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Abstract

Consider a dynamic programming scheme for a decision problem in which all subproblems in-

volved are also decision problems. An implementation of such a scheme is positive-instance

driven (PID), if it generates positive subproblem instances, but not negative ones, building each

on smaller positive instances.

We take the dynamic programming scheme due to Bouchitté and Todinca for treewidth

computation, which is based on minimal separators and potential maximal cliques, and design

a variant (for the decision version of the problem) with a natural PID implementation. The

resulting algorithm performs extremely well: it solves a number of standard benchmark instances

for which the optimal solutions have not previously been known. Incorporating a new heuristic

algorithm for detecting safe separators, it also solves all of the 100 public instances posed by the

exact treewidth track in PACE 2017, a competition on algorithm implementation.

We describe the algorithm and prove its correctness. We also perform an experimental ana-

lysis counting combinatorial structures involved, which gives insights into the advantage of our

approach over more conventional approaches and points to the future direction of theoretical and

engineering research on treewidth computation.
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1 Introduction

Suppose we design a dynamic programming algorithm for some decision problem, formulating

subproblems, which are decision problems as well, and recurrences among those subproblems.

A standard approach is to list all subproblem instances from “small" ones to “large" and

scan the list, deciding the answer, positive or negative, to each instance by means of these

recurrences. When the number of positive subproblem instances are expected to be much

smaller than the total number of subproblem instances, a natural alternative is to generate

positive instances only, using recurrences to combine positive instance to generate a “larger"

positive instance. We call such a mode of dynamic programming execution positive-instance

driven or PID for short. One goal of this paper is to demonstrate that PID is not simply

a low-level implementation strategy but can be a paradigm of algorithm design for some

problems.

The decision problem we consider is that of deciding, given graph G and positive integer

k, if the treewidth of G is at most k. This graph parameter was introduced by Robertson and
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Seymour [17] and has had a tremendous impact on graph theory and on the design of graph

algorithms (see, for example, a survey [7].) The treewidth problem is NP-complete [1] but

fixed-parameter tractable: it has an f(k)nO(1) time algorithm for some fixed function f(k) as

implied by the graph minor theorem of Robertson and Seymour [18], and explicit O(f(k)n)

time algorithm is given by Bodlaender [3]. A classical dynamic programming algorithm due

to Arnborg, Corneil, and Proskurowsky (ACP algorithm) [1] runs in nk+O(1) time. Bouchitté

and Todinca [9] developed a more refined dynamic programming algorithm (BT algorithm)

based on the notions of minimal separators and potential maximal cliques, which lead to

algorithms running in O(1.7549n) time or in O(n5
(

⌈(2n+k+8)/3⌉
k+2

)

) time [11, 12].

Another important approach to treewidth computation is based on the perfect elimination

order (PEO) of a minimal chordal completion of the given graph. PEO-based dynamic

programming algorithms run in O∗(2n) time with exponential space and in O∗(4n) time with

polynomial space [5], where O∗(f(n)) means O(ncf(n)) for some constant c.

There has been a considerable amount of effort on implementing treewidth algorithms to

be used in practice and, prior to this work, the most successful implementations for exact

treewidth computation are all based on PEO. The authors of [5] implemented the O∗(2n)

time dynamic programming algorithm and experimented on its performance, showing that it

works well for small instances. For larger instances, PEO-based branch-and-bound algorithms

are known to work well in practice [14]. Recent proposals for reducing treewidth computation

to SAT solving are also based on PEO [19, 2].

From the PID perspective, this situation is somewhat surprising, for the following reasons.

Let us first review the PEO approach. See [5], for example, for details. Let G be the

input graph. Recall that a PEO of G is a total order v1, . . . , vn on V (G) such that, for

1 ≤ i ≤ n, vi is simplicial in G[Vi], where Vi = {vi, . . . , vn} and a vertex is simplicial

in a graph if its neighbors form a clique. A graph is chordal if it has no induced cycle

of length four or greater. A chordal completion of G is a chordal supergraph of G with

vertex set V (G). The above PEO-based algorithms utilizes two facts: that every chordal

graph has a PEO and that, for chordal graphs, the optimal tree-decomposition consists of

all maximal cliques as bags. Thus, these algorithms look for a total order of V (G) that

is a PEO of a chordal completion of G whose optimal tree-decomposition is an optimal

tree-decomposition of G. The dynamic programming algorithm reduces the search space size

from the naive O(n!) to O(2n) applying the Held-Karp paradigm for sequencing problems

