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1 Introduction
The aim of this paper is to investigate the positive pe-
riodic solution of the following discrete commensal
symbiosis model with Hassell-Varley type functional
response

N1(k + 1) = N1(k) exp
{
a1(k)− b1(k)N1(k)

+c1(k)N2(k)
}
,

N2(k + 1) = N2(k) exp
{
a2(k)− b2(k)N2(k)

− q(k)E(k)

m1(k)E(k) +m2(k)N2(k)

}
,

(1)
whereN1(k) andN2(k) represent the densities of the
first and second species of k-generation, respective-
ly. In view of seasonal factors, e.g., mating habits,
availability of food, weather conditions, harvesting,
and hunting, etc, we assume that the coefficients
of the system (1) are all periodic sequences with a
common integer period. More precisely, we assume
that the coefficients of the system (1) satisfies
(H1) {b1(k)}, {b2(k)},{m1(k)}, {m2(k)},
{c1(k)},{q(k)},{E(k)} are all positive ω-
periodic sequences, ω is a fixed positive integer,
{ai(k)} are ω-periodic sequences, which satisfies

ai =
1
ω

ω−1∑
k=0

ai(k) > 0, i = 1, 2.

In the past several years, many scholars paid
their attention to study the dynamic behaviors of
the commensal symbiosis model, see [1]-[30] and
the references cited therein. However, only recently

did scholars ([24]-[30]) began to study the influ-
ence of harvesting to commensalism model. It is
well known that Michaelis-Menten type harvesting
([24]-[26],[29]-[30], [33]-[37]) is more appropriate
than the linear harvesting and constant harvesting,
and recently, several scholars ( [24]-[26],[29]-[31])
began to study the influence of Michaelis-Menten
type harvesting to commensalism model, however,
most of them were studied the autonomous ones,
and only Liu et al [31] and Xue et al[30] began to
investigate the nonautonomous case.

In [31], Liu et al proposed the following nonau-
tonomous Lotka-Volterra commensalism model with
Michaelis-Menten type harvesting
dN1(t)

dt
= N1(t)

(
a(t)− b(t)N1(t) + c(t)N2(t)

)
,

dN2(t)

dt
= N2(t)

(
d(t)− e(t)N2(t)

)
− q(t)E(t)N2(t)

m1(t)E(t) +m2(t)N2(t)
.

(2)
Under the assumption that all the coefficients are con-
tinuous positive periodic functions with a common
period, the authors obtained a set of sufficient con-
ditions which ensure the existence of at least one pos-
itive periodic solution of the system.

It is well known that the discrete time model-
s governed by difference equations are more appro-
priate than the continuous ones when the popula-
tions have nonoverlapping generations. Hence, cor-
responding to system (2), we propose the discrete
type of Lotka-Volterra commensalism model with
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Michaelis-Menten type harvesting, i.e., system (1).
To the best of our knowledge, this is the first time that
the model is proposed. We will focus our attention to
the existence of positive periodic solution of system
(1).

2 Main Result
In the proof of our existence theorem below, we
will use the continuation theorem of Gaines and
Mawhin([32]).

Lemma 2.1 (Continuation Theorem) Let L be a
Fredholm mapping of index zero and let N be L-
compact on Ω̄. Suppose

(a).For each λ ∈ (0, 1), every solution x of Lx =
λNx is such that x ̸∈ ∂Ω;

(b).QNx ̸= 0 for each x ∈ ∂Ω ∩KerL and

deg{JQN,Ω ∩KerL, 0} ̸= 0.

Then the equation Lx = Nx has at least one solution
lying in DomL ∩ Ω̄.

Let Z,Z+, R and R+ denote the sets of all inte-
gers, nonnegative integers, real unumbers, and non-
negative real numbers, respectively. For conve-
nience, in the following discussion, we will use the
notation below throughout this paper:

Iω = {0, 1, ..., ω − 1}, g = 1
ω

∑ω−1
k=0 g(k),

gu = maxk∈Iω g(k), gl = mink∈Iω g(k),

where {g(k)} is an ω-periodic sequence of real num-
bers defined for k ∈ Z.

