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1. Introduction. Let X be any set, let S be a Boolean c-algebra of

subsets of X, and let F be a function from S to non-negative opera-

tors on a Hilbert space 3Q such that F(X) = 1 and F is countably-

additive in the weak operator topology. Neumark [2] has shown that

there exists a Hilbert space A^ of which 3C is a subspace and a spectral

measure E defined on S such that F(S)P = PE(S)P for all 5 in S,

where P is projection of A^ on 3C. Let us rephrase this situation so

that we speak of algebras rather than Boolean algebras and linear

functions rather than measures. Thus, we consider, instead of the

Boolean c-algebra S, the C*-algebra <A of all bounded functions on

X which are measurable with respect to S • A C*-algebra is defined

as a complex Banach algebra with an involution x—>x* such that

||xx*|| =||x||2 for all x in the algebra. The measure F is supplanted

by the linear function p on zA

*(f) = f fMdF(y), fevf,

where the integral is to be taken in the weak sense. The theorem now

asserts that ft(f)P = Pp(f)P, where

p(/)= ff(y)dE(y), fe*A.

In the original formulation, E was an improvement over F because E

was a spectral measure; in the reformulation, p is an improvement

over p since p is a *-homomorphism. When the situation is phrased

in this manner, the question naturally occurs: "Is it essential that the

algebra zA be commutative?" The present paper is devoted to a dis-

cussion of this point.

2. The main theorem. If zA and <B are C*-algebras and p. is a linear

function from zA to <B, we shall say that p is positive if n(A) 2: 0 when-

ever A £zA and A 2:0. The algebra of nXn matrices with entries in

<A is also a C*-algebra, which we shall denote by zA(n). By applying p

to each entry of an element of zAin\ we obtain an element of lB(n);

this linear function from zA(n) to <B(n) will be denoted by p(n). We shall

say that p is completely positive if p(B) is positive for each positive

integer n.
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Theorem 1. Let zA be a C*-algebra with a unit, let 30. be a Hilbert

space, and let p. be a linear function from zA to operators on 3C. Then a

necessary and sufficient condition that p. have the form

p.(A) = V*P(A)V for all A £ zA,

where V is a bounded linear transformation from 3C to a Hilbert space

^ and p is a *-representation of zA into operators on K^, is that p. be

completely positive.

Proof of necessity. Suppose that p(A) = V*p(A) V. Let M=(Ai})

be a non-negative matrix in <vf(n). Then p,w(M) is an operator on

the direct sum of 3C with itself n times. What we have to check is that

£ <ji(A{i)xj, Xi) ^ 0
i.i

whenever Xi, ■ • • , x„ are vectors in 3C. Since p is a ""-representation,

the matrix (p(-4,y)) is a non-negative operator on /^© • • • ©^; and

therefore,

£ (p(Aij)xj, x.) = Z {piA^Vxi, Vxd = 0.

Proof of sufficiency. Suppose that p. is completely positive.

Consider the vector space zA®3C, the algebraic tensor product of zA

and 5C. For £= ]F]< At®Xi and v= £y Bj®yj in zA<g)3C we define

& v) = Z MB%)x<, y,).
i.i

Since p. was assumed to be completely positive, it follows that

(£, & = EW^d^'i) ^0-
i.i

Hence (• , •) is a positive Hermitian bilinear form. There is a natural

mapping p' from zA to linear transformations on zA<8)3C given by

P'(A) £ -B, <g> y< = £ (ABi) ® yi-
i i

We shall show that for all A in zA and £ in zA®3C

(1) (P'(A)!t,p'(A)Q^\\A\\2(l;,8.

If (1) were not universally true, we could find A in zA and

£ = E Bi ® Xi
i

in zA®3C such that (£, £)^1 and M||<1, but (p'(A)Z, p'(A)£)>!.
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Then (p'(A*A)%, £)>1, which implies, by the Schwarz inequality,

that (p'(A*A)£, p'(A*A)£) > 1. By continuing in this manner, we find

that

(p'([A*AY)$,$)> 1 for*- 1,2,....

Since p is positive and — ||C||lgC^ C 1 whenever C is a self-

adjoint element of zA, it follows that — C p(l) ^p(C) g||C||p(l) and

hence that ||ju(0|| =||C||||p(l)||; this inequality shows that p, is uni-

formly continuous on the self-adjoint elements of zA, and it is easy to

see from this that p must be uniformly continuous on all of zA. The

uniform continuity of p together with the fact that ||.4|| <1 shows

that

(j>'([A*A]*)l Q - E (n(B*[A*A¥Bi)Xi, xy)

converges to 0. This contradiction proves (1).

Let H be the set of all £ in zA®3C such that (£, £) =0. By the

Schwarz inequality, H. is a linear manifold and by (1), Tvf is invariant

under p'(zA). Therefore, the quotient space e/f ® 3C/Jv{ is a pre-Hilbert

space, and each A in zA naturally induces a bounded operator on the

completion A^ of e/f ®3C/>{. Let

Vx = 1 ® x + H f or all x G 3C.

