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Positive Mathematical Programming 

Introduction 

This paper is a methodology paper for practitioners rather than 

theorists. Instead of a new method that requires additional data, the paper 

takes a new look at an old method, programming models, using a minimal 

data set in a more flexible manner than the traditional linearly constrained 

production activities . Sometimes new methodologies are published, but not 

implemented; over the last seven years positive mathematical programming 

(PMP) has been implemented on several applied policy models, at the 

sectoral, regional, and farm level, (Bauer and Kasnakoglu (1988), Hatchett et 

al. (1991), House (1987), Oamek and Johnson (1991), Quinby and Leuck (1988)). 

but the methodological basis for the approach has no t been published. This 

paper aims to show that the PMP approach, can use the data needed to 

construct an LP or QP model in a more flexible manner, while generating self 

calibrating models of agricultural production and resource use that are 

consistent with micro theory, and prior estimates of demand and supply 

elasticities. 

Programming models are still widely used for agricultural economic 

policy analysis, despite their relegation to a methodological backwater in the 

past decade. Their persistency can be attributed to several characteristics. 

First, they can be constructed from a minimal data set. In many cases, analysts 

are required to construct models for systems where a respectable time series of 

data is absent, or inapplicable due to structural changes in a developing or 

shifting economy. Second, the constraint structure inherent in programming 

..... ;.. . " 



... 

3 

models is well suited to characterizing resource, environmen tal or policy 

constraints. In some cases, a set of inequality constraints such as those fo und 

in the farm bill commodity program strongly in fl uence crop and resource 

allocation. Thi rd, the Leontief production technology inherent in most 

programming models has an in trinsic appeal of input determinism w hen 

modelling fa rm production (Just, Zilberman, and Hochman (1983)) . In 

addition, the concept of fixed proportions of some inputs to the land 

allocation has been getting increasing empirical support from recent results 

on the Von Liebig production function (Paris and Knapp (1989), Grimm et al. 

(1987)), and on a behavioral basis from Just et al (1990), Wichelns and How itt 

(1991)). 

The paper opens with a brief review of past approaches to calibrating 

programming models of farm production and their p roblems. A quadratic 

total cost function in land is shown to be a sufficient condition for the 

observed input allocation. The first order conditions fo r land allocation are 

shown to be linked to the dual values on "flexibility" constraints bounding 

the land allocations under a linear cost specification. The derivation of crop 

and region specific cost functions from the duals, the first order conditions, 

and the base data is shown. The following section addresses some problems 

encountered in empirical production model building, and shows how the 

PMP specification results in a smooth and continuous response to 

parameterization of the model. The paper ends with a brief description of a 

menu driven model generator that greatly simplifies the construction and 

use of PMP, QP, and LP agricultural policy models. 

, 
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While the production and cost specification implied by the P\1P 

specification is unconventional, the method works, in that it automatically 

calibrates models without using "flexibility" constraints . The resulting 

models are more flex ible in their response to policy changes, and priors on 

the supply elasticities can be specified. With modern algorithms and 

microcomputers, the resulting quadratic programming problems can be 

readily solved. 

Calibration Problems in Programming Models 

In the absence of a data base f r estimation, programming models 

should calibrate against a base year or an average over several years. Policy 

analysis based on normative models that show a wide divergence between 

base period model outcomes and actual production patterns is generally 

unacceptable. But models that are tightly constrained can only produce that 

subset of normative results that the calibration constraints dictate. The policy 

conclusions are thus bounded by a set of constraints that are expedient for the 

base year but often inappropriate under policy changes. This problem is 

exacerbated when the model is built on a regional basis with very few 

empirical constraints but a wide diversity of crop production. 

Previous researchers such as Day (1961) have attempted to provide 

added realism by imposing upper and lower bounds to production levels as 

constraints. McCarl (1982) advocated a decomposition methodology to 

reconcile sectoral equilibria and farm level plans. 

Meister, Chen, and Heady (1978) in their national quadratic 

programming model, specify 103 producing regions and aggregate the results 
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to ten market regions. Despite this structure, they note the problem of 

overspecialization: 

If all producing activities are defined by single product activities, 

as assumed by most theoretical analyses, .. . the· tendency of the 

programming model to produce only one type of commodity in 

a region or area increases. 

The authors suggest the use of rotational constraints to curtail the 

overspecialization and reflect the agronomic nature of production. However, 

it is comparatively rare that agronomic practices are fixed at the margin, but 

more commonly reflect net revenue maximizing trade-offs between yields, 

costs of production, and externalities between crops. In this latter case, the 

rotations are themselves a function of relative resource scarcity, output prices, 

and input costs. 

Hazell and Norton (1986) suggest six tests to val idate a sectoral model. 

The capacity test, for over constrained models. The marginal cost test to 

ensure that the marginal costs of production including the implicit 

opportunity costs of fixed inputs are equal to the output price. A comparison 

of the dual on land with actual rental values. Three comparisons of input 

use, production level and product price tests are also advocated. Hazell and 

Norton show that the percentage absolute deviation for production and 

acreage over five sectoral models ranges from 7 percent to 14 percent 

deviation. The constraint structures needed for this validation are not 

defined. 

