
POSITIVE LINEAR OPERATORS AND SUMMABILITY

J. P. KING and J. J. SWETITS

(Received 20 June 1968, revised 9 December 1968)

Communicated by J. B. Miller

1. Introduction

Let {Ln} be a sequence of positive linear operators defined on C[a, b] of the
form

where xnk e [a,b] for each k = 0, 1, • • •, n = 1, 2, • • •. The convergence proper-
ties of the sequences {£„(/)} to / for each /e C[a, b] have been the object of much
recent research (see e.g. [4], [8], [11 ], [13]). In many cases positive linear operators
of the form (1) give rise to interesting summability matrices A = (ank(x)) and vice-
versa.

It is the object of this paper to give some results which show that if the positive
linear operators defined by (1) have the proper convergence properties, then the
matrix A = (ank(x)) is always a regular summability matrix for certain values of
the parameter x, and to present certain applications of these results. The theorems
and the applications indicate that sequences of positive linear operators provide
a rich supply of regular matrices.

Moreover the connection between the almost convergence properties of the
operators defined by (1) and the almost regularity of the associated matrix
A = (ank(x)) are investigated.

Throughout the paper the point of view that is adopted is that a sequence of
positive linear operators {£„}, defined by equation (1), is given and that this se-
quence has certain prescribed convergence properties. The matrix A = (ank)
defined by (1) is considered to be independent of the sequence of points {xnk}.
A classical example of operators of this type, the Bernstein polynomials, is
discussed in section 3.

The well-known Fejer-Hermite operator Ln, with nodes at the zeros xt of the
nth Tchebycheff polynomial Tn [3, p. 70], defined by
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provide an example of the kind of operators which are not considered in this paper.
(Because if the Fejer-Hermite operator is written in the form of equation (1)
the resulting matrix (ank) is clearly dependent on the sequence of points x,-.)

The problem of determining a sequence of points {xnk} corresponding to a
given matrix A = (ank(x)) such that the resulting operator defined by equation (1)
is convergent for each / in a certain class of functions is another matter and no
results in this direction are given here. Some results of this type for operators
generated by certain classes of analytic functions may be found in the paper of
Boehme and Powell [2].

2. Convergent positive linear operators

It is clear that if ank(x) ^ OforeachA: = 0, 1, • • •,« = 1,2, • • - , andxe [a, b],
then the linear operator defined by (1) is positive on C[a, b]. The following theorem
is a sort of converse to this result:

THEOREM 1. Let {Ln} be a sequence'of positive linear operators on C[a,b]
defined by (I) for n — 1, 2, • • •. Let A = (ank{x)) be the infinite matrix defined by
(1) where, in addition, aoo{x) = 1, aOk(x) = 0 for k = 1, 2, • • • and JC e [a, b].
Suppose that a :S xnk < xnk+1 ^ b, k = 0, 1, • • • and n = 1, 2, • • •. Then
ank(x) ^ Ofor each k, n = 0, 1, 2, • • • and x e [a, b].

PROOF. Let n ^ 1, k ^ 0. Suppose xnk = a, i.e. k = 0. Let g\ e C[a, b] be

defined by

(2)

0

Then gl{C) ^ 0 for £, e [a, b] and, since Ln is a positive operator, Ln(gk)(x) ^ 0
for x e [a, b]. But Ln(g

n
k){x) = ank{x). Thus ank{x) ^ 0 for x e [a,- b].

It a < xnk, let hn
k e C[a, b] be defined by

(3)

1+

1 +

0

^t-x k

Xnk~xn,k+1

0

c,

a

n

Xn

= a

< I ^ xnk

k _ .

,k+l < 6 =

,k+i

; b

Therefore Ln(h
n
k)(x) = ank(x) ^ 0 for each x e [a, b].