Lemma 2.2[40] Let g : Z → R be ω-periodic, i. e.,
g(k+ω) = g(k). Then for any fixed k1, k2 ∈ Iω, and
any k ∈ Z, one has

g(k) ≤ g(k1) +
ω−1∑
s=0

|g(s+ 1)− g(s)|,

g(k) ≥ g(k2)−
ω−1∑
s=0

|g(s+ 1)− g(s)|.

Lemma 2.3 Assume that a2 > (
q

m1
) hold, any solu-

tion (u∗1, u
∗
2) of the system of algebraic equations

ā1 − b̄1 exp{u1}+ c̄1 exp{u2} = 0,

ā2 − b̄2 exp{u2}

− 1

ω

ω−1∑
k=0

q(k)E(k)

m1(k)E(k) +m2(k) exp{u2}
= 0.

(3)

satisfies

ln ā1
b̄1

≤ u∗1 ≤ ln
ā1 + c1

ā2
b̄2

b̄1
,

ln
a2 − (

q

m1
)

b̄2
≤ u∗2 ≤ ln ā2

b̄2
,

(4)

Proof. From the second equation of (3), it immedi-
ately follows that

ā2 − b̄2 exp{u2} ≥ 0. (5)

Thus,
u2 ≤ ln ā2

b̄2
. (6)

From the second equation of (3) we also have

ā2 − b̄2 exp{u2} −
1

ω

ω−1∑
k=0

q(k)E(k)

m1(k)E(k)
≤ 0, (7)

So,

u2 ≥ ln
a2 − (

q

m1
)

b̄2
. (8)

From the first equation of system (3) we have

ā1 − b̄1 exp{u1} ≤ 0, (9)

thus
u1 ≥ ln ā1

b̄1
. (10)

From the first equation of system (3) and (6), we also
have

0 = ā1 − b̄1 exp{u1}+ c̄1 exp{u2}

≤ ā1 − b̄1 exp{u1}+ c̄1 exp
{
ln ā2

b̄2

}
= ā1 + c1

ā2
b̄2

− b̄1 exp{u1}.

Thus

u1 ≤ ln
ā1 + c1

ā2
b̄2

b̄1
. (11)

This ends the proof of Lemma 2.3.
We now reach the position to establish our main

result.
Theorem 2.1 Assume that

a2 > (
q

m1
) (12)

hold, system (1) admits at least one positive ω-
periodic solution.
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Proof. Let

Ni(k) = exp{ui(k)}, i = 1, 2,

so that system (1) becomes

u1(k + 1)− u1(k)

= a1(k)− b1(k) exp{u1(k)}+ c1(k) exp{u2(k)},

u2(k + 1)− u2(k)

= a2(k)− b2(k) exp{u2(k)}

− q(k)E(k)

m1(k)E(k) +m2(k) exp{u2(k)}
.

(13)
Define

l2 =

{
y = {y(k)}, y(k) = (y1(k), y2(k))

T ∈ R2
}
.

For a = (a1, a2)
T ∈ R2, define |a| =

max{|a1|, |a2|}. Let lω ⊂ l2 denote the subspace of
all ω sequences equipped with the usual normal form
∥u∥ = max

k∈Iω
|u(k)|. It is not difficult to show that lω

is a finite-dimensional Banach space. Let

lω0 = {u = {u(k)} ∈ lω :
ω−1∑
k=0

u(k) = 0},

lωc = {u = {u(k)} ∈ lω : u(k) = h ∈ R2, k ∈ Z},
then lω0 and lωc are both closed linear subspace of lω,
and

lω = lω0 ⊕ lωc , dimlωc = 2.

Now let us define X = Y = lω, (Lu)(k) = u(k +
1)−u(k). It is trivial to see that L is a bounded linear
operator and

KerL = lωc , ImL = lω0 ,

dimKerL = 2 = CodimImL.

Then it follows thatL is a Fredholmmapping of index
zero. Let

N(u1, u2)
T = (N1, N2)

T := N(u, k),

where

N1 = a1(k)− b1(k) exp{u1(k)}

+c1(k) exp{u2(k)},

N2 = a2(k)− b2(k) exp{u2(k)}

− q(k)E(k)

m1(k)E(k) +m2(k) exp{u2(k)}
.