In contrast, the PMP approach aims to achieve exact calibration in 

acreage, production and price. When the PMP approach was applied to one of 
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the models listed by Hazell and Norton, namely TASM, the resulting P:\f P 

version of TASM calibrated exactly with the base year, Bauer and Kasnakoglu 

(1988) and showed consistency in the parameters over the seven years used 

for calibration. 

The calibration problem in farm level, regional, and sectoral models 

s tems from the common condition where the number of binding constraints 

in the optimal solution are less than the number of nonzero activities 

observed in the base solution. This is especially prevalent where the 

constraints represent allocatable inputs, actual rotational limits and policy 

constraints. Due to the rank condition on the basis matrix, the resulting 

optimal solution will suffer from overspecialization of production activities. 

A root cause of these problems is that linear programming was 

originally used as a normative farm planning method where full knowledge 

of the production technology is assumed. Under these conditions any 

production technology can be represented as linear Leontief, subject to 

resource and piecewise separable constraints. This normative approach is 

forced into over simplification of the production and cost technology for 

more aggregate policy models due to inadequate knowledge of the production 

and cost technology. In most cases, the only regional production data is an 

average or "representative" figure for crop yields, and inputs. This common 

data situation means that the analyst using linear production technology in 

programming models is attempting to estimate behavioral reactions to policy 

changes, based on marginal conditions, from average data observations. Only 

where the policy range Is small enough to admit linear technology over the 

' . ·.. ' • 
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whole range, can the average conditions be assumed to be equal to the 

marginal conditions. 

Two broad approaches have been used to reduce the specialization 

errors in optimizing models . The demand based methods have used a range 

of methods to add risk or endogenize prices . These have reduced the 

problem, but in many models, substantial calibration problems remain . 

A common alternative approach is to constrain the crop supply 

activities by rotational or flexibility constraints or step functions over 

multiple activities. In regional and sectoral models of farm production, the 

number of empirically justifiable constraints are comparatively few. land 

area and soil type are clearly constraints, as is water in some irrigated regions. 

Crop contracts and quotas, breeding stock, and perennial crops are others. 

However, it is rare that some other traditional progu mming constraints such 

as labor, machinery, or crop rotations are truly restricting to short-run 

marginal produL .ion decisions. These inputs are limiting, but only in the 

sense that once the current availability is exceeded, the cost per unit output 

increases due to overtime, increased probability of disease, or machinery 

failure. In this situation the analyst has a choice. If the assumption of linear 

cost (production) technology is retained, the observed output levels infer that 

additional binding constraints on the optimal solution should be specified. 

Comprehensive rotational constraints are a common example of this 

approach. An alternative explanation is that the cost functions are nonlinear 

in land (scale) for most crops, and the observed crop allocations are a result of 

a mix of unconstrained and constrained optima. The nonlinear costs, as a 

function of acreage allocated to a particular crop, can be explained by several 
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causes, but the most common reasons are risk aversion, a nonlinear 

production function due to heterogeneous land quality, or increasing costs 

per unit outpu t due to restricted management or machinery capacity. 

Since there is a long and exhaustive literature on the addition of risk 

terms to linear programming models which result in nonlinear costs, we will 

concentrate on calibrating from the supply side by introducing a nonlinear 

cost specification for each production activity. This is not to diminish the 

importance of risk in nonlinear objective functions, but since mean/variance 

risk specifications have improved, but not completely calibrated LP models, 

nonlinear cost functions are a useful additional calibration method. 

We make the common assumption that farmers are price takers in 

input and output prices and maximize expected net income. Since we 

employ a linear-quadratic specification we can invoke the certainty 

equivalence principle and avoid more complex expecta tions structures. The 

revenue is linear in output and thus the concavity of the profit function in 

land must be contained in the cost function for those crops with interior · 

solutions. The increase in the cost per unit output as additional acres are 

allocated to a crop may arise from both increased variable inputs per acre, and 

decreased yields per acre as crops are grown on increasingly less suitable soil 

types. 

This paper is written using cropping activities as examples, but the 

same procedure can be directly applied to livestock fattening and other 

activities where the key input is not land but a livestock unit. 
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Defining the acreage of land allocated to .acti vity i as Xi the traditional 

linearly constrained Leontief production function specifica tion land and two 

other inpu ts is written as i, \(,,.. 

(1) 

where Yi is the total ou tput fo r crop i, and Yi is the expected yield per acre fo r 

activity i and a2i, a3 i are the per acre input requirement coefficients for inputs 

two and three. 

If we observe more nonzero activities (n) in the base year than binding 

constraints (m), but cannot empirically justify additional binding constraints 

on marginal cropping activities, then it follows directly from the first order 

· conditions that a.L£.ast (n-m) of the activity profit function are nonlinear in 

land. The most parsimonious specification change to equation (1) is to define 

the yield as quadratic in land allocation and Leontief in the other two variable 

inputs. 

(2) Yi = Min(<J>xi - 1 /2 \l' x ~, Ci2iXi, cXJiX i) 

where cXji =Yi cX ji· 

Specifying different production technologies for allocatable and variable 

inputs, is unusual, but there is increasing empirical evidence that farmers 

allocate some variable inputs in a fixed proportion manner, Just et al. (1990) . 