It is now possible to use Theorem 1 to produce a theorem of the type promised
in the introduction.
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THEOREM 2. Let {Ln} be a sequence of positive linear operators on C[a, b]
defined by (I) for n = 0,1, • • •. Let A = (ank(x)) be defined by (1) with aoo(x) = 1,
aOk(x) = 0 for k = 1, 2, • • •, and x e [a, b]. Let a ^ xnk < xn_ k+1 ^ b for each
k = 0,1, • • •, and n = 1, 2, • • •, and lim,,-*, xnk = a,k = 0,1, • • •. Iflimn^xLn(f)(x)
= f(x) for eachfeC[a, b] and x e [a, b], then A = (ank(x)) is a regular summa-
bility matrix for each xe [a, b].

PROOF. Let e°(x) = 1 for each xe [a,b]. Then e° e C[a, b] and hence
lim,,.,^ Ln(e°)(x) = 1 for each x e [a, b]. Consequently,

(4) lim f ant(*) = l, xe[a,b].
n-»oo Jt = O

It follows from Theorem 1 that ank(x) ^ 0 for each x e [a, b]. Hence

(5) sup { £ \ank(x)\ : n = 0. 1, • • •} < co, x e [a, ft].
*=o

Let x e (a, b] and let k be a fixed non-negative integer. Let N be a positive in-
teger such that n 2; N implies s ^ M + 1 < x ^ b. Let gk eC[a, b] be defined
by (2). Let M > N be such that g"(xnk) > \ for n ^ M. It follows that

0 ^ i a^x ) ^ J anp(x)gN
k(xnp)

p = 0

for n ^ M. Since ^ e C[a, b] and #£(;<:) = 0, it follows that

lim f>np(xK(xBp) = 0.
n-*oo p = 0 *

Therefore

(6) lim ank(x) = 0.
n-*oo

It follows from (4), (5), (6), and the Silverman-Toeplitz Theorem that A =
(ank(x)) is regular for each x e (a, b].

For certain special classes of linear operators of the form (1) it is possible to
remove the assumption of positivity and the condition lini,,.,^ xnk = a. The fol-
lowing theorem gives a result in this direction.

THEOREM 3. Let {Ln} be a sequence of linear operators on C[a, b] of the form

j n = 0, 1, • • •

where a ^ xnk < xn<k+l g b for each n, k = 0, 1, • • •
If lim,,.,„ Ln{f, x) = f(x) for each fe C[a,b] and x e [a, b], then A = {ank{x))

is a regular summability matrix for each x e [a, b].
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PROOF. Since lim,,.^ Ln(e°, x) = 1, it follows that
00

(7). lim £ ank(x) = 1, xe [a, ft].
n~*co fc = rt

It is clear that

(8) lim ank(x) = 0, x e [a, b], fc = 0, 1, • • •

since ank(x) = 0 for k < n.
Fix x e [a, b]. Then Ln( , x] is a linear operator from C[a, b] to R, where R

is the set of real numbers. Let

Il/H = sup |/(r)| and Ln( , x)\\ = sup \Ln{f,x)\.
a^t£b 11/11$ 1

Let L™( , x) be defined by

k = n

It is clear that Z.™( , x) is a continuous linear operator from C[a, b] to R. Since
limm^00 L"(f, x) = Ln{f, x), the Banach-Steinhaus Closure Theorem [12, p. 117]
implies that Ln( , x) is a continuous linear operator from C[or, 6] to R.

Since l i m ^ ^ LB(/, x) = / ( x ) , |Ln(/, x)| < 1 + | / (x) | for all but a finite num-
ber of n. Thus {Ln( , x)} is a pointwise bounded sequence of continuous linear
operators from C[a, b] to R. By the uniform boundedness principle [12, p. 116],
{Ln( , x)} is uniformly bounded.

Fix £ e [a, b] and let w > n where n is a fixed positive integer. Define/(x)
as follows:

/(*) =
1 0,

xn,n-l)> xn, n - 1 ^ •* =

*„„ < X ^ X,= xn'n+ 1 '

sgnanm(£)-sgnfln, „,_!(£), v
\ x xn, m - J + s S n "n, m-lX

n, m - 1

r A v <^ v < V
l n , m + l / > A i w ^~ A = A « , m + 1 '

nn A n , m + 1

0, xn>m + 1 < x ^ b.