[4]. In the decision problem version, it consists in defining the “feasibility” of each subset

of V (G), to be inductively decided by dynamic programming. Informally, S ⊆ V (G) is

feasible if it has a total ordering that qualifies as a prefix of a total ordering of V (G) that

gives a chordal completion with the clique number k or smaller. This feasibility notion,

however, has a more direct interpretation in terms of tree-decompositions: S is feasible if

each connected component of G[S] is feasible and each connected vertex set C is feasible

if G[C ∪ N(C)], where N(C) is the open neighborhood of S, has a tree-decomposition of

width k or smaller that has a bag containing N(C). This feasibility of connected sets is

nothing but the feasibility considered in the classical ACP algorithm. Thus, each positive

subproblem instance in the PEO-based dynamic programming scheme corresponds to a

combination of an indefinite number of positive subproblem instances in the ACP algorithm,

and hence the number of positive subproblem instances can be exponentially larger than

that in the ACP algorithm. Indeed, a PID variant of the ACP algorithm was implemented

by the present author and has won the first place in the exact treewidth track of PACE 2016

[10], a competition on algorithm implementations, outperforming other submissions based on

PEO. Given this success, a natural next step is to design a PID variant of the BT algorithm,

which is tackled in this paper.
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The resulting algorithm performs extremely well, as reported in Section 7. It is tested on

DIMACS graph-coloring instances [15], which have been used in the literature as standard

benchmark instances [14, 8, 16, 19, 5, 2]. Our implementation of the algorithm solves all the

instances that have been previously solved (that is, with matching upper and lower bounds

known) within 10 seconds per instance on a typical desktop computer and solves 13 out of the

42 previously unsolved instances. For nearly half of the instances which it leaves unsolved, it

significantly reduces the gap between the lower and upper bounds. It is interesting to note

that this is done by improving the lower bound. Since the number of positive subproblem

instances are much smaller when k is below the treewidth than when k equals the treewidth,

the PID approach is particularly good at establishing strong lower bounds.

We also adopt the notion of safe separators due to Bodlaender and Koster [6] in our

preprocessing and design a new heuristic algorithm for detecting safe separators. With this

preprocessing, our implementation also solves all of the 100 public instances posed by PACE

2017 [21], the successor of PACE 2016. It should be noted that these test instances of PACE

2017 are much harder than those of PACE 2016: the winning implementation of PACE 2016

mentioned above, which solved 199 of the 200 instances therein, solves only 62 of these 100

instances of PACE 2017 in the given time of 30 minutes per instance.

Adapting the BT algorithm to work in PID mode has turned out non-trivial. It requires

concepts and observations not present in [9]. We describe these concepts and observations,

formulate our variant in full details, and prove its correctness.

We also perform an experimental analysis in which we count combinatorial structures

involved in both PID and non-PID approaches, namely minimal separators, potential maximal

cliques, and related objects. The analysis reveals that the practical bottleneck of the original

BT algorithm lies in listing potential maximal cliques. Let Pk(G) denote the set of all

potential maximal cliques of cardinality of k + 1 or smaller of graph G. Although there

are theoretical upper bounds of O(1.7549n) and nO(1)
(

⌈(2n+k+8)/3⌉
k+2

)

on the time to compute

Pk(G) [12], where n is the number of vertices, huge gaps between these bounds and |Pk(G)|

are observed in the experiments. This motivates the need of output sensitive algorithms

that run fast when |Pk(G)| is small. Our PID algorithm is a first step in this direction.

Although it does not compute |Pk(G)| in an output sensitive manner, it does compute the

set of positive subproblem instances, whose size is empirically comparable to |Pk(G)|, in an

output sensitive manner.

Due to the space limitation, we omit proofs of lemmas and theorems, all of which can

be found in the full paper. Our implementation in source code is available at our GitHub

repository [13].

2 Preliminaries

In this paper, all graphs are simple, that is, without self loops or parallel edges. Let G be a

graph. We denote by V (G) the vertex set of G and by E(G) the edge set of G. For each

v ∈ V (G), NG(v) denote the set of neighbors of v in G: NG(v) = {u ∈ V (G) | {u, v} ∈ E(G).

For U ⊆ V (G), the open neighbor set of U in G, denoted by NG(U), is the set of vertices

adjacent to some vertex in U but not belonging to U itself: NG(U) = (
⋃

v∈U NG(v)) \ U .

The closed neighbor set of U in G, denoted by NG[U ], is defined by NG[U ] = U ∪NG(U). We

also write NG[v] for NG[{v}] = NG(v) ∪ {v}. We denote by G[U ] the subgraph of G induced

by U : V (G[U ]) = U and E(G[U ]) = {{u, v} ∈ E(G) | u, v ∈ U}. In the above notation, as

well as in the notation further introduced below, we will often drop the subscript G when

the graph is clear from the context.