Paris and Knapp (1989). However, allocatable inputs such as land or livestock 

are heterogenous in quality and are unlikely to yield constant returns to scale. 

In addition, the specification in equation (2) has the advantage of making full 

use of the data set usually available for sector and regional models. 

The increasing cost per unit output proposed in the PMP specification 

can be derived from two equivalent but alternative specifications. Using the 
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production function (2) and taking land x as the constraining input, the profit 

function for activity i is: 

(3) 1ti =Pi(<!> Xi - 1/2 l.£' x~) - qx1 - r 2U2iXi - r3U3iXi 

Ignoring the opportunity cos t of the land res triction for simplici ty, the 

optimal land allocation to activity i is the interior solution where: 

.. p<l> - ri - r 2a 2i - rJ UJ i 
(4) x . = 

I pl.£' 

Alternatively, instead of constant production costs per acre (q ) and a 

decreasing yield with increasing land, the equivalent first order conditions 

result from a profit function specification that has constant yields per acre, but 

requires increasing cos ts per acre to achieve these yields as the acreage 

allocated to activity i increases. 

(5) 

The optimal land allocation condition is: 

(6) 

Since the PMP method uses dual values on base year land allocations to solve 

for the calibrating parameter values a· and y, we will continue to use the 

nonlinear cost function specification in equation (5). 

The PMP Calibration Approach 

From equation (6) we see two additional parameters in the quadratic 
.. 

cost function ai and Yi are needed to calibrate the optimal xi . The problem 

facing the modeler is to calibrate these two parameters knowing the average 

cost per acre from the normal LP data, and the allocation quantity ')* at which 

the marginal activity revenue is equal to the marginal variable and 

opportunity cost. The central feature of the approach is to use a two stage 
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approach to calibration in which the first stage, using linear cost 

specifications, is constrained to be very close to the base year allocations xi· . U 

a particular decoupling procedure is used (Appendix 1), the resulting duals on 

the calibration constraints yield a second cost equation in a. and y that can be 

used with the average cost equation to solve for values of CJ.i and Yi that 

precisely calibrate the model. 

Diagrammatically, the effect of the PMP specification can be seen by 

comparing the cost functions on the right hand side of Figures 1 and 2. The 

PMP derivation tilts .he fixed cost specification in Figure 1 to the increasing 

marginal cost specification in Figure 2. However, the a. and y parameters are 

calculated so that the average cost, the objective function and the dual on the 

land constraint are unchanged, but the marginal conditions calibrate to the 

base year land allocations without constraints. 

The PMP method is explained using the simple two crop, one 

allocatable input example that is shown graphically in Figures 1 and 2. Figure 

1 corresponds to the first stage of the method which uses an LP model 

constrained by inequality calib:ration constraints. The same approach is used 

if endogenous prices or risk costs have been specified in the objective 

function making the stage I problem a quadratic programming problem. In 

this illustrative example there are two crops, wheat and oats, and one 

allocatable input, land. Given the gross returns and average costs per acre for 

each crop, wheat is more profitable than oats, but farmers are observed to 

grow both wheat and oats in the base year. To calibrate to the base year 

acreages the problem has to be constrained by calibration constraints and the 

resulting problem is: 

I 
I 
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Stage I. L.P. Calibration Model 

Given the basic data that (Price) x (Average Yield) of oats and wheat are 

denoted respectively as P0 and Pw, the average variable cost/acre of growing 

oats and wheat are c0 and Cw and the observed crop land allocations are : 

x =[ :: J =[ ~ l 
The LP model is specified as: 

LP Model 

(7) 

Max Z = P0 Xo - C0 Xo + Pwxw - CwXw 

Subject to +Xw ~ 5 

Xw 

~ 2 + € } 

~ 3 + € 

Land. 

Calibration 
Constraints 

Without the £ perturbation on the calibration .:onstraints the land 

resource constraint and both the calibration constraints would bind 

simultaneously and a degenerate solution would result. The resulting dual 

values would not be unique. The£ perturbation causes the land constraint to 

bind before the least profitable calibration constraint is binding. The dual 

values are therefore unique, but more importantly, the proof in Appendix 1 

shows that the £ perturbation decouples the resource constraint set from the 

calibration constraints. In other words, the dual values on the calibration 

constraints are functions of the resource constraints, but the resource 

constraint dual values are not influenced by the calibration constraints. Thus, 

the opportunity costs of resources are used in the calibration process, but are 

not changed by it . 
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In Figure 1 the position of the resource cons traint and two calibration 

constraints are shown by dotted vertical lines. It can be seen that the whea t 

calibration conscraint and the land constraint will become binding first . The 

average return from oats (/q) sets the opportunity cost of land. A.2, the 
.,.___ 

marginal value on the calibration constraint for wheat is the opportunity cost 

of constraining whea t to three acres , given the linear costs and returns. A.2 is 

equal to the difference in the marginal returns to wheat and oats under the LP 

specification. 

Due to the £ perturbation, the calibration constraint for oats is slack and 

degeneracy is a voided. 

Stage II - Derivation of the PMP Cost Functions 

Since we know that the marginal cost of growing wheat must be greater 

than the average cost at \y, given that the marginal net returns to wheat and 

oats are equal at \v and %1 a quadratic cost function fo r wheat growing is 

specified. This is the simplest specification that can explain the observed . 
..--- -

behavior. 