Then A,( / ,0 = Ir=nIMOl- Since | | / | | = 1, ST=. M O l ^ ll^-( .Oil- Be-
cause m is arbitrary, X*=« lant(Ol = IIA>( > Oil- Therefore,
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(9) sup{£
k = n

-n = 0, I,---} <co.

The theorem follows from (7), (8), (9), and the Silverman-Toeplitz Theorem.

3. Applications for convergent positive linear operators

i) For each/e C[0, 1] let Bn{f) be defined by

-) = f «*w
W * = o

for each « = 1, 2, • • •. Bn(f) is the «th Bernstein polynomial and it is well known
that lim^a, Bn(f)(x) =f(x) uniformly on [0, 1] for each/e C[0, 1]. With aOo(*)
= 1 and aOk(x) = 0 for k = 1, 2, • • • and x e [0, 1], the matrix A = (ank(x))
becomes the Euler matrix [1 ]. Theorem 2 then gives the well known result that the
Euler matrix is regular for 0 < x ^ 1.

A slight modification of the Bernstein polynomials shows that the converse
to Theorem 2 is not true. More precisely, let

k=o

where fe C[0, 1] and xe [0, 1]. The matrix A = (ank(x)) is the Euler matrix. Let
e1(x) = x. Then it is easy to see that TJ^e^x) = x2. Hence the regularity of A
does not imply that lim,,^ Tn(f)(x) =/(*) .

(ii) Let hp = hp(x) be defined on [0, 1] for each p = 1, 2, • • •. Let A =
(ank(x)) be defined by aOo(*) = 1> aOk{x) = 0, k = 1, 2, • • -, and

p = l

Let {!-„} be defined by

f o r e a c h « = 1 , 2 , • • •, x e [ 0 , 1 ] a n d f e C [ 0 , I ) . If 0 £ h p g , 1 , p = 1,2,-• ;

then Ln is a positive linear operator on C[0, 1 ] for each n = 1, 2, • • •. It is shown
in [8J that Jim,-,* Ln(J)(x) = f{x) uniformly on [0, 1] for each fe C[0,1] if the
sequence {hp(x)} is uniformly (C, 1) summable to x on [0,1]. It therefore follows
from Theorem 2 that, under these conditions, A = (ank(x)) is a regular matrix
for xe (0, 1]. The matrix A(x) is the (F, dn{x)) or generalized Lototsky matrix
[6] where d.(x) = (l-*„(*)#,(*)).
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(iii) For each /e C[0, 1] let Pn{f) be defined by

=n \n-l/ \ k

for each n = 1, 2, • • •. It was shown by Meyer-Konig and Zeller [11] that lim,,.,,,,,
Pn(f)(x) = / ( x ) uniformly on [xi ,*2] where 0 ^ xx < x2 < 1 for each/e C[0, 1].
It follows from Theorem 3 that the associated matrix A = (a^x)) is a regular
summability matrix for each xe [xlt x2]. In this case the matrix A = (ank(x)) is
essentially the Taylor matrix [5].

Since the Euler matrix E(x) is regular if and only if x e (0, 1 ], example (i)
shows that Theorem 2 cannot be extended to [a, b].

4. Almost convergent positive linear operators

A sequence x e m is called almost convergent to s if L (x) = s for each
Banach limit L. The notion of almost convergent sequences was introduced by
Lorentz [10].

The following result gives necessary and sufficient conditions on a sequence
of positive linear operators {Ln} in order that {£„(/)} shall be almost convergent
to / for each /e C[a, b]. The proof is identical to the standard proof of the theorem
of Korovkin [9, p. 14] for convergent sequences of positive linear operators ex-
cept for the last few lines. The proof is given here, however, for the sake of com-
pleteness.

THEOREM 4. Let {Ln} be a sequence of positive linear operators on C[a, b]. Let
eleC[a, b] be defined by e\x) = x'for i = 0, 1, 2. Then the sequence {Ln(f)(x)}
is almost convergent to f(x) uniformly on [a, b]for eachfe C[a, b] if and only if
{Ln(e')(x)} is almost convergent to e'(x) uniformly on [a, b] for i — 0, 1, 2.