ESA 2017
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We say that vertex set C ⊆ V (G) is connected in G if, for every u, v ∈ C, there is a

path in G[C] between u and v. It is a connected component of G if it is connected and

is inclusion-wise maximal subject to this condition. A vertex set C in G is a component

associated with S ⊆ G, if C is a connected component of G[V (G) \ S]. For each S ⊆ V (G),

we denote by CG(S) (or C(S) when G is clear from the context) the set of all components

associated with S. A vertex set S ⊆ V (G) is a separator of G if |CG(S)| ≥ 2. A component

C is a full component associated with separator S if N(C) = S. A separator S is a minimal

separator if there are at least two full components associated with S. This term is justified

by this fact: if S is a minimal separator and a, b vertices belonging to two distinct full

components associated with S, then for every proper subset S′ of S, a and b belong to the

same component associated with S′; S is a minimal set of vertices that separates a from b.

Graph H is chordal if every induced cycle of H has length exactly three. H is a minimal

chordal completion of G if it is chordal, V (H) = V (G), E(G) ⊆ E(H), and E(H) is minimal

subject to these conditions. A vertex set Ω ⊆ V (G) is a potential maximal clique of G, if Ω

is a clique in some minimal chordal completion of G.

A tree-decomposition of G is a pair (T, X ) where T is a tree and X is a family {Xi}i∈V (T )

of vertex sets of G such that the following three conditions are satisfied. We call members of

V (T ) nodes of T and each Xi the bag at node i.

1.
⋃

i∈V (T ) Xi = V (G).

2. For each edge {u, v} ∈ E(G), there is some i ∈ V (T ) such that u, v ∈ Xi.

3. For each v ∈ V (G), the set of nodes Iv = {i ∈ V (T ) | v ∈ Xi} of V (T ) induces a

connected subtree of T .

The width of this tree-decomposition is maxi∈V (T ) |Xi| − 1. The treewidth of G, denoted by

tw(G) is the minimum width of all tree-decompositions of G. We may assume that the bags

Xi and Xj are distinct from each other for i 6= j and, under this assumption, we will often

regard a tree-decomposition as a tree T in which each node is a bag.

We call a tree-decomposition T of G canonical if each bag of T is a potential maximal

clique of G and, for every pair X, Y of adjacent bags in T , X ∩ Y is a minimal separator of

G. The following fact is well-known. It easily follows, for example, from Proposition 2.4 in

[9].

◮ Lemma 1. Let G be an arbitrary graph. There is a tree-decomposition T of G of width

tw(G) that is canonical.

The following local characterization of a potential maximal clique is crucial. We say that

a vertex set S ⊆ V (G) is cliquish in G if, for every pair of distinct vertices u and v in S,

either u and v are adjacent to each other or there is some C ∈ C(S) such that u, v ∈ N(C).

In other words, S is cliquish if completing N(C) for every C ∈ C(S) into a clique makes S a

clique.

◮ Lemma 2 (Theorem 3.15 in [9]). A separator S of G is a potential maximal clique of G if

and only if (1) S has no full-component associated with it and (2) S is cliquish.

It is also shown in [9] that if Ω is a potential maximal clique of G and S is a minimal

separator contained in Ω, then there is a unique component CS associated with S that

contains Ω \ S. We need an explicit way of forming CS from Ω and S.

Let K ⊆ V (G) be an arbitrary vertex set and S an arbitrary proper subset of K. We

say that a component C ∈ C(K) is confined to S if N(C) ⊆ S; otherwise it is unconfined to

S. Let unconf(S, K) denote the set of components associated with K that are unconfined

to S. Define crib(S, K) = (K \ S) ∪
⋃

C∈unconf(S,K) C. The following lemma relies only on
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the second property of potential maximal cliques, namely that they are cliquish, and will be

applied not only to potential maximal cliques but also to separators with full components,

which are trivially cliquish.

◮ Lemma 3. Let K ⊆ V (G) be a cliquish vertex set. Let S be an arbitrary proper subset of

K. Then, crib(S, K) is a full component associated with S.

◮ Remark. As crib(S, K) contains K \ S, it is clearly the only component associated with S

that intersects K. Therefore, the above mentioned assertion on potential maximal cliques is

a corollary of this Lemma.

3 Recurrences on oriented minimal separators

In this section, we fix graph G and positive integer k that are given in the problem instance:

we are to decide if the treewidth of G is at most k.

For connected set C ⊆ V (G), we denote by G〈C〉 the graph obtained from G[N [C]] by

completing N(C) into a clique: V (G〈C〉) = N [C] and E(G〈C〉) = E(G[N [C]]) ∪ {{u, v} |

u, v ∈ N(C), u 6= v}. We say C is feasible if tw(G〈C〉) ≤ k. Equivalently, C is feasible if

G[N [C]] has a tree-decomposition of width k or smaller that has a bag containing N(C).