The calibration constraints are removed, and the model becomes: 

(8) Max J = P0 Xo - CoXo + Pwxw - CXwXw -1/2 "fwXw2 

Subject to x 0 + Xw ~ 5. 

In Figure 2, awxw - 1 /2 Ywxw2 is a quadratic total cost function which is 

derived from the dual values on the binding calibration constraints. 

The term c0 x0 is the LP linear cost function which is retained for simplicity in 

this stage, and yields the opportunity cost for the binding land resource. 

The unknown parameters aw and Yw can be calculated from the 

optimal solution of the LP problem in stage I. Since the first order conditions 

i/,,J "''1.J 
{ J.1r; ~I' l 

{,~ 
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fo r allocatable inputs require tha t a t the op timal solu tion, the marginal net 

returns to land are equal across outpu ts, Figure 1 shows that A. 2
1 

the 

calibration dual is the d ifference between marginal and average cos t a t outpu t 

lev el ~ · 

The derivation of the two types of d ual value A. 1 and A.2
1 

can be shown 

fpr the s:;eneral case using the appendix. The stage I problem can be wri tten in 

general as 

(9) Max f(x) 

Subject to Ax $ b 

Ix $ x + E 

Partitioning A in to an mxm basis matrix B and an mx(k-m) matrix N of 

nonbasic activities, the fi rst partition of equation (AlS) in the appendix for A.1 

is : 

(10) 

where V x8f(x*) is the gradient of VMPs of the vector xs at the optimum 

value. 

The elements of vector xs are the acreages produced in the constrained 

crop group, and A.1 is associated with the set of mxl binding resource 

constraints b. Equation (10) states that the value of marginal product of the 

constraining resources is a function of the revenues from the constrained 

crops. The more profitable crops (xN) do not influence the dual value of the 

resources. This is consistent with the principle of opportunity cost in which 

the marginal net return from the 'east profitable use of the resource 

determines its opportunity cost. I 

I 

f S' 

(JJ,.r\ r~ .. /<!.. 

? 1 'J 1 , 
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The second partition of equation (A15) determines the dual values on 

the upper bound calibration constraints on the crops. 

(11) A.2 = -N'B'-1 V' x
8

f(x*) + IV xNf(x*) 

= V x f(x*) -N'~ 

The dual values for the binding calibration constraints are equal to the 

difference between the marginal revenues for these crops and the marginal 

opportunity cost of resources used in production of the constrained crops. 

Equation (11) substantiates the dual values shown i Figure 1, where 

the duals for constraint set II (A.2) in the stage I problem are equal to the 

divergence between the r P average value product per acre and the sum of 

average cost and opportunity cost per acre. For the problem in (7) and 

Figure 1, the objective function does not have an increasing cost term, 

therefore, V xNf(x*) is the average value product of la nd for the calibrated crop 

(xw in this case). Since the opportunity cost of land is ~, and the marginal 

input requirement coefficients for calibrated crops, u nder the specification of 

problem P2 in the appendix is N, it follows that the term N'~ is the value of 

marginal product of land. 

From primary data collection we know that the average cost of wheat 

production is Cw· The PMP objective function in equation (8) yields 

(12) 

therefore 

Marginal Cost of Wheat = aw + YwXw 

Average Cost of Wheat= aw+ 1/2 YwXw 

(13) A.2w =:= MCw -ACw =a+ Ywxw- a-1/2ywxw = 1/2ywxw 

2A.2w 
Yw =---therefore, 

xw 

- ------ - ------· _ _ . __ - - - - - - -- - ---- ~ 
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The average cos t expression is: 

(1 4) Cw = a+ 1 / 2 YwX w1 substituting in from (13) 

Using the calibration cons traint dual va lues from stage I, we can solve 

equations (13) and (1 4) uniquely for the intercept and slope parameters that 

result in a quadratic op timizatio program that equilibriates at the base period 

acreage. 

This approach that solves for a new cost function differs from the 

method developed in the working paper Howitt and Mean (1986). In this 

earlier paper the calibration dual values were used to add an additional 

nonlinear cos t to the empirical average cost. As a result, the objective 

function values, the resource duals and the average costs of production were 

inconsistent with the empirical values. With the cu rrent PMP approach 

these values are consistent with the basic farm data. 

Figure 2 shows how the LP problem in Stage I and Figure 1 is modified 

by substituting equations (13) and (14) into (8), and tilting the cost function so 

that the model is self-calibrating at the base level values, but unconstrained in 

its ability to respond to cost, price, or resource changes. In Figure 2 the 

quadratic cost function coefficients for wheat ar~ 

2A2w _ 
(15) Yw = -_-- and aw =Cw - A2w 

Xw+E 

The key point that bears reiteration is that in Figure 2, the profit maximizing 

solution will allocate three acres to wheat production (xw). At values greater 

than this alloca tion the ~arginal net return to land is greater in oat 

production, so in this example the remaining land will be allocated to oats. 

Note also that at x w, the average cost of growing wheat calibrates with the 

l 
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observed average value of Cw· At the optimal calibrated values of xw and x 0 , 

the necessary condition for allocatable inputs holds, in that the marginal net 

return per acre for w heat is equal to the marginal net return from growing 

oats, and hence the opportunity cos t of land. 