PROOF. The necessity is obvious. Suppose the conditions on {Ln(e')(x)} hold
for i = 0, 1,2. Let

for each v = 0, 1, • • -,p = 1, 2, • • • and / = 0, 1, 2. It follows from the definition
of almost convergence of {Ln(e')(x)} to el{x), a result of Lorentz [10, p. 170], and
the hypothesis, that

(10) tJJXx) = ei(x) + a
i
pv(x)

where lim^^, oc'pv(x) = 0 uniformly in v = 0, 1, • • • and uniformly on [a, b] for
each / = 0, 1, 2. L e t / e C[a, b] and e > 0. Let

https://doi.org/10.1017/S1446788700006650 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006650


[7] Positive linear operators and summability 287

for each p = 1, 2, • • • and v = 0, 1, • • •. Choose 5 > 0 such that \s-t\ < 5 =>
\f(s)-f(t)\ < e. Let f, xe [a, b]. Either \$-x\ ^ d or |^—JC| < <5.

In the first case it follows that

where c = 2||/||/<52 and q»(x) = (Z-x)2. Therefore

(11) -c(p(x)-s ^

If |<̂ —x| < 8 then !/(£)—/(*) < £- Hence the inequality (11) holds in either case.
Since Ln is linear and positive for each n = 0, 1, • • •, it follows that

-cLn(<p)(x)-sLn(e°)(x) «S/(OZ*(e°)(*)-I*C/)(*) ^ cLn(cp)(x)+eLn(e°)(x).

Therefore

-cv(<?»)(^)-6^(eo)(^) ^ / ( 0 U « ° ) W - ' P - ( / ) W < ctpv{<p){x)+tpv(e°)(x).

Hence

for each ^ = 1, 2, • • •, v = 0, 1, • • •. It follows from a simple computation that

(13) tpv{cp){0 = ?ttUZ)-2aUt)+«UQ-

Let ^pB(0 = { 2 o£(0-2o£(0 + <&(0- I I f o l l o w s f r o m (10X (12), and (13) that

(14) I/(0U«°)(O-U/X«)I ^
for each/? = 1, 2, • • • and v = 0, 1, • • -.'Let BpD(Z) = Apv(l;)+s[l +xpv(£)]. Then
limp.,^ Bpv(i) = e uniformly in v = 0, 1, • • • and uniformly on [a, b]. Therefore,

Since lim,,.^ 5po(^) + | | / | | • |apo(0l = e uniformly in » = 0, 1, • • • and uniformly
on [a, b], the proof is complete.

The proof of the following theorem may be extrapolated from the proof of
the trigonometric version of Korovkin's theorem [9, p. 17] in a manner similar to
that used in the above.

THEOREM 5. Let C[0', 2n] be the linear space of periodic continuous functions
ofperiod 2n. Let {Ln} be a sequence of positive linear operators defined on C[0, 2TT].
The sequence {Ln(f)(x)} is almost convergent tof(x) uniformly on [0, 2n] for each
/ e C[0, In] if and only if {Ln{e°){x)}, {Z-n(cos)(;c)}, {Ln(sin)(x)} are almost con-
vergent to e°(x), cos x, and sin x, respectively, uniformly on [0, 2n].

The notion of almost regular matrices was introduced by King [7]. It is pos-
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sible to establish results which relate the almost convergence of a sequence of
positive linear operators to the almost regularity of the associated matrix which
are similar to those for convergent sequences of positive linear operators, which
were given in section 2. The following theorem is a typical result in this direction:

THEOREM 6. Let {Ln} be a sequence of positive linear operators on C[a, b]
defined by (I) for n = 1, 2, • • •. Let A = (ank(x)) be the infinite matrix defined by (I)
where in addition, aoo(x) = 1, aok(x) = 0 for k = 1, 2, • • • and x e [a, b]. Let
a j£ xnk < Jcn>Jk + 1 :2 bfor eachk = 0, 1, • • • andn = 1, 2, • • •,and\vmn^a:> xnk =a,
k — 0, 1, • • •. If {Ln(f)(x)} is almost convergent tof(x) for eachfe C[a, b], and
each x e [a, b], then A = (ank(x)) is almost regular for each x e (a, b].