Let us first review the BT algorithm [9] adapting it to our decision problem. We first

list all minimum separators of cardinality k or smaller and all potential maximal cliques

of cardinality k + 1 or smaller. Then, for each pair of a potential maximal clique Ω and

a minimal separator S such that S ⊂ Ω, place a link from S to Ω. To understand the

difficulty of formulating a PID variant of the algorithm, it is important to note that the

pair (Ω, S) to be linked is easy to find from the side of Ω, but not the other way round.

Then, we scan the full blocks (N(C), C) of minimal separators in the increasing order of |C|

to decide if C is feasible, using the following recurrence: C is feasible if and only if there

is some potential maximal clique Ω such that N(C) ⊂ Ω, C = crib(N(C), Ω), and every

component D ∈ unconf(N(C), Ω) is feasible. Finally, we have tw(G) ≤ k if and only if there

is a potential maximal clique Ω with |Ω| ≤ k + 1 such that every component associated with

Ω is feasible.

To facilitate the PID construction, we orient minimal separators as follows. We assume a

total order < on V (G). For each vertex set U ⊆ V (G), the minimum element of U , denoted

by min(U), is the smallest element of U under <. For vertex sets U and W , we say U

precedes W and write U ≺ W if min(U) < min(W ).

We say that a connected set C is inbound if there is some full block associated with

N(C) that precedes C; otherwise, it is outbound. Observe that if C is inbound then

N(C) is a minimal separator, since N(C) has another full component associated with it.

Contrapositively, if N(C) is not a minimal separator then C is necessarily outbound. We say

a full block (N(C), C) is inbound (outbound) if C is inbound (outbound, respectively).

◮ Lemma 4. Let K be a cliquish vertex set and let A1, A2 be two components associated with

K. Suppose that A1 and A2 are outbound. Then, either N(A1) ⊆ N(A2) or N(A2) ⊆ N(A1).

Let K be a cliquish vertex set. Based on the above lemma, we define the outlet of K,

denoted by outlet(K), as follows. If no non-full component associated with K is outbound,

then we let outlet(K) = ∅. Otherwise, outlet(K) = N(A), where A is a non-full component

associated with K that is outbound, chosen so that N(A) is maximal. We define support(K) =

unconf(outlet(K), K), the set of components associated with K that are not confined to

outlet(K). By Lemma 4, every member of support(K) is inbound.

ESA 2017
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We call a full block (N(C), C) an I-block if C is inbound and |N(C)| ≤ k. We call it an

O-block if C is outbound and |N(C)| ≤ k.

We say that an I-block (N(C), C) is feasible if C is feasible. We say that an O-block

(N(A), A) is feasible if N(A) =
⋃

C∈C N(C) for some set C of feasible inbound components.

Note that this definition of feasibility of an O-block is somewhat weak in the sense that we

do not require every inbound component associated with N(A) to be feasible.

Let Ω be a potential maximal clique with |Ω| ≤ k + 1. For each C ∈ support(Ω), block

(N(C), C) is an I-block, since C is inbound as observed above and we have |N(C)| ≤ k by

our assumption that |Ω| ≤ k + 1. We say that Ω is feasible if |Ω| ≤ k + 1 and either

1. Ω = N [v] for some v ∈ V (G),

2. there is some subset C of support(Ω) such that Ω =
⋃

D∈C N(D) and every member of C

is feasible, or

3. Ω = N(A) ∪ (N(v) ∩ A) for some feasible O-block (N(A), A) and a vertex v ∈ N(A).

We say that Ω is strongly feasible if |Ω| ≤ k + 1 and every C ∈ support(Ω) is feasible. It will

turn out that every strongly feasible potential maximal clique is feasible (Lemma 9). This

implication, however, is not immediate from the definitions.

◮ Lemma 5. We have tw(G) ≤ k if and only if G has a strongly feasible potential maximal

clique Ω with outlet(Ω) = ∅.

◮ Lemma 6. Let C be a connected set of G such that N(C) is a minimal separator. Let Ω

be a potential maximal clique of G〈C〉. Then, Ω is a potential maximal clique of G.

The following is our oriented version of the recurrence in the BT algorithm described in

the beginning of this section.

◮ Lemma 7. An I-block (N(C), C) is feasible if and only if there is some strongly feasible

potential maximal clique Ω with outlet(Ω) = N(C) and
⋃

D∈support(Ω) D = C.

