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1. Introduction. Since Fejer [6] showed that the (C, 1) summability
of Fourier series follows from

(1.1) Σ sin (k + — )θ ^ 0 , 0 ^ θ ^ π ,

and the (C, 2) summability of Laplace series [ 7 ] depends on

(1.2) Σ PΛC0* #) ^ ° » 0 ^ 0 ^ TΓ ,

(Pfc(«) the Legendre polynomial of degree n), there has been interest in
finding other nonnegative polynomials expansions which could be used
to obtain new results in harmonic analysis. One of the early series was

(1.3) Σ ^ T ^ - > 0 , 0 < θ < π .

(1.3) was conjectured by Fejer in 1910 and proven by Jackson [15] and
Gronwall [13]. This inequality was surprisingly hard to prove and the
first simple proof was found by Landau [17]. The first proof which really
explains why (1.3) holds seems to be due to Turan [25]. Actually this
was not explained in [25] but in a later paper [26] where Turan proved

THEOREM A. If

(1.4) Σ bk sin(2/c - 1) 0 ^ 0 , 0 <θ <π
fc = l

then

(1.5) Σ T * s i n teP > ° > 0<φ<π
k=ι k

unless all of the bk are zero.

When bk = 1, (1.4) is (1.1) and (1.5) is (1.3) and so (1.1) is a more
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basic inequality than (1.3). Other proofs of Theorem A were given by
Hylten-Cavallius [14] and Askey, Fitch, and Gasper [4J.

In addition to proving (1.3) Turan [25] proved

(1.6) £sin]cθ_ < 2 ^ ? H L M . = = 7 r _ g 9 o < θ < π .

Hylten-Cavallius [14] reproved (1.6) and stated both (1.3) and (1.6) in the
following symmetrical form

(1.7) Σ
sinkθ

k

There have been extensions of (1.1), (1.2) and (1.3) to other orthogonal
expansions. Let Pia'β)(x) denote the Jacobi polynomial defined by

(x) [ ( i x y ( i + x y \ .

2nn ! dxn

Feldheim [11] proved that
(1 8) a ^ - g ^ 0 ' * ^ 0 ' - 1 ^ ^ 1 -
For a = 0 (1.8) is (1.2) and for a = 1/2 it is (1.3). Feldheim's proof was
by a new fractional integral connecting Pia'a){x) with Piβ'β){y) and so it
really gives

THEOREM B. If

(1.9) Άa"JfM = °' - 1 = X = 1'a > -1'
then

(1.10) pg
Using a more general fractional integral connecting two different

Jacobi polynomials Askey and Fitch have shown

THEOREM C. If

then

(1.12)
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See [1, (4.11)].
From Theorem C and other results Askey and Fitch proved

for

a ^ β ^ 0; a ^ 0, -±- ^ /S < 0; a ^ (-/3 - 1 + i/(/32 - 2/? - l))/2 ,
Δ

This last condition is given incorrectly in [3].
Unfortunately no applications were given for (1.13) in [3], so we were

unaware that it was not a particularly useful generalization of Feldheim's
result (1.8). A more useful inequality would be

n p(a,β)(Ύ\

(1 14) Y k \ ' > 0
( 1 1 4 ) £ p " β ) ( i )

2. Jacobi sums. Before proving (1.14) for some (α, β) let us con-
sider an application. It is well known that the Poisson kernel for Fourier
series is positive, i.e.

(2.1) — + Σ rn cos n(θ - φ) > 0 , - 1 < r < 1 .
2 Λ = l

The even part of this series is also positive, so

(2.2) — + Σrn cos n θ cos n φ > 0 , 0 ^ r < 1 , 0 ^θ, φ <Lπ .
2 »=i

(2.2) was generalized to Jacobi polynomials by Bailey [5], who proved

(2.3) Σ r» (2n + a + β + ί)Γ{n + a + β + 1 ) Γ ( ^ + 1 } PΪ'»(x)P<r'»(y) > 0 ,
o Γ(^ + α + 1)Γ(^ + β + 1)

0 ^ r < 1 , - 1 ^ α, 2/ ̂  1, α, £ > - 1 .

