha_{k} U_{k}^{*} A_{i j} U_{k}\right\|<\epsilon \quad \text { for } i, j=1, \cdots, n .
$$

But then if x_{1}, \cdots, x_{n} are any vectors,

$$
\left|\sum_{i, j}\left(t\left(A_{i j}\right) x_{j}, x_{i}\right)-\sum_{i, j, k} \alpha_{k}\left(U_{k}^{*} A_{i j} U_{k} x_{j}, x_{i}\right)\right| \leqq \epsilon \sum_{i, j}\left|\left(x_{j}, x_{i}\right)\right|
$$

and it is clear that

$$
\sum_{i, j, k} \alpha_{k}\left(U_{k}^{*} A_{i j} U_{k} x_{j}, x_{i}\right)=\sum_{k} \alpha_{k} \sum_{i, j}\left(A_{i j} U_{k} x_{j}, U_{k} x_{i}\right) \geqq 0
$$

since $M \geqq 0$. It follows that $t^{(n)}(M) \geqq 0$.

Theorem 3. If \mathcal{A} is a C^{*}-algebra and μ is a positive linear function with complex values, then μ is completely positive.

Proof. Suppose $M=\left(A_{i j}\right)$ is a non-negative matrix in $\mathcal{A}^{(n)}$, and $\left\{\lambda_{i}\right\}$ are complex numbers. We wish to check that

$$
\sum_{i, j} \mu\left(A_{i j}\right) \lambda_{j} \bar{\lambda}_{i} \geqq 0
$$

But $\sum_{i, j} \mu\left(A_{i j}\right) \lambda_{j} \bar{\lambda}_{i}=\mu\left(\sum_{i, j} A_{i j} \lambda_{j} \bar{\lambda}_{i}\right)$. Writing $M=N^{*} N$ with $N=\left(B_{i j}\right)$, we see that

$$
\begin{aligned}
\sum_{i, j} A_{i j} \lambda_{j} \bar{\lambda}_{i} & =\sum_{i, i} \lambda_{j} \bar{\lambda}_{i} \sum_{k} B_{k i}^{*} B_{k j} \\
& =\sum_{k}\left(\sum_{i} \lambda_{i} B_{k i}\right)^{*}\left(\sum_{i} \lambda_{j} B_{k j}\right) \geqq 0
\end{aligned}
$$

and so $\mu\left(\sum_{i, j} A_{i j} \lambda_{j} \bar{\lambda}_{i}\right) \geqq 0$ since μ is positive.
Theorem 3 together with Theorem 1 gives the known fact that a state of a C^{*}-algebra induces a representation [3].

Theorem 4. If \mathcal{A} is a commutative C^{*}-algebra and μ is a positive operator-valued linear function on \mathcal{A}, then μ is completely positive.

Proof. We may take \mathcal{A} as the algebra of all continuous complexvalued functions vanishing at ∞ on a locally compact Hausdorff space Γ. Let $M=\left(f_{i j}\right)$ be a non-negative matrix in $\mathcal{A}^{(n)}$. If x_{1}, \cdots, x_{n} are vectors in the Hilbert space, we wish to verify that

$$
\sum_{i, j}\left(\mu\left(f_{i j}\right) x_{j}, x_{i}\right) \geqq 0
$$

By the Riesz-Markoff theorem, there exists a regular measure m on $\mathrm{\Gamma}$ such that $\sum_{i}\left(\mu(f) x_{i}, x_{i}\right)=\int_{\mathrm{r}} f d m$ for all $f \in \mathcal{A}$. Then by the RieszMarkoff and Radon-Nikodym theorems, there exist measurable functions $h_{i j}$ such that

$$
\left(\mu(f) x_{j}, x_{i}\right)=\int_{\Gamma} f h_{i j} d m \quad \text { for all } f \in \mathcal{A}
$$

Now the matrix ($h_{i j}(\gamma)$) is non-negative almost everywhere; for

$$
\int_{\Gamma} f \sum_{i, j} h_{i j} \lambda_{i} \bar{\lambda}_{j} d m \geqq 0 \quad \text { for all } f \geqq 0 \text { in } \mathcal{A},
$$

and hence $\sum_{i, j} h_{i j}(\gamma) \lambda_{i} \bar{\lambda}_{j} \geqq 0$ for all r-tuples $\lambda_{1}, \cdots, \lambda_{r}$ of complex numbers with rational real and imaginary parts and for all $\gamma \in \Gamma$ with the exception of $\gamma \in N$ where $m(N)=0$. Also the matrix $\left(f_{i j}(\gamma)\right)$ is
non-negative for all $\gamma \in \Gamma$ by Theorem 3. Therefore,

$$
\sum_{i, j} f_{i j}(\gamma) h_{i j}(\gamma) \geqq 0 \quad \text { almost everywhere }
$$

and so

$$
\begin{gathered}
\sum_{i, i}\left(\mu\left(f_{i j}\right) x_{j}, x_{i}\right)=\int_{\Gamma} \sum_{i, j} f_{i j} h_{i j} d m \geqq 0 . \\
\text { BIBLIOGRAPHY }
\end{gathered}
$$

1. J. Dixmier, Les anneaux d'operateurs de classe finie, Ann. Ecole Norm. (3) vol. 66 (1949) pp. 209-261.
2. M. A. Neumark, On a representation of additive operator set functions, C. R. (Doklady) Acad. Sci. URSS vol. 41 (1943) pp. 359-361.
3. I. E. Segal, Irreducible representations of operator algebras, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 73-88.

University of Chicago

[^0]: Received by the editors March 29, 1954.