◮ Lemma 8. Let K be a cliquish vertex set, C a non-empty subset of support(K), and

S =
⋃

C∈C N(C). If S is a proper subset of K then crib(S, K) is outbound.

The following lemma is crucial for our PID result: the algorithm described in the next

section generates all feasible potential maximal cliques and we need to guarantee all strongly

feasible maximal cliques to be among them.

◮ Lemma 9. Let Ω be a strongly feasible potential maximal clique. Then, Ω is feasible.

4 Algorithm

Given graph G and positive integer k, our algorithm generates all I-blocks, O-blocks, and

potential maximal cliques that are feasible. In the following algorithm, variable I is used

for listing feasible I-blocks, O for feasible O-blocks, P for feasible potential maximal cliques,

and S for strongly feasible potential maximal cliques.

Algorithm PID-BT

Input Graph G and positive integer k

Output “YES” if tw(G) ≤ k; “NO” otherwise

Procedure

1. Let I0 = ∅ and O0 = ∅.

2. Initialize P0 and S0 to ∅.

3. Set j = 0.
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4. For each v ∈ V (G), if N [v] is a potential maximal clique with |N [v]| ≤ k + 1 then add

N [v] to P0 and if, moreover, support(N [v]) = ∅ then do the following.

a. Add N [v] to S0.

b. If outlet(N [v]) 6= ∅ then let C = crib(outlet(N [v]), N [v]) and, provided that C 6= Ch

for 1 ≤ h ≤ j, increment j and let Cj = C.

5. Set i = 0.

6. Repeat the following and stop repetition when j is not incremented during the iteration

step.

a. While i < j, do the following.

i. Increment i and let Ii be Ii−1 ∪ {Ci}.

ii. Initialize Oi to Oi−1, Pi to Pi−1, and Si to Si−1.

iii. For each B ∈ Oi−1 such that Ci ⊆ B and |N(Ci) ∪ N(B)| ≤ k + 1, let K =

N(Ci) ∪ N(B) and do the following.

A. If K is a potential maximal clique, then add K to Pi.

B. If |K| ≤ k and there is a full component A associated with K (which is unique),

then add A to Oi.

iv. Let A be the full component associated with N(Ci) and add A to Oi.

v. For each A ∈ Oi \Oi−1 and v ∈ N(A), let K = N(A)∪ (n(v)∩A) and if |K| ≤ k +1

and K is a potential maximal clique then add K to Pi.

vi. For each K ∈ Pi \ Si−1, if support(K) ⊆ Ii then add K to Si and do the following:

if outlet(K) 6= ∅ then let C = crib(outlet(K), K) and, provided that C 6= Ch for

1 ≤ h ≤ j, increment j and let Cj = C.

7. If there is some K ∈ Sj such that outlet(K) = ∅, then answer “YES”; otherwise, answer

“NO”.

◮ Theorem 10. Algorithm PID-BT, given G and k, answers “YES” if and only if tw(G) ≤ k.

5 Experimental analysis

To identify the practical bottleneck in the BT algorithm, we have performed some experi-

ments. We are interested in the number of combinatorial objects involved in the treewidth

computation: minimal separators, potential maximal cliques, and feasible objects used in our

PID algorithm. In the case of minimal separators and potential maximal cliques, we count

the total numbers of those as well as of those relevant in our decision problem: minimal

separators with cardinality k or smaller and potential maximal cliques with cardinality k + 1

or smaller.

Table 1 shows the results on some random instances, with k set to the treewidth of the

graph: we are not interested in larger k and, for smaller k, the numbers in the columns

dependent on k are smaller. The full paper contains results for more graphs with varying

number of edges. The total number of minimal separators and that of potential maximal

cliques grow much faster than the number of feasible objects in our algorithm, as the size of

the graph grows. However, the growth in the numbers of relevant minimal separators and

relevant potential maximal cliques is similar to the growth in the number of feasible objects.

For example, the number of relevant potential maximal cliques grows only slightly faster

than the number of feasible potential maximal cliques and is within 1.2 times the latter for

the graph with 40 vertices.

Thus, scanning all relevant minimal separators and all relevant potential maximal cliques

as in the original BT algorithm may not be an immediate disadvantage. The bottleneck lies

rather in the time to list all relevant potential maximal cliques. Table 2 shows the number of

ESA 2017
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Table 1 The numbers of principal objects in treewidth computation.

minimal separators potential maximal cliques feasible objects

|V | |E| tw all ≤ tw all ≤ tw + 1 I-blocks O-blocks PMCs

20 60 8 191 48 796 96 46 108 93

30 90 11 2983 247 20154 682 228 708 618

40 120 14 164773 2356 1740644 10372 2080 8637 8577

Table 2 The number of objects involved in generating principal objects.