The fundamental PMP procedure can be solved in three stages. First 

formulate and solve the problem as an LP (or QP) constrained by perturbed 

calibration constraints as in equation (7) . Second, use the data on average 

costs of production, and the dual values for the binding calibration 

constraints to solve equations (13) and (14) for the nonlinear cost parameters . 

Those activities whose calibration constraints are not binding will be 

constrained by the resource constraints . Third, solve the PMP problem 

specified in equation (8) using the values of a and y from the previous stage. 

For activities wi t' mt calibration dual values, a is se t equal to the average cost 

candy is set equal to zero at this point. 

Extensions Using Elasticity Priors 

In sectoral and regional QP models, the linear demand functions are 

often calibrated to a particular base year market price and quantity using a 

prior estimate of the elasticity of demand for the product, obtained from 

econometric estimates. In the same way, priors on the aggregate or regional 

supply elasticity can be used to augment or bound the basic PMP procedure 

outlined in the previous section. 

There are three empirical situations in which prior knowledge of the 

supply elasticity can be used by a PMP model. The first case uses an elasticity 

value to calibrate a quadratic cost function for the lower profitability activities 

- - - - - --- --- --- ~ 
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that provide the resource duals in stage I of the calibration . This enables the 

PMP model to have a quadratic cos t function fo r all ac tivi ties . 

The second case is when the cost function coefficients calculated in 

stage two imply an unreasonably high supply elasticity. The PMP procedure 

enables the model builder to specify parameters that sa tisfy the upper bound 

for the elasticity. 

The third case of nominal negative net returns is often encountered 

when using empirical farm production data. These cases can be identified 

and calibrated, using a prior elasticity of supply. 

Case 1. Marginally Profitable Crops 

In stage II of the previous example, the cost technology for the least 

profitable crop, oats, which sets the opportunity cost for land, remains as a 

linear specification. Since this marginal crop is cons trained by land, we know 

that the condition that equates marginal revenue to the sum of marginal 

production and opportunity cost for the unconstrained crops, does not hold . 

From the observed land allocations and empirical average cost data, there 

simply is not enough information on these marginal crops to calibrate a 

quadratic cost function. Two alternatives face the modeler, leave the 

marginal crops with a linear cost technology, or use exogenous prior 

information to calibrate a quadratic total cost function for the marginal crops. 

If the marginal crops are left with a linear cost technology, the model 

requires no prior information to calibrate exactly. However, a number of 

problems arise. The first difficulty is to justify the difference in cost 

specifications between the marginal and mainstream crops . Why should the 

mainstream ·crops have a quadratic cost technology and marginal crops have 
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linear costs? In addition to this conceptual problem, the linear costs on the 

marginal crops can lead to some strange changes in marginal crop acreages for 

some extreme cases of parameterization . 

If a prior value on the marginal crop supply elasticity is available, a 

quadratic cost fu nction can be calibrated for the marginal crops as follows : 

Given the fixed yields per acre, the elasticity of supply can be written in 

terms of acreage, marginal cost and the slope of the cost function . The 

quadratic total cost function is : 

(16) TC= ax+ 1/2yx2 

MC= a+ yx 

. . dq MC 
Supply elasticity Tl = d(MC) q can be rewritten (dropping the yield (y) for 

simplicity) as: 

(17) 
1 a+ yx 

Tl= -
y x 

Using the elasticity Tl and the average cost c we get the two equations 

(18) 

solving for y yields 

(19) y= 
c 

11yx =a+ yx 

c =a+ 1;2y x 

(TlX -1/2x) 
and a= c- 112y x 

Thus, the quadratic cost function can be solved for a, and yin terms of Tl, c 

and x. 

Figure 3 shows that since the average cost of x* calibrates with c, the 

empirical average cost, the marginal cost, and hence the dual value on land 

will be lower than in the calibration LP (Figure 1). Thus, the resulting PMP 
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model will reach an op timum solution with the wheat acreage slightly above 

the base acreage, and the oats acreage slightly below. The amount that th e e 

acreages diverge from the base is proportional to the prior elastici ty assigned 

to the marginal crop . 

A three step calibration approach can be used to ensure precise acreage 

calibration with any specified marginal crop elasticity if the acreage deviation 

from the base value is excessive. 

Case 2. Upper Bounds for Supply Elasticities 

Substituting the values in equation (15) into equation (17), we see that a 

very small calibration d ual (/...2) can lead to a highly elastic supply 

specification. For crops whose net return per acre is only slightly above the 

opportunity cost of land, the calibration dual will be relatively small and the 

supply elasticity correspondingly large. In this case, ·he model builder can 

substitute a previously specified upper bound supply elasticity for the 

calibration dual and use equations (18) to solve for the supply intercept and 

slope coefficients. This procedure was first implemented by House et al. 

(1987) in the USMP model. 

Case 3. Activities with Negative Nominal Net Returns 

In agricultural data bases, gross returns minus allocated cash costs often 

show negative net returns to land and management in some regions or years. 

