
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 131, Number 12, Pages 3873–3881
S 0002-9939(03)06977-6
Article electronically published on April 24, 2003

POSITIVE HARMONIC FUNCTIONS OF FINITE ORDER
IN A DENJOY TYPE DOMAIN

HIROAKI AIKAWA

(Communicated by Juha M. Heinonen)

Dedicated to Professor Kaoru Hatano on the occasion of his 60th birthday

Abstract. We introduce a Denjoy type domain and prove that the dimension
of the cone of positive harmonic functions of finite order in the domain with
vanishing boundary values is one or two, whenever the boundary is included
in a certain set.

1. Introduction

Let E be a closed set in the hyperplane {x = (x1, . . . , xn) : xn = 0} of the
Euclidean space Rn with n ≥ 2. The complement of E is called a Denjoy domain.
Benedicks [5] studied positive harmonic functions in a Denjoy domain vanishing on
the boundary. He proved that the dimension of such positive harmonic functions is
one or two and gave a distinction theorem in terms of the harmonic measure of E.
A number of studies have been made after Benedicks’ work. Many of them treated
the case when E lies in more general sets, such as smooth and Lipschitz surfaces,
finitely many rays leaving the origin. There are many estimates of the dimension
of positive harmonic functions in such domains vanishing on the boundaries. See
e.g. [3], [6], [7], [9], [11], [13, 14].

Poggi-Corradini [12] considered a somewhat different extension. He relaxed the
constraint that E lies in the hyperplane to that E lies in a strip {−1/2 < Im z < 0}.
In this circumstance, the family of all positive harmonic functions vanishing on E
is too complicated to be described; its dimension may be infinite. However, if one
restricts his attention to these functions of finite order, then one may get some
results. To be precise, we use the following notation. By B(x, r) and S(x, r) we
denote the open ball and the sphere with center at x and radius r, respectively. If
x = 0, then we write B(r) and S(r) for simplicity. Let u be a positive harmonic
function on an unbounded domain Ω. We say that u is of order λ if

λ = lim sup
r→∞

log
(

supΩ∩B(r) u
)

log r
.
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If λ <∞, then u is said to be of finite order. See Hayman-Kennedy [10, Definition
4.1]. By ω(x,E, U) we denote the harmonic measure of E for an open set U
evaluated at x. By the symbol A we denote a positive constant whose value is
unimportant and may change even in the same line. If necessary, we use A1, A2, . . . ,
to specify them. Poggi-Corradini proved the following.

Theorem A. Suppose Ω = C\E is a planar domain with E ⊂ {−1/2 < Im z < 0}
of positive capacity and such that ∂Ω is regular. Let P be the family of positive
harmonic functions on Ω vanishing on ∂Ω and F the subfamily of functions of
finite order.

(i) Suppose u ∈ P. Then u ∈ F if and only if

lim sup
r→∞

ω(i, S(r),Ω ∩B(r)) max
S(r)

u <∞.

Moreover, in this case maxS(r) u ≤ Ar.
(ii) There are either one or two linearly independent, minimal positive har-

monic functions, vanishing on ∂Ω, equal to 1 at i, and of finite order
(briefly put dimF = 1 or 2).

(iii) If
sup
x∈R

max{ω(x,R+ i,Ω), ω(x,R− i,Ω)} < 1,

then dimF = 2.
(iv) Suppose that Ω + 1 = Ω. Then P = F .

We remark that the regularity of ∂Ω can be removed; the boundary condition
of u can be generalized as follows: u = 0 on ∂Ω outside a polar set and u is locally
bounded near ∂Ω. In this paper we show that some parts of Theorem A hold for a
certain domain Ω ⊂ Rn whose complement is included in a set wider than a strip.
We shall say that such a domain is of Denjoy type.

Theorem 1. Let n ≥ 2. Let Ω = Rn \ E be a domain such that

E ⊂ {x ∈ Rn : |xn| ≤ f(|x′|) with x′ = (x1, . . . , xn−1)},
where f(t) is a nonnegative function for t ≥ 0 with

lim
t→∞

f(t)
t

= 0.

Let P be the family of positive harmonic functions on Ω vanishing on ∂Ω outside a
polar set and locally bounded near ∂Ω. Let F be the subfamily of functions of finite
order.