≤ tw + 1 vertex feasible objects pairs to be

|V | |E| tw PMCs representations I-blocks O-blocks PMCs examined

20 60 8 96 25263 46 108 93 206

30 90 11 682 3480559 228 708 618 1351

40 120 14 10372 167700496 2080 8637 8577 17906

additional combinatorial objects, called vertex representations, which needs to be generated

in the algorithm in [12] in order to list all relevant potential maximal cliques.

The figures in the table suggests that a more output sensitive algorithm for listing

relevant potential maximal cliques is desirable and that some method not relying on vertex

representation is needed to achieve this goal.

In our PID approach, each feasible potential maximal clique, except in the base case,

is generated from a combination of a feasible O-block and a feasible I-block. Each feasible

O-block in turn is generated also from a combination of a feasible O-block and a feasible

I-block. Let I be the set of feasible I-blocks and O the set of feasible O-blocks of the given

graph. The crucial fact to our advantage is that most of the pairs in I × O are easily seen

not to generate a new O-block or a potential maximal clique. The last column in Table 2

shows that the number of pairs in I × O that remain to be examined seriously is quite small.

The data structure we called block sieves, described in the next section, is used to quickly

filter out those simply rejectable pairs.

Algorithm PID-BT has a trivial output-sensitive upper bound of nO(1)|I| · |O| on the

time to generate necessary objects. A tighter analysis of our algorithm would be of great

interest. It is also interesting to study if our approach can be applied to the problem of

listing relevant potential maximal cliques.

6 Implementation

In this section, we sketch two important ingredients of our implementation. Although both

are crucial in obtaining the result reported in Section 7, our work on this part is preliminary

and improvements are the subject of future research.

6.1 Data structures

The crucial elementary operation in our algorithm is the following. We have a set O of

feasible O-blocks obtained so far and, given a new feasible I-block (N(C), C), need to find all

members (N(A), A) of O such that C ⊆ A and |N(C) ∪ N(A)| ≤ k + 1. As the experimental

analysis in the previous section shows, there is only a few such A on average for the tested

instances even though O is usually huge. To support an efficient query processing, we

introduce an abstract data structure we call block sieve.
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Let G be a graph and k a positive integer. A block sieve for graph G and width k is a

data structure storing vertex sets of V (G) which supports the following operations.

store(U) : store vertex set U in in the block sieve.

supersets(U) : return the list of entries W stored in the block sieve such that U ⊆ W and

|N(U) ∪ N(W )| ≤ k + 1.

Data structures for superset query have been studied [20]. The second condition above on

the retrieved sets, however, appears to make this data structure new. For each U ⊆ V (G), we

define the margin of U to be k + 1 − |N(U)|. Our implementation of block sieves described

below exploits an upper bound on the margins of vertex sets stored in the sieve.

We first describe how such block sieves with upper bounds on margins are used in

our algorithm. Let O be the current set of O-blocks. We use t block sieves B1, . . . , Bt,

each Bi having a predetermined upper bound mi on the margins of the sets stored. We

have 0 < m1 < m2 < . . . < mt = k. We set m0 = 0 for notational ease below. In our

implementation, we choose roughly t = log2 k and mi = 2i for 0 < i < t. For each (N(A), A)

in O, A is stored in Bi such that the margin k + 1 − |N(A)| is mi or smaller but larger than

mi−1. When we are given an I-block (N(C), C) and are to list relevant blocks in O, we query

all of the t blocks with the operations supersets(C). These queries as a whole return the list

of all vertex sets A such that (N(A), A) ∈ O, C ⊆ A, and |(N(A) ∪ N(C))| ≤ k + 1.

We implement a block sieve by a trie T . The upper bound m on margin is not used

in the construction of the sieve; it is used in the query time. In the following, we assume

V (G) = {1, . . . , n} and, by an interval [i, j], 1 ≤ i ≤ j ≤ n, we mean the set {v : i ≤ v ≤ j}

of vertices. Each non-leaf node p of T is labelled with a non-empty interval [sp, fp], such

that sr = 0 for the root r, sp = fq + 1 if p is a child of q, and fp = n if p is a parent of a leaf.

Each edge (p, q) which connects node p and a child q of p, is labelled with a subset S(p,q) of

the interval [sp, fp]. Thus, for each node p, the union of the labels of the edges along the

path from the root to p is a subset of the interval [1, sp − 1], or [1, n] when p is a leaf, which

we denote by Sp. The choice of interval [sp, fp] for each node p is heuristic. It is chosen so

that the number of descendants of p is not too large or too small. In our implementation,

the interval size is adaptively chosen from 8, 16, 32, and 64.