When this occurs, the yields, prices, and costs that generate these negative 

revenues should be examined closely. However, the negative net returns 

frequently persist. There are three aspects of farm production that would 

result in negative net cash returns to a crop in a particular region or year: 

Revenue expectations, rotational externalities, and overestimated costs. In 
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the first case, farmers may include a crop with highly variab le revenue in 

their output, in the expectation of positive net revenues over a longer 

planning horizon. Alternative ly, if a relatively low revenue crop is part of an 

observed rotation, it may be because the crop produces positive yield effects 

on subsequent crops. This positive externality is not incorporated in the 

nominal revenues, which consequently undervalue the output from the 

rotational crop. Negative net returns may be due to overestimated costs . In 

many models variable costs are allocated by model builders across crops on a 

per acre basis. Labor and machinery operating costs are typical examples . 

However, some crops require these inputs at a time of year when there is 

excess capacity, and thus a lower opportunity cost. These crops are sometimes 

termed "filler" crops, since they may be short season crops that fill in between 

the more profitable crops. Under a standard method of allocating of operating 

costs by acres, the costs assigned to filler crops will be higher than those in the 

farmer's decision calculation, and the crops may be grown despite nominal 

negative returns . 

Focusing on rotational activities, the negative nominal returns require 

that the calibration procedure is modified. The basic microeconomic 

assumption that land is allocated, so that the marginal expected net revenue 

equals the marginal land cost, is assumed to hold. The marginal land cost is 

usually composed of both cash costs and the opportunity cost for land. If a set 

of lower bound calibration constraints are added to the linear program, the 

dual values on the binding constraints will be equal to the marginal 

rotational benefit from. the crop. The value of the benefit from cost savings or 

positive externalities is added to the rotational crop by shifting its average cost 
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down so that the value of marginal product of land in "rotational" crops 

equals the least profitable of the crops with positive revenues 

The second model assumption of increasing marginal cos ts with 

increased acreage allocated to a crop is maintained. There is no reason to 

suppose that rotational crops are not subject to the same effects of 

heterogeneous land types, risk, and fixed management inputs, that lead to 

increasing cost functions for normal crop activities. 

In short, we assume that the cost function for these crops remains 

upward-sloping with quadratic total cost function, but there is a unrecorded 

positive externality or cost reduction associated with the crop, that makes it at 

least as profitable as the crop with the lowest positive return in the rotation. 

That is to say we assume the far'mer equates his expected return from these 

rotational crops with the opportunity cost of land in production. 

The lower bound calibration dual is negative fo r rotational crops and is 

used to derive the upward-sloping cost function. A constant correction factor 

k is added to the total cost function which exactly offsets the externality 

benefit in the objective function at the calibration acreage, and "prior" supply 

elasticity values are used to complete the calibration. 

Using a simplified example shown in Figure 4, the "rotational" crop is 

a legume with an observed acreage of x L· The nominal average cost per acre 

is Ct and PL is the nominal revenue per acre. Since CL exceeds PL, the legume 

crop appears to generate negative net revenues. Assuming similarly to 

Figures 2 and 3, that the lowest positive revenue crop is oats, which sets the 

opportunity cost of land at A 1, then the dual on the lower bound calibration 

--- - - - - - --- ---- ---- -
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constraint, A.2 in Figure 4, will have two components. The nominal negat ive 

net revenue (PL - CL) and the opportunity cost of land A.1 . 

(20) 

Given the quadratic total cos t fu nction for the rotational crop xL 

(21) TC= k + axL + 1/2 yxt 
The Marginal cost per acre is: 

(22) MC= a+ yxL 

Three conditions characterize the cost function for the rotational crops. First, 

the marginal cost at the calibration acreage must equal the nominal cost 

minus the dual value on the lower bound calibration constraint. Note that 

the value of the dual is negat. . e. 

(23) a+ y x = c + A.2 

Second, the supply elasticity at the calibration acreage is equal to the specified 

prior value 11, which implies that 

(24) TlYX=a+yx 

Third, the calibrated quadratic total cost function is revenue-neutral at the 

calibration acreage x, implying 

(25) ex = k + ax + 1 /2y x2 

Equating the marginal cost condition and the elasticity condition at the 

calibration acreage x we obtain: 

(26) 

(27) 

llY x = c + A.2, solving for y we get 

c + A.2 
y= -

11x 

Substituting this expression for y into the marginal condition results in 



(28) 

(29) 

2-1 

(c + A.2) -
c + A.2 = a + _ x and rearranging yields: 

rix 

c + A.2 
a=c+A.2---

Tl 

From the net revenue condition, the constant term in the total cost 

function is solved as: 

(30) k = (c - a - 1 /2y x)x 

This calibrated quadratic total cos t function results in a precise, 

unconstrained, and revenue-neutral calibration at the observed level and 

prior supply elasticity. 

Policy Analysis Properties of PMP Models 

In the previous sections the calibration of a p t) sitive programming 

model with endogenous supply costs on all activity acreages was described . 

The purpose of such models is to analyze the impact of quantitative policy 

scenarios which take the form of changes in prices, technology, or constraints 

on the system. The policy response of the model can be characterized by its 

response to sensiti 0 ity analysis and changes in constraints . 