Then || Fx||2^ (p(l)x, x), so that V is a bounded linear transformation

from 3C to A^. Now

(V*p(A)Vx, y) = (P(A)Vx, Vy) = (p'(A)l ® x, 1 ® y)

= (A ® x, 1 ® y) = (pC4)z, y)

for all x and y in 3C, and therefore p(^4) = V*p(A) V.

3. Remarks. The operator p(l) is a projection. We can take p(l)

to be 1, for we can replace V by p(l) V and then replace the space

A^by the subspace p(l)A^. Assuming that this has been done, we have

p(l) = V*V, so that if p(l) = 1, then V is an isometry. Since an isom-

etry can be considered as an embedding, the Neumark theorem fol-

lows from Theorem 1, provided we can show that when zA is commu-

tative, positivity of p implies complete positivity. This fact will be

proved in the next section.

It might be thought possibly that positivity always implies com-

plete positivity. We give a counter-example to show that this is not

the case. Let zA be the algebra of n Xn matrices with complex entries.

We denote by e,y the matrix with 1 in the ith row and jth column and
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with zeros elsewhere. The e<y's are a basis for the vector space zA.

We define a linear function p. from zA to zA by specifying the values

of p. on this basis: /*(c,-y) is to be a matrix whose (r, s)th entry is

(r~J)(s—i). Now p. is positive; for let A =(ais) ^0 be an nXn matrix

and let
Xi

X =

. xn

be any vector. Then

(p(A)x, x) =   £   0O(r - j)(s - i)xrx.
i.i.r.t

= £ at, ( £ (r - i)«r) ( E (* " *)*«) ̂  0

since A ^ 0.

On the other hand, ju is not completely positive, for we shall show that

p/n) is not positive, n being as above. Let E be the element of zAw

whose (i, j)th entry is the matrix e*y. It is easily seen that ES;0. But

jLt(B)(E) is not ^0, for

£   (r - i)(* - OMy. - E (* ~ j)0" - *) < °-
i.j.T.t i,j

4. Conditions for complete positivity.

Theorem 2. If zA is a W*-algebra of finite type (see [l]), then the

center-valued trace t is completely positive.

Proof. Suppose M=(Aij) is a non-negative matrix in zAw and

suppose «>0. It is shown in [l] that there exist a finite number

Ui, ■ • • , UT of unitary operators in zA and non-negative numbers

oli, • • • , aT with £* ak = 1 such that

t(An) - E a.kU*kAijUk   < e for i,j = 1, ■ • • , n.
it

But then if Xi, • • • , xn are any vectors,

E {t(Aii)Xj, Xi) — E ak(UkAijUkXj, xt)   g e £ | (xy, x<) I
i.i «*,y,& t.i

and it is clear that

E ak(Uk*AijUkXj, x,-) = 2at£ (AijUkXj, UkXi) ^ 0

since M^O. It follows that /(n)(M)^0.
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Theorem 3. If zA is a C*-algebra and p is a positive linear function

with complex values, then p. is completely positive.

Proof. Suppose M=(Atj) is a non-negative matrix in zAM, and

{Xi} are complex numbers. We wish to check that

£M(^,y)XyXi^0.

But £<./ p(Aii)\ih=KT,i.i Aifoh). Writing M=N*N with
N=(Bij), we see that

£ AijKjki — £ XyAj £ BkiBkj
i.i i.i k

= £ ( £ *.£*<) ( £ M«) ^ o

and so p( £.,y .4,/XyX,) ̂ 0 since p. is positive.

Theorem 3 together with Theorem 1 gives the known fact that a

state of a C*-algebra induces a representation [3].

Theorem 4. If zA is a commutative C*-algebra and p. is a positive

operator-valued linear function on zA, then p. is completely positive.

Proof. We may take zA as the algebra of all continuous complex-

valued functions vanishing at » on a locally compact Hausdorff space

T. Let M=(fij) be a non-negative matrix in zAM. If Xi, • • • , xn are

vectors in the Hilbert space, we wish to verify that

£ Wa)xi, x^ ^ 0.
i.i

By the Riesz-Markoff theorem, there exists a regular measure m on Y

such that £< (p.(f)xi, Xi) =frfdm for all f^zA. Then by the Riesz-
Markoff and Radon-Nikodym theorems, there exist measurable func-

tions ha such that

(p(f)xj, Xi) —   I   fhndm forall/£<vf.

Now the matrix (hn(y)) is non-negative almost everywhere; for

f / £ hijXiXjdm ̂ 0 for all / ^ 0 in zA,

and hence £,-,y A,y(7)X,Ay^0 for all r-tuples Xi, • • • , X, of complex

numbers with rational real and imaginary parts and for all 7£r with

the exception of 7£iV where m(N) = 0. Also the matrix (fi,-(j)) is
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non-negative for all y(E.T by Theorem 3. Therefore,

E fa(y) hij("i) 2: 0 almost everywhere
i.i

and so

E Wii)Xj, Xi) =  I    'Efuhndm 2: 0.
i.i Jr i.i
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