Each leaf q of trie T represents a single set stored at this leaf, namely Sq as defined above.

We denote by S(T ) the set of all sets stored in T . Then, for each node p of T , the set of

sets stored under p is {U ∈ S(T ) | U ∩ [1, p] = Sp}.

We now describe how a query is processed against this data structure. Suppose query

U is given. The goal is to visit all leaves q such that U ⊆ Sq and |N(U) ∪ N(Sq)| ≤ k + 1.

This is done by a depth-first traversal of the trie T . When we visit node p, we have the

invariant that U ∩ [1, fp] ⊆ Sp, since otherwise no leaf in the subtree rooted at p stores

a superset of U . Therefore, we descend from p to a child p′ of p only if this invariant is

maintained. Moreover, we keep track of the quantity i(p, U) = |N(U) ∩ Sp| in order to

make further pruning of search possible. For each leaf q below p such that U ⊆ Sq, we have

i(q, U) ≥ i(p, U). Combining this with eauality |N(U) \ N(Sq)| = |N(U) ∩ Sq| = i(q, U), we

have |N(U) ∪ N(Sq)| ≥ |N(Sq)| + i(p, U). Since we know an upper bound m on the margin

k + 1 − |N(Sq)| of Sq, or lower bound k + 1 − m on |N(Sq)|, we may prune the search under

node p if i(p, U) > m, since this inequality implies |N(U) ∪ N(Sq)| > k + 1 for every leaf q

under p. When we reach a leaf q, we test if |N(U) ∪ N(Sq)| ≤ k + 1 indeed holds.

6.2 Safe separators

The notion of safe separators for tree width was introduced by Bodlaender and Koster [6]: a

separator S of G is safe if completing S into a clique does not change the treewidth of G. If

ESA 2017
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we find a safe separator S then the problem of deciding tree width of G reduces to that of

deciding the treewidth of G〈C〉 for each component C associated with S. Preprocessing G

into such independent subproblems is highly desirable whenever possible.

The above authors observed that a powerful sufficient condition for safeness can be

formulated based on graph minors. A labelled minor of G is a graph obtained from G by

zero or more applications of the following operations. (1) Edge contraction: choose an edge

{u, v}, replace u and v by a single new vertex and let all neighbors of u and v be adjacent to

this new vertex; name the new vertex as either u or v. (2) Vertex deletion: delete a vertex

together with all incident edges. (3) Edge deletion.

◮ Lemma 11 (Bodlaender and Koster [6]). A separator S of G is safe if, for every component

C associated with S, G[V (G) \ C] contains clique S as a labelled minor.

Call a separator minor-safe if it satisfies the sufficient condition for safeness stated in this

lemma. Bodlaender and Koster [6] showed that if S is a minimal separator and is an almost

clique (deleting some single vertex makes it a clique) then S is minor-safe and moreover that

the set of all almost clique minimal separators can be found in O(n2m) time, where n is the

number of vertices and m is the number of edges.

We aim at capturing as many minor-safe separators as possible, at the expense of

theoretical running time bounds on the algorithm for finding them. Thus, in our approach,

both the algorithm for generating candidate separators and the algorithm for deciding

minor-safeness are heuristic. For candidate generation, we use greedy heuristic for treewidth

such as min-fill and min-degree: the separators in the resulting tree-decomposition are all

candidates for safe separators.

When we apply our heuristic decision algorithm for minor-safeness to candidate separator

S, one of the following occurs.

1. The algorithm answers “YES”. In this case, the required labelled clique minor has been

found for every component associated S and hence S is minor-safe.

2. The algorithm answers “DON’T KNOW”. In this case, the algorithm has failed to find

a labelled clique minor for at least one component, and hence it is not known if S is

minor-safe or not.

3. The algorithm aborts, after reaching the prescribed number of execution steps.

Our heuristic decision algorithm works in two phases. Let S be a separator, C a component

associated with S, and R = V (G) \ (S ∪ C). In the first phase, we contract edges in R and

obtain a graph B on vertex set S ∪R′, where each vertex of R′ is a contraction of some vertex

set of R and B has no edge between vertices in R′. For each pair u, v of distinct vertices

in S, let N(u, v) denote the common neighbors of u and v in graph B. The contractions

are performed with the goal of making |N(u, v) ∩ R′| large for each missing edge {u, v}

in S. In the second phase, for each missing edge {u, v}, we choose a common neighbor

w ∈ N(u, v) ∩ R′ and contract either {u, w} or {v, w}. The choice of the next missing edge

to be processed and the choice of the common neighbor are done as follows. Suppose the

contractions in the second phase are done for some missing edges in S. For each missing edge

{u, v} not yet “processed”, let N ′(u, v) be the set of common neighbors of u and v that are

not yet contracted with any vertex in S. We choose {u, v} with the smallest |N ′(u, v) ∩ R′|

to be processed next. Tie-breaking when necessary as well as the choice of the common

neighbor w in N ′(u, v) ∩ R′ to be contracted with u or v is done in such a way that the

minimum of |(N ′(x, y) ∩ R′) \ {w}| is maximized over all remaining missing edges {x, y} in S.