(31) 

where 

The primal PMP problem can be written in general as: 

Max J = p'x - a'x -1/2 x'Gx 

subject to Ax ~ b 

p, a, and x are nxl vectors 

G is an nxn diagonal matrix 

A is mxn and b is mxl 

x~O 



The revenue vector p is the product of the price and average yield as in 

equations (7) and (8) . The properties of the dual values under parametric 

changes to the model can be seen from the dual specification. The dual 

specification of the PMP model in equation (31) is: 

(32) 

(33) 

Min /... 1J + 1 /2 x'Gx 

subject to A'/...~ p - a - Gx 

A.~O 

Briefly interpreted, the PMP dual problem minimizes the sum of resource 

quasi rent (A.'b) and producer surplus (1 /2 x'Gx), subject to the constraint (33) 

that the opportunity cost of resources used to produce each product cannot be 

less than the marginal net revenue from that product. 

Defining the optimal basis matrix in A to be of rank m, from the initial 

PMP conditions, the number of nonzero activities is k (k>m). It follows that k 

of then rows in (33) are equalities and can be written as: 

(34) EA.= p - a - Gx 

where E is a kxm submatrix of A, and P, a, x are kxl subvectors, and G is a kxk 

diagonal matrix. 

Defining the generalized inverse of E as E+, the dual values are defined 

as: 

(35) A. = E+(p - a - c x") . 

Equation (35) shows that the dual values are linear combinations of the price 

and cost parameters and the level of the nonzero activities. It follows that 

parameterization of the PMP problem will result in smooth continuous 

changes in all the optimal values of activity levels and dual values. This is in 

contrast to LP or step-wise problems, where the dual values, and sometimes 
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the optimal solution are unchanged by parameterization unti l there is a 

d iscrete change in bas is, when they jump d iscontinuously to a new level. 

The ability to represent pol icies by constraint structu res is important. 

The PMP formulation has the property tha t the nonlinear calibration can take 

place at any level of aggregation. Tha t is, one can nes t an LP subcomponen t 

within the quadra tic objectivt:. ;..inction and obtain the optimum solution to 

the full problem. An example of this is used in technology selection. 

Suppose a given regional commodity can oe produced by a combination of 

five alternative linear technologies, whose aggregate output has a common 

supply function . The PMP can calibrate the supply function while a nested LP 

problem selects the set of linear technology levels that make up the aggregate 

supply (Hatchett et al. 1991) . 

Since the intersection of the convex sets of cons traints for the main 

problem and the nested subproblem is itself convex (Marlow 1978) then the 

optimal solution to the nested LP subproblem will be unchanged when the 

main problem is calibrated by replacing the calibration constraints with 

quadratic PMP cost functions. The calibrating functions can thus be 

introduced at any level of the linear model. In some cases, the available data 

on base year values will dictate the calibration level. Ideally, the level of 

calibration would be determined by the properties of the cost functions, as in 

the example of linear irrigation technology selection. The PMP approach does 

not replace all linear cost functions with equivalent quadratic specifications, 

but only replaces those that data or theory suggest are best modeled as 

nonlinear . 
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Conclusions 

Programming models still have a strong role to play in agricultural 

policy analysis, particularly for problems where time series data is absent, or 

the shifts in market institutions or constraints have changed substantially 

over time. The problem of calibrating programming models without 

excessive constraints is addressed in this paper. The solution proposed by the 

PMP approach is based on the derivation of nonlinear activity cost functions 

from the base year data and prior supply elasticities . The derivation is 

achieved by a simple two step procedure. 

An analyst who is interested in direct applications can skip over the 

derivations and calibration steps by using a menu driven program "AgMod" 

(Howitt and Vayssieres 1990) . AgMod generates a GAMS program for the 

model specified, and automatically runs the self cal ibra ting models, using the 

GAMS/Minos optimization package. The AgMod program is available from 

the authors. 

The PMP approach is shown to satisfy the main criteria for calibrating 

sectoral and regional models. Using PMP, the model calibrates precisely to 

output and input quantities, the objective function value, and dual constraint 

values and output prices. In addition, the PMP approach incorporates priors 

on aggregate demand and supply elasticities. 

The PMP method has been successfully used to calibrate a range of 

optimization models of different size and complexity over the past eight 

years. This paper has attempted to explain the economic and optimization 

basis for the method, and thus broaden the discussion and exposure of the 

approach among applied agricultural policy analysts . 
pg 7 /12/91 REH-11 .0 
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Appendix I 

Proof of Constraint Decoupling 

Given the degenerate problem 

Problem Pl 

(Al) Maximize 

subject to 

A 

A =mxk A= (l-m)xk 

f(x) 

- -
Ax=b (I) 

A A 

A x<b 

I x = - (II) 

x = kxl k>m b = mxl 
A 

b = (/-m)xl. 

Where f(x) is monotonically increasing in x with first and second derivatives 

at all points, and A is bounded and nondegenerate. 

Proposition. There exists a perturbation E of the values x such that: 

(a) The constraint set (I) in equation (Al) is decoupled from the 

constraint set (II) in the sense that the dual values associated with 

constraint set I do not depend on constraint set II. 

(b) The number of binding constraints in constraint set II is reduced 

so that the problem is no longer degenerate. 

(c) The binding constraint set I remains unchanged. 