Bailey actually summed the series (2.3) and the positivity was obvious
from his formula. The case a = β = -1/2 is (2.2). The positivity of
(2.3) gives the following strong maximum principle (as is well known).

THEOREM 1. Let f(x) be measurable, f(x) ^ 0 a.e. and

[\f(x)\(l-x)a(l +

if
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Γ f(x)Pi" n(x)(l - x)a(l + xYdx
_ J - l _____

an — fl
\ ΓP^ ^MIVI rv>\a(Λ J- fv\βrlrγ*
I [ Γ B \ ̂ /J \-L — »*v \-*- ~ι v/ UΊI/

J - l

/O >1\ f ΛvΛ V ŷ Λ*np(a,β)(r\ 0 < r <̂  1> 0 unless f(x) = 0 a.e.

When a = β = -1/2 Fejer [8] showed that the partial sums of (2.3)
are always nonnegative for 0 ̂  r ^ 1/2, but not for r > 1/2. Then he
observed that the partial sums of (2.4) are also nonnegative for 0 ̂  r ^ 1/2
when f(x) ^ 0 , - 1 ̂  x ^ 1. For a = β = 0 Szego [22] showed that the
partial sums of (2.3) are nonegative for 0 ̂  r ^ 1/3, but not for larger r.
We will prove the following conditional theorem.

THEOREM 2. If a ^ β ^ -1/2 and

n τ>(a,β)(rr\

(2.5) Σ — — — ^ 0

then

(2 6) y r* (2fe + « + /9 + l)Γ(fe + « + /9 + l)Γ(fe + 1) n M I ( ) n M ) u > 0
V * Γ(Λ + α + 1)Γ(Λ + /3 + 1) * * ~ '

0 ^ r ^ l/(α+/3 + 3), - 1 ̂  x, y ^ 1 .

(2.6) fails for n = 1, x = - 1 , y = 1 if r > l/(α + /S + 3) .

The last remark is easy, since (2.6) becomes

Γ(2) (1 )(_ 1 ) α ,

2)Γ(β + 2)

We have used

n !

In general, series with two variables are too complicated to handle
and so it is surprising that (2.6) can be proven. There is a recent result
of Gasper [12] which allows us to suppress one of the variables and then
recover it. It clearly is necessary to have (2.6) for y = 1 if we wish to
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have it for —1 ^ y ^ 1. Gasper's result says that this is also sufficient.
A special case is

THEOREM D. Let f(x) be a continuous function, a ^ β ^ —1/2,

i.e.

an = ^_f(x)PΪ'β)(x)(l - x)a(l +

and assume

Σ I α J (n + 1)* < - .
Λ = 0

7/ /(a) :> 0, - 1 ^ a? ̂  1 then f(x, y) :> 0, - 1 ^ x, y ^ 1,

71 = 0

When y = 1, it is sufficient to show

Λ P̂ >̂(α?) , ^ γk (2k + α + β + l)Γ(k + α + β + 1) Pfe

("^(^) ^ 0

* fc P^ α)(l) ίέί Γ(fc + 1) P^'α)(l) ~ ') ( ) ()

A summation by parts gives the nonnegativity of (2.6) if (2.5) holds and

ck+ι ^ ck = rk (2k + a + β + l)Γ(k + a + β + ΐ)/Γ(k + 1) .

This is equivalent to

(k + DW + a + β + l) fc = 0,1, - ^ - 1 ^ = 1, 2,
(fe + α + β + l)(2fc + a + /3 + 3)

A routine calculation shows that the right hand side is an increasing
function of k and so (2.6) holds for 0 ^ r ^ l/(a + β + 3).