(i) Suppose u ∈ P. Then u ∈ F if and only if u is of order at most 1.
(ii) dimF = 1 or 2.

2. Positive harmonic functions on a cone

Poggi-Corradini [12] used a lemma modeled after Ancona [2, Lemme 1], whose
argument is based on the reflection of the domain. In our situation, the complement
is not included in a strip, so that the reflection argument cannot be applied. Instead,
we shall invoke some estimates of harmonic measures on cones. Write the Laplacian
as

∆ =
n− 1
r

∂

∂r
+

∂2

∂r2 +
1
r2

Λn,
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Figure 1. Denjoy type domain

where Λn is the Laplace-Beltrami operator. Let U be a (relatively) open set on the
unit sphere S(1). Consider the Laplace-Beltrami equation

ΛnF + λF = 0 on U,
F = 0 on ∂U,

where λ = λ(U) is the first positive eigenvalue. We let FU be the positive eigen-
function corresponding to λ. The characteristic constant α = α(U) is defined by
the positive root of the equation

α(α + n− 2) = λ.

Let Γ(U) = {x ∈ Rn : x/|x| ∈ U} be the cone subtended by U with vertex at the
origin. Then it is easy to see that

(1) hU (x) = |x|αFU
(
x

|x|

)
is a positive harmonic function on Γ(U) vanishing on ∂Γ(U), provided U is suffi-
ciently smooth. In fact, Γ(U) has one Martin boundary at infinity and hU corre-
sponds to the Martin kernel at infinity. If U is the spherical cap Σ(θ) = {x ∈ S(1) :
xn > cos θ}, then we write Γ(θ) and α(θ) for Γ(Σ(θ)) and α(Σ(θ)). It is known that
a spherical cap has the least characteristic constant among open sets on S(1) with
the same surface measure (Sperner [15]). Friedland and Hayman [8] gave a very
precise estimate of the characteristic constants. For spherical caps we can easily
observe that α(θ) is a strictly decreasing function of θ such that α(π/2) = 1 and
α(θ) ↑ ∞ as θ ↓ 0. From these observations we have the following estimates of the
harmonic measure of a spherical cone.

Lemma 1. Let 0 < θ1 < θ2 < θ3 < π/2.
(i) There is a constant 0 < A1 < 1 depending only on θ1 and θ2 such that

ω(·,Γ(θ2) ∩ S(r),Γ(θ2) ∩B(r)) ≥ A1 on Γ(θ1) ∩B(r) \B(r/2)

for r > 0.
(ii) There is a constant A2 > 1 depending only on θ1 and θ2 such that

A−1
2

(
|x|
r

)α
≤ ω(x,Γ(θ1) ∩ S(r),Γ(θ3) ∩B(r)) ≤ A2

(
|x|
r

)α
for r > 0 and x ∈ Γ(θ2) ∩B(r/2), where α = α(θ3) > 1 is the character-
istic constant of Σ(θ3) such that α(θ3) ↓ 1 as θ3 ↑ π/2.
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We also need an estimate of the harmonic measure of a non-spherical cone.

Lemma 2. Let U(ϕ) = {x ∈ S(1) : |xn| < sinϕ} and let V (ϕ) = {x : |xn| <
|x| sinϕ} be the cone subtended by U(ϕ) for 0 < ϕ < π/2. Let β be a positive
constant less than the characteristic constant α(U(ϕ)) of U(ϕ). Then there is a
positive constant A3 depending only on ϕ and β such that

ω(x, ∂V (ϕ) ∩B(2r) \B(r), V (ϕ)) ≤ ω(x, V (ϕ) ∩ S(r), V (ϕ) ∩B(r)) ≤ A3

(
|x|
r

)β
for x ∈ V (ϕ) ∩B(r).