Proof. Define the perturbed problem. 

Problem P2 
(A2) Maximize 

subject to 

f(x) 

- -
Ax~b (I) 

A A 

A x~b 

I x ~ x + E (II) 

I 
I 
I 
I 
I 

I 
I 
I 
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A A 

Any row of the nonbinding constraints Ax< b in problem Pl can be written 

k A A 

(A3) .I aij xi< bi i=l , ... ,(l-m) 
J=l 

and a constraint i wi ll not become binding under the perturbation E if 

k A [ k A J I ai · e· < bi - I ai · x· 
. 1 J J . 1 J J 
j= J= 

(A4) 

k A 

Select the constraint i = 1, ... ,(/-m) such that bi - .I aij Xj is minimized. 
J=1 

j = 1, .. . ,k are selected such that 

k. [ k. J I ai · e· < bi - I ai · x· 
. 1 J J . 1 J J 
J= J= 

(AS) 

If Ej > 0 

then no additional cons traints in the set Ax $ b will become binding under 

the perturbation E. 

The invariance of the binding resource constraints for the perturbation 

E can be shown using the reduced gradient approach (Luenberger 1973). Using 

(AS) we can w rite problem P2 using only constraint sets I and II. 

(A6) Maximize f(x) 

- -
subject to Ax$b 

Ix$x+e 

where A (mxk), and I = kxk. Invoking the nondegeneracy assumption for A 

and starting with the solution for problem Pl x, the constraints can be 

partitioned 

[: : l 
=b 

(A7) 

C:l $x5 + E 

$XN + E 

.., 
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where A = [B : N], B = m x m, N = m x(k-m). For brevity, we ass ume tha t the 

partition of A has been made so that the (k-m) activities associated with >i 

have the highest value of marginal products for the constraining resources . 
f rl 

( i ~ i't! r .,z. IM1 t /Oex .,,,J. 
From Pl, the resource constraints can be written 

,. '..,,! 0-" ~ (~-""' 

,~~$ ~ 
(A8) thus, 

I"'"",, ~ .( 

and f(x) can be written in terms of XN, as f(B-1b - B- 1NxN, XN) the reduced 

gradient for changes in x N is therefore: 1 

(A9) rx =Y'L (•)-VL ( • )B-1N 
XN Xg 

Since f( •) is monotonically increasing in XN and XB, the resource constraints 

will continue to be binding since the optimization criterion will maximize 

those activities with a nonnegative reduced gradient until the reduced 

gradient is zero or the upper bound calibration cons traint XN +Eis 

encountered. Since m<n, the model overspecializes in the more profitable 

crops when subject only to constraint set I. Under the specification in 

problem P2 the most profitable activities will not have a zero reduced 

gradient before being constrained by the calibration set II at values of XN + £. 

Thus, the binding constraint set I remains binding under the E perturbation. 

The resource vector for the resource constrained crop activities (xB) 

now is: 

(AlO) b - N(xN + E) and from (A8) 

XB = B-1[b - N(XN + £)]. 

Since B is of full rank m, exactly m values of XB are determined by the binding 

resource constraints, which depend on the input requirements for the subset 

of calibrated crop acre values XN + £. 
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The slackness in the m calibration constraints associated with the m 

resource constrained output levels xs, follows from the monoticity of the 

production function in the rational stage of production. Since the production 

function is monotonic, the input requirement functions are also monotonic, 

and expansion of the output level of the subset of crop acreage to XN + £ will 

have a nonpositive effect on the resource vector remaining for the vector of 

crop acreages constrained by the right hand side, xs. That is: 

- -
(All) b - N(xN + £1) $ b - NxN for £1 > 0 

But since the input requirement functions for the xs subset are also 

monotonic (All) and (A8) imply that 

(A12) or XB < Xg + £2 for £2 > 0. 

From (Al2) it follows that them perturbed upper bound calibration 

constraints associated with xs will be slack at the optimum solution. Given 

(AS) and (A12), the constraints at the optimal solution to the perturbed 

problem P2 are: 

(A13) B N [ :E '] 
=b 

A1 A2 <b XN + 

11 < XB +£ 

12 =XN +£ 

Thus, there are k binding constraints, b (mxl) and Xn + £ ((k-m)xl). 

The dual constraints to this solution are 

using the partitioned inverse, 
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(AlS) OR ~! = [ P O l [ 'V x5Hx*) l 
2 Q I 'V xNf(x*) 

where P = B'-1 and Q = - N'B'-1. 

Thus, the E perturbation on the upper bound constraint set II decouples the 

dual values of constraint set I from constraint set II, and ensures that k 

constraints are binding. 

Footnotes to Appendix I 

lA short intuitive explanation of the reduced gradient is that the net 

effect of a change in x N is the gradient of the direct effect of x N on f( •) less the 

effects of reductions forced on x B· The cost of reduction of xs is clearly 

influenced by 'V L ( •) and the relative marginal physical products from the 
xs 

scarce resources B-1 N . 
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Figure 1. L.P. Problem with Calibration Constraints 
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Figure 2. PMP Cost Function on Wheat 
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Figure 3. PMP Model - Quadratic Costs on all Crops 
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Figure 4. PMP Model - Calibrating "Rotational" Crops 
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