The performance of these heuristics strongly depends on the instances. For PACE 2017

public instances, they work quite well. Table 3 shows the preprocessing result on the last 10
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Table 3 Safe separator preprocessing on PACE 2017 instances.

name |V | |E| tw(G) safe separators found max subproblem time(secs)

ex181 109 732 18 18 89 0.078

ex183 265 471 11 173 76 0.031

ex185 237 793 14 142 52 0.046

ex187 240 453 10 138 81 0.031

ex189 178 4517 70 6 161 0.062

ex191 492 1608 15 184 132 0.171

ex193 1391 3012 10 791 119 3.17

ex195 216 382 10 114 84 0.015

ex197 303 1158 15 176 56 0.062

ex199 310 537 9 157 131 0.046

of those instances. For each instance, the number of safe separators found and the maximum

subproblem size in terms of the number of vertices, after the graph is decomposed by the

safe separators found, are listed. The results show that these instances, which are deemed

the hardest among all the 100 public instances, are quickly decomposed into manageable

subproblems by our preprocessing.

On the other hand, these heuristics have turned out useless for most of the DIMACS

graph coloring instances: no safe separators are found for those instances. We suspect

that this is not the limitation of the heuristics but is simply because those instances lack

minor-safe separators.

7 Performance results

We used our implementation of the PID-BT algorithm to determine the treewidth of bench-

mark instances. For a given instance, we use our decision procedure with k being incremented

one by one, starting from the obvious lower bound, namely the minimum degree of the graph.

Binary search is not used because the cost of overshooting the exact treewidth is huge.

The computing environment for the experiment is as follows. CPU: Intel Core i7-7700K,

4.20GHz; RAM: 32GB; Operating system: Windows 10, 64bit; Programming language: Java

1.8; JVM: jre1.8.0_121. The maximum heap size is 6GB by default and is 24GB where it

is stated so. The implementation is single threaded, except that multiple threads may be

invoked for garbage collection by JVM. The time measured is the CPU time, which includes

the garbage collection time.

Table 4 lists the DIMACS graph coloring instances that are newly solved: the previously

known upper and lower bounds did not match. For all but three of them, the previous best

upper bound has turned out optimal: only the lower bound was weaker. In this experi-

ment, however, no knowledge of previous bounds are used and our algorithm independently

determines the exact treewidth.

The results on “queen" instances illustrate how far our algorithm has extended the

practical limit of exact treewidth computation. Queen7_7 with 49 vertices is the largest

instance previously solved, while queen10_10 with 100 vertices is now solved.

Our implementation also solves all previously solved DIMACS graph coloring instances

within 10 seconds per instance and many of them within a second. Moreover, for many of the

test instances which it leaves unsolved, it significantly improves the previously best known

lower bounds. The details can be found in the full paper.

Table 5 summarizes the result on PACE 2017 public instances. More details can be found

in the full paper. The instance which took the longest time (530 seconds) was “ex169” which
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Table 4 Newly solved DIMACS graph coloring instances.

name |V | |E| tw time(secs) prev UB prev LB

DSJC125.5 125 3891 108 459 108 56

DSJC250.9 250 27897 243 0.44 243 212

DSJC500.9 500 112437 492 14 492 433

DSJR500.5 500 58862 246 546 - -

games120† 120 638 32 94738 32 24

homer† 561 1628 30 2765 31 26

miles750 128 2113 36 0.23 36 35

myciel6 95 755 35 419 35 29

queen8_8 64 728 45 4.16 45 25

queen9_9 81 1056 58 274 58 35

queen8_12 96 1368 65 649 - 39

queen10_10 100 1470 72 20934 72 39

Previous upper bounds from [14] and [16]; previous lower bounds from [14] and [8].
† 24GB heap space is used for these instances.

Table 5 Summary of the results on PACE 2017 public instances.

t ≤ 1 sec 1 sec < t ≤ 1 min 1 min < t ≤ 10 min

the number of instances solved in time t 25 68 7

has 3706 vertices, 42236 edges, and treewidth 22. Considering the fact that this test set

has been designed to be challenging for the second competition on treewidth in PACE and

that the time allocated for each instance is 30 minutes, we can say that our implementation

performs quite well.
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