Proof. The first inequality is obvious by the maximum principle. Let ϕ′ > ϕ be so
close to ϕ that the characteristic constant α′ of U(ϕ′) satisfies β ≤ α′ < α(U(ϕ)).
Consider the harmonic function hU(ϕ′) given by (1). Then we have

(2) A−1|x|α′ ≤ hU(ϕ′)(x) ≤ A|x|α′ for x ∈ V (ϕ),

where A is independent of x. The maximum principle and the left inequality of (2)
yield

ω(·, V (ϕ) ∩ S(r), V (ϕ) ∩B(r)) ≤ Ar−α′hU(ϕ′) on V (ϕ) ∩B(r),

so that

ω(x, V (ϕ) ∩ S(r), V (ϕ) ∩B(r)) ≤ A
(
|x|
r

)α′
≤ A

(
|x|
r

)β
for x ∈ V (ϕ) ∩B(r)

by the right inequality of (2). �

The following estimate of the harmonic measure of a ball is easily proved by
dilation.

Lemma 3. For each η > 0 there is ε > 0 such that if 0 < ϕ < ε, then

ω(·, V (ϕ) ∩ S(r), B(r)) < η on B(0, r/2)

for r > 0.

By the repeated application of the Harnack inequality along a Harnack chain,
we obtain the following lemma. For a proof see [1, Lemma 11], where more general
John domains are treated.

Lemma 4. For 0 < θ < π/2 there are positive constants γ(θ) and A4 depending
only on θ such that if 1 ≤ r ≤ R/2 and h is a positive harmonic function on a
truncated cone Γ(θ) ∩B(R), then

h(0, . . . , 0, r)
h(0, . . . , 0, 1)

≤ A4r
γ .

Moreover, γ(θ) ↓ 1 as θ ↑ π/2.

3. Proof of Theorem 1

Let us begin with an estimate of a harmonic measure for Ω. Without loss of
generality, we may assume that f is nondecreasing, f(t) = 0 for 0 ≤ t ≤ 1 and
B(2) ⊂ Ω.
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Lemma 5. Let 0 < θ ≤ π. Then

lim inf
r→∞

r1+ηω(0,Γ(θ) ∩ S(r),Ω ∩B(r)) =∞

for each η > 0.

Proof. In view of Lemma 1 we take 0 < θ3 < π/2 so close to π/2 that α = α(θ3) <
1 + η. Taking θ smaller makes the harmonic measure smaller, so we may assume
that 0 < θ < θ3 and Γ(θ) ⊂ Ω. By assumption there is t0 > 0 such that

f(t)
t
≤ cot θ3 for t ≥ t0.

Let z = (0, . . . , 0, f(t0)). Then we have

(3) z + Γ(θ3) ⊂ {x : xn > f(|x′|)} ⊂ Ω.

Let 0 < θ1 < θ and r ≥ 4f(t0). Then

(z + Γ(θ1)) ∩ S(z, r − f(t0)) ⊂ Γ(θ1) ∩B(r) \B(r/2),

and on the set of the right-hand side

ω(·,Γ(θ) ∩ S(r),Ω ∩B(r)) ≥ ω(·,Γ(θ) ∩ S(r),Γ(θ) ∩B(r)) ≥ A1

by Lemma 1 (i), where A1 depends only on θ and θ1. Hence (3) and the maximum
principle yield

ω(·,Γ(θ) ∩ S(r),Ω ∩B(r))

≥ A1ω(·, (z + Γ(θ1)) ∩ S(z, r − f(t0)), (z + Γ(θ3)) ∩B(z, r − f(t0)))

on (z + Γ(θ3)) ∩ B(z, r − f(t0)). Letting z∗ = (0, . . . , 0, 2f(t0)), we obtain from
Lemma 1 (ii) and translation that

ω(z∗,Γ(θ) ∩ S(r),Ω ∩B(r)) ≥ A1

A2

(
f(t0)

r − f(t0)

)α
.

By the Harnack inequality

ω(0,Γ(θ) ∩ S(r),Ω ∩B(r)) ≥ Aω(z∗,Γ(θ) ∩ S(r),Ω ∩B(r)) for r ≥ 4f(t0),

where A may depend on f(t0) but not on r. Hence

r1+ηω(0,Γ(θ) ∩ S(r),Ω ∩B(r)) ≥ Ar1+η

(
f(t0)

r − f(t0)

)α
→∞

as r→∞. Thus the lemma follows. �
We use the following notation in the proof of Theorem 1. Let I+(ϕ) = {x :

xn > |x| sinϕ}, I−(ϕ) = {x : xn < −|x| sinϕ} and I(ϕ) = I+(ϕ) ∪ I−(ϕ) for
0 < ϕ < π/2. Then I+(ϕ) = Γ(π2 − ϕ) and I(ϕ) = Rn \ V (ϕ) in the notation in
the previous section.