When a = β = 0 this argument was used by Szego [22]. In the
usual fashion Theorem 2 can be applied to a function f(x) ^ 0, as in
Theorem 1. For a — β — "half an integer" it can be applied to spherical
harmonic expansions. Szego gives the details for the case a — β = 0 and
Laplace series on the sphere in 3-space. As it stands Theorem 2 is not
very satisfactory, since the condition (2.5) must be checked. Some values
of (a, β) for which it holds are given in

THEOREM 3.

First consider a = β + 1.
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(2.7)

Recall that

(2.8) l
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_ ^ (k + β + l)Pjβ+1'β)(x)

Use of (2.8) in (2.7) gives

(2.9) (1-*)

But

Pjβ+1-β)(x) _ A

(2.10)

[24, (4.5.4)] .

^ l , - l ^ x ^ l , a ^ - ± β > - l , [24, (7.32.2)] ,
Δ

so the right hand side of (2.9) is nonnegative, which proves (2.5) for

Then Bateman's integral [3, (3.4)]

μ > 0, a — μ > — 1 gives (2.6) for — 1 < a ^* β + 1, a + β ^ 0 .

Unfortunately (2.6) does not hold for all (a, β), a ^ β ^—1/2. As
Szegδ [11] pointed out it fails for n = 2 when a — β — —1/2. However
(2.6) holds for a = β = -1/2, so it probably holds for all a, β ^ -1/2,
even when (2.5) fails.

As a generalization of (1.7) we prove

THEOREM 4.

When - 1 < x < 1

From [3, (3.8)]

(2.12)

P (α,α)
- 1 ^ x£ 1

is result also holds for r — 1.

(1 -
1 P i ί + / < α )(l)

fcS^' ^ > 0

and the positivity of the Poisson kernel (2.3) one can show that
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ϊ) = L W*M
 dμM' dμM - °

See a similar argument in [3, (4.18)].
When μ - 1, (2.13) gives

(2.14) _•(*, 1/) - £, r p , α + 1 , α + 1 ) ( 1 ) Γ ( f c + α + 1 } Pu (if) _ 0 ,

0£r<1.

The Christoffel-Darboux formula [24, (4.5.3)] gives

Λ - A f r"^^M T (2i

where _1 — A(a) > 0. Integration gives

I J-i '

But D(x, y) _ 0 and \PLa>a){y)\ __ | P^a){l)\, this was (2.10), so

(2.15)

When - l < a j < l the function ΣΓ=o (^(α+1'α+1)(^))/(Piα+1'α+1)(l)) is continuous
and so we may let r—>1 in (2.15) to complete the proof of Theorem 4.

A more complicated argument can be used to show that equality only
holds in (2.15) for n — 0. This follows from a more detailed study of the
measure dμx(y) in (2.13). It is not only nonnegative but strictly positive.
Since I know of no applications of this refinement it will not be given
here.

3. Comments and other problems. The main problem in this area is
to show the positivity of the (C, a + β + 2) means of (2.3), α, /5 _ —1/2.
For a = β this was done by Kogbetliantz [16]. Earlier Fejer had proven
this for a — β = —1/2 and a — β = 0, and somewhat later he proved this
for a = 1/2, β = -1/2 [10]. This last result suggested the (C, a + β + 2)
conjecture, and for a — — /3 the conjecture follows from the case a —
1/2 = — β when the Bateman integral (2.11) is used. This is a general
phenomenon, i.e. the result for (a + β + 1/2, —1/2) could be used to prove
this conjecture for (a, β).

This conjecture is the only missing fact in the proof of Lp con-
vergence for Lagrange interpolation polynomials at zeros of Pia'β){x).
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One other result which would follow from the (C, a + β + 2) conjecture
is a generalization of (2.6) to the (C, 7) means, and not just the (C, 0)
means of (2.3). Fejer [9] gives the details for the (C, 0) and (C, 1) means
of a series whose (C, 2) means are positive, and Schur and Szego [20]
treat the (C, 7) means of (2.1). Actually this type of result is not really
that interesting and so the details will not be given here. A more im-
portant problem is to find the largest r = r{n) for which (2.6) holds for
a given n. The behavior of r(n) as n —* °° has been found for a = β =
-1/2, [20], a = β = 0, [22] and, a = β = 1/2, [21]. This last result has
been generalized to (C, 7) means for 7 = 1, 2, 3 by Robertson [18].