PROOF. The proof consists of a demonstration that the following conditions,
which are necessary and sufficient that A = (ank(x)) be almost regular [7], are
valid for each xe (a,b]:

1 U + p— 1 00

i) lim- £ E M * ) « 1
p-*co p n = v fc = 0

uniformly in v = 0, 1, • • •

ii) Hm - £ ank(x) = 0, k = 0, 1, • • •

p-*<x> p n = v

uniformly in v = 0, 1, • • •

and
/ °° }

iii) sup ^ \a^(x)\ : n = 0, 1, • • • < GO.
U=o )

This demonstration is entirely analogous to the proof of Theorem 2 and will
be omitted.

5. An application for almost convergent operators

Let {ht} be a sequence of functions denned on [0, 1 ] with 0 ^ h((x) ^ 1 for
each i = 1, 2, • • • and x e [0, 1 ]. Let {An(x)} be a sequence of functions denned on
[0, 1 ] such that 0 ^ Xn{x) for each n = 1, 2, • • • and x e [0, 1 ]. Let B = (bnk(x)) be
denned by

^oo = 1, bOk = 0 k > 0

i=l t=0

For each n = 1, 2, • • •, let the operator Ln be denned by

i
k=o
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for each / e C[0, 1]. In the special case ln(x) = 1 for each n = 1, 2, • • • and
xe [0, I], Ln(f)(x) reduces to the operator given in section 3. If, in addition,
ht(x) = x for each i = 1, 2, • • • and x e [0, 1], LJJ) reduces to the nth Bernstein
polynomial.

THEOREM 7. Let {/.„} be the sequence of operators defined in the above. Let
{Sn(x)} denote the (C, 1) transform of {ht(x)}. Suppose that {Sn{x)} converges
uniformly to x on [0, 1 ] and {An(x)} is almost convergent to 1 uniformly on [0,1 ].
Then [LR(f)(x)} is almost convergent tof(x) uniformly on [0,1] for eachfe C[0,1 ].

PROOF. It is clear that Ln is a positive linear operator on C[0, 1 ] for each
n = 1, 2, • • •. Moreover bnk(x) = Xn(x)ank(x) where A = (ank(x)) is the matrix
studied in [8]. It follows, therefore, from the computations made in [8] that

(15) Ue°)(x) = Jjx)

(16) Ln(e
x){x) = Xn{x)Sn{x)

and

(17) Ln(e
2)(x) = ^ {Sn(x) - Ux)} + S2

n(x)
n

where tn(x) is the (C, 1) transform of the sequence {hf(x)}.
In order to complete the proof the following lemma is needed.

LEMMA 1. Let {an} be almost convergent to a and let {/?„} be convergent to p.
Then {ot.nfln} is almost convergent to a/?.

PROOF OF THE LEMMA. an/?n = an(^n-y5)+j8an for each n = 1, 2, • • •. The
sequence {aB(j8B—)?)} is convergent to 6 since an is bounded. Hence, {anjSn} is
almost convergent to a/?. This proves the lemma.

It now follows from Lemma 1 and (15), (16), and (17) that {Ln(e
l)(x)} is

almost convergent to e\x) uniformly on [0, 1] for / = 0, 1, 2. Theorem 7 therefore
follows from Theorem 4.

It is easy to see that the sequence {(1 -%x), (1 +\x), (1 —ix), • • •} satisfies
the hypothesis of Theorem 7 for {Xn(x)}. With this choice of {AB(x)} and with
ht(x) = x for each / = 1,2, • • • and x e [0, 1 ], the functions Ln(f) become a
kind of modified Bernstein polynomials. Theorem 7 ensures that they are almost
convergent to f(x) uniformly on [0, 1 ], even though they may not converge to

It now follows from Theorem 6 that B = (bnk(x)) is almost regular for each
* 6 ( 0 , l ] .

In the special case in which these operators reduce to the Bernstein poly-
nomials the matrix B reduces to the Euler matrix E(x). It is shown in [7] that E(x)
is almost regular if and only if it is regular. Since E(x) is regular if and only if
x e (0,1], this shows that Theorem 6 cannot be extended to [a, b].
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