Proof of Theorem 1 (i). It is sufficient to show that if u ∈ F , then u is of order at
most 1. Let u ∈ F and let Mj = supΩ∩B(2j) u. Then there is S > 1 such that

(4) Mj ≤ Sj for j ≥ 0.

Let η > 0. We shall show that

(5) Mj ≤ A2(1+η)j for sufficiently large j,

where A > 0 may depend on u and η, but not on j. Then the arbitrariness of η > 0
implies that u is of order at most 1.
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In view of Lemma 3 we find ϕ > 0 such that for every j ≥ 0,

ω(·, S(2j+1) \ I(ϕ), B(2j+1)) ≤ 1
21+ηS

on B(2j).

By assumption we may assume that S(r) ∩ I(ϕ′) ⊂ Ω for large r, say r ≥ 2j0 , with
0 < ϕ′ < ϕ. Hereafter let j > j0. By the maximum principle over Ω ∩B(2j+1) we
have

u ≤Mj+1ω(·,Ω ∩ S(2j+1) \ I(ϕ),Ω ∩B(2j+1)) + sup
S(2j+1)∩I(ϕ)

u

≤ 1
21+ηS

Mj+1 + sup
S(2j+1)∩I(ϕ)

u on Ω ∩B(2j).
(6)

The Harnack inequality and Lemma 5 yield

u(0) ≥ ω(0, I+(ϕ) ∩ S(2j),Ω ∩B(2j)) inf
I+(ϕ)∩S(2j)

u ≥ A2−(1+η)j sup
I+(ϕ)∩S(2j+1)

u

for sufficiently large j, say j ≥ j1. Similarly, supI−(ϕ)∩S(2j+1) u is estimated, and
hence

u(0) ≥ A2−(1+η)j sup
I(ϕ)∩S(2j+1)

u.

Substituting this estimate to (6) and taking the supremum over Ω ∩ B(2j), we
obtain

Mj ≤
1

21+ηS
Mj+1 +A2(1+η)ju(0),

so that

2−(1+η)jMj ≤
1
S

2−(1+η)(j+1)Mj+1 +Au(0)

≤ 1
S

(
1
S

2−(1+η)(j+2)Mj+2 +Au(0)
)

+Au(0)

=
1
S2

2−(1+η)(j+2)Mj+2 +A(1 +
1
S

)u(0).

Repeating this, we obtain

2−(1+η)jMj ≤
1
Sk

2−(1+η)(j+k)Mj+k +Au(0)
k−1∑
i=0

1
Si

for k ≥ 1.

Let k →∞. Then (4) yields

2−(1+η)jMj ≤ Au(0)
∞∑
i=0

1
Si

=
A

1− 1/S
u(0) for j ≥ j1.

This implies (5). �

Proof of Theorem 1 (ii). By repeating the proof of Benedicks [5, Theorem 2] ver-
batim, we obtain dimF ≤ 2 from Friedland and Hayman [8, Theorem 2]. So, let
us prove dimF ≥ 1.

Compare the characteristic constant α(U(ϕ)) in Lemma 2 and the constant γ
in Lemma 4. Since α(U(ϕ)) ↑ ∞ and γ(

π

2
− ϕ) ↓ 1 as ϕ ↓ 0, we can choose ϕ0 so

small that

(7) 1 < γ0 = γ(
π

2
− ϕ0) < α(U(ϕ0)).
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We first treat the case when I(ϕ1) ⊂ Ω with some ϕ1, 0 < ϕ1 < ϕ0, such that

α(Σ(
π

2
− ϕ1)) ≤ γ0,

where we recall that α(Σ(π2 − ϕ1)) is the characteristic constant of the spherical
cap Σ(π2 − ϕ1) = {x ∈ S(1) : xn > cos(π2 − ϕ1)}. Let R > 0 and consider
uR = ω(·,Ω ∩ S(R),Ω ∩B(R)). We claim that if 1 < r < R, then

(8) uR ≤ Arγ0uR(0) on Ω ∩B(r),

where A is independent of r and R.
For a moment let 1 < r < R/2. Let z+

r = (0, . . . , 0, r). Then uR ≤ AuR(z+
r ) on

I+(ϕ0) ∩ S(r) by the Harnack inequality. Moreover, Lemma 4 implies

uR(z+
r ) ≤ A4r

γ0uR(z+
1 ) ≤ Arγ0uR(0),

where the last inequality follows from B(2) ⊂ Ω and the Harnack inequality. Simi-
larly, we estimate uR on I−(ϕ0) ∩ S(r) and obtain from continuity that

(9) uR ≤ Arγ0uR(0) on I(ϕ0) ∩B(r).