(2.5) can be applied to prove the positivity of some Cotes numbers.
This will be given in a paper dealing with quadrature problems.

In trying to prove (2.5) for other values of (a, β) it is worthwhile
observing that positivity of (2.5) for (a + β + 1/2,-1/2) implies the positivity
for {a, β). This follows from the Bateman integral (2.11). The next
easiest case to consider should be (3/2, —1/2). In this case (2.5) reduces
to showing

(3.1) cos — Σ S m

7 ^ + sin— - s in(W—V ^ 0, 0 ̂  θ ̂  π .
2 *=i k 2 V 2 /

Since ultraspherical polynomials are usually easier to deal with than
Jacobi polynomials it should be pointed out that (2.5) for β = —1/2 is
equivalent to

n p(α,-l/2)/1\ p(a,a)/~\

( 3 2 ) hpr^(i)p^(i)-°9 1 = * = 1

(3.2) fails for a < 1/2 when n = 2. It probably holds for a ̂  1/2.
While Un(r, θ) = 1/2 + Σ*=i rk cos kθ^O only holds for 0 ̂  r ^ 1/2 it

holds for 0 ̂  r ̂  1 in an average sense. For

UΛ(r, θ)dr = λ + ™*1 + eos2θ + . . . + c o s n θ

o 2 2 3 n + 1

and Rogosinski and Szego [19] have shown the positivity of this series.
A different generalization of (1.2) was given by Szego. (1.2) could

have been given as

Σ ί*(cos θ) > 0 , 0 < θ < π .
fc=0

The positivity of the Poisson kernel gives

(3.3) Σ r" P,(cos θ) > 0 , 0<θ<π, - l ^ r ^ l .
λ;=0
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Szego [23] proved that Σϊ=i *k -P*(cos θ) Φ 0, | z | ^ 1, 0 < 0 < 7Γ, where z
is now complex. Unfortunately his proof uses two integral representa-
tions of a very special nature and it does not generalize to any other
(α, β). It is quite likely that

0 ' 1*1 ^ L O < 0 < τ r , α > 0 .

It is true when a —> co since
p(α

lim£s

These problems and results can be dualized to integrals of Jacobi
polynomials. There are also related problems for integrals of Bessel func-
tions and integrals of Laguerre polynomials. The integral for Bessel
functions which corresponds to (2.5) is

(3.5) Γ x~βJa{x)dx , y > 0 .
Jo

The condition -β + a > —1 is now necessary to insure convergence at
zero. The integrals in (3.5) have arisen in many different contexts and
we hope to be able to completely solve the positivity problem in the near
future. It is likely that

J
χ-f*Ja(x)dx > 0

o

when β > β(a), where β(a) = -1/2, a ^ 1/2 (this is known) and β{a) for
— 1 < a < 1/2 is the root of the transcendental equation

( Ja,2X-β(a)Ja(x)dX - 0 ,
Jo

with jaf2 the second positive zero of Ja(x).
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ADDED IN PROOF (April, 1972)

Theorem 3 for a=β + l, β = (k — l)/2, k = 0,l, •••, was proven by M. H. Taibleson, Mean and
pointwise convergence of logarithmic means of Laplace series, Scripta Mathematica 28 (1965),
197-203. The proof is the same, but the notation is different, since he only discusses ultra-
spherical polynomials.

The application of Theorem 3 to prove the positivity of some Cotes numbers is given in
R. Askey, Positivity of the Cotes numbers for some Jacobi abscissas, Numersche Mathematik,
19 (1972), 46-48.



POSITIVE JACOBI POLYNOMIAL SUMS 119

The positivity of the (C, a+β+2) means for Jacobi series has been proven for β—l^
a+β^O; and β—2^a^β+2, a+β^S. This will appear in the near future.
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