Actually, (9) holds for 1 < r < R since, by Lemma 5,

(10) Rγ0uR(0) ≥ A,

where A is independent of R. Thus (8) holds on I(ϕ0) ∩B(r).
Let us estimate uR on Ω ∩ V (ϕ0) ∩ B(r). Let vR be the Dirichlet solution on

V (ϕ0) ∩B(R) such that

vR =


uR on ∂V (ϕ0) ∩B(R),

0 on V (ϕ0) ∩ S(R).

Then the maximum principle yields

(11) uR ≤ vR + ω(·, V (ϕ0) ∩ S(R), V (ϕ0) ∩B(R)) on Ω ∩ V (ϕ0) ∩B(R).

We have from Lemma 2, (7) and (10) that

ω(x, V (ϕ0) ∩ S(R), V (ϕ0) ∩B(R))

≤ A3

(
|x|
R

)γ0

≤ A|x|γ0uR(0) for x ∈ V (ϕ0) ∩B(R).

Now what remains is to estimate vR. It follows from (9) that

uR(y) ≤ A|y|γ0uR(0) for y ∈ ∂V (ϕ0) ∩B(R).

Therefore, if x ∈ V (ϕ0) ∩B(r), then

vR(x) ≤ Arγ0uR(0)ω(x, ∂V (ϕ0) ∩B(2r), V (ϕ0))

+
k∑
j=1

A(2jr)γ0uR(0)ω(x, ∂V (ϕ0) ∩B(2j+1r) \B(2jr), V (ϕ0))

+A(2k+1r)γ0uR(0)ω(x, ∂V (ϕ0) ∩B(R) \B(2k+1r), V (ϕ0)),
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where 2k+1r ≤ R < 2k+2r. We find a constant β such that γ0 < β < α(U(ϕ0)) by
(7). We have from Lemma 2 that

vR(x) ≤ Arγ0uR(0) +
∞∑
j=1

A(2jr)γ0uR(0)
( r

2jr

)β
≤ Arγ0uR(0).

Thus the claim (8) follows from (9) and (11).
Consider the family of positive harmonic functions {uR/uR(0)} whose values at 0

are equal to 1. We can choose a sequence Rj →∞ such that uRj/uRj(0) converges
to a positive harmonic function h. In view of (8) and the maximum principle we
observe that

uRj
uRj (0)

≤ Arγ0ω(·,Ω ∩ S(r),Ω ∩B(r)) on Ω ∩B(r),

whenever 1 < r < Rj . Letting j →∞, we obtain

h ≤ Arγ0ω(·,Ω ∩ S(r),Ω ∩B(r)) on Ω ∩B(r).

Since r > 1 is arbitrary, it follows that h is of order at most γ0 and vanishes q.e.
on the boundary of Ω, so that h ∈ F . Thus dimF ≥ 1.

Finally, we consider the general case. Suppose I(ϕ1) 6⊂ Ω. Let Ω′ = Rn \
(V (ϕ1) ∩ Ωc). Then Ω′ is a domain including I(ϕ1). As above, we find a positive
harmonic function h of finite order in Ω′ vanishing q.e. on the boundary of Ω′.
The geometry of Ω implies that I(ϕ1) \ Ω is a bounded set. Hence the regularized
reduced function R̂I(ϕ1)\Ω

h with respect to Ω′ is a potential ([4, Theorem 5.3.5]) and
does not coincide with h, so that the restriction of h− R̂I(ϕ1)\Ω

h to Ω is a positive
harmonic function of finite order in Ω vanishing q.e. on the boundary of Ω. Thus
the theorem follows in this case, too. �
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