Px =
1

ω

ω−1∑
s=0

x(s), x ∈ X, Qy =
1

ω

ω−1∑
s=0

y(s), y ∈ Y.

It is not difficult to show that P and Q are two con-
tinuous projectors such that

ImP = KerL and ImL = KerQ = Im(I−Q).

Furthermore, the generalized inverse (to L) Kp:
ImL →KerP∩DomL exists and is given by

Kp(z) =
k−1∑
s=0

z(s)− 1

ω

ω−1∑
s=0

(ω − s)z(s).

Thus

QNx =
1

ω

ω−1∑
k=0

N(x, k),

Kp(I −Q)Nx =
∑k−1

s=0 N(x, s)

+ 1
ω

∑ω−1
s=0 sN(x, s)

−
(
k
ω + ω−1

2ω

)∑ω−1
s=0 N(x, s).

Obviously, QN andKp(I −Q)N are continuous. S-
ince X is a finite-dimensional Banach space, it is not
difficult to show thatKp(I −Q)N(Ω) is compact for
any open bounded set Ω ⊂ X . Moreover, QN(Ω) is
bounded. Thus, N is L-compact on any open bound-
ed setΩ ⊂ X . The isomorphism J of ImQ onto KerL
can be the identity mapping, since ImQ=KerL.

Now we are at the point to search for an appropri-
ate open, bounded subsetΩ inX for the application of
the continuation theorem. Corresponding to the oper-
ator equation Lx = λNx, λ ∈ (0, 1), we have

u1(k + 1)− u1(k)

= λ
[
a1(k)− b1(k) exp{u1(k)}

+c1(k) exp{u2(k)}
]
,

u2(k + 1)− u2(k)

= λ
[
a2(k)− b2(k) exp{u2(k)}

− q(k)E(k)

m1(k)E(k) +m2(k) exp{u2(k)}

]
.

(14)
Suppose that u = (u1(k), u2(k))

T ∈ X is an arbi-
trary solution of system (14) for a certain λ ∈ (0, 1).
Summing on both sides of (14) from 0 to ω − 1 with

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.57 Qimei Zhou, Sijia Lin, Fengde Chen, Runxin Wu

E-ISSN: 2224-2880 517 Volume 21, 2022



respect to k, we reach

ω−1∑
k=0

[
a1(k)− b1(k) exp{u1(k)}

+c1(k) exp{u2(k)}
]
= 0,

ω−1∑
k=0

[
a2(k)− b2(k) exp{u2(k)}

− q(k)E(k)

m1(k)E(k) +m2(k) exp{u2(k)}

]
= 0.

That is,

ω−1∑
k=0

b1(k) exp{u1(k)}

= ā1ω +
ω−1∑
k=0

c1(k) exp{u2(k)},
(15)

ω−1∑
k=0

(
b2(k) exp{u2(k)}

+
q(k)E(k)

m1(k)E(k) +m2(k) exp{u2(k)}

)
= ā2ω.

(16)
From (14) and (16), we have

ω−1∑
k=0

|u1(k + 1)− u1(k)|

= λ
ω−1∑
k=0

∣∣∣a1(k)− b1(k) exp{u1(k)}

+c1(k) exp{u2(k)}
∣∣∣

≤
ω−1∑
k=0

|a1(k)|

+
ω−1∑
k=0

(
b1(k) exp{u1(k)}+ c1(k) exp{u2(k)}

)
=

ω−1∑
k=0

|a1(k)|+ ā1ω

+2
ω−1∑
k=0

c1(k) exp{u2(k)}

= (Ā1 + ā1)ω + 2
ω−1∑
k=0

c1(k) exp{u2(k)},

(17)

ω−1∑
k=0

|u2(k + 1)− u2(k)|

= λ
ω−1∑
k=0

[
a2(k)− b2(k) exp{u2(k)}

− q(k)E(k)

m1(k)E(k) +m2(k) exp{u2(k)}

]
≤

ω−1∑
k=0

|a2(k)|+
ω−1∑
k=0

b2(k) exp{u2(k)}

+
q(k)E(k)

m1(k)E(k) +m2(k) exp{u2(k)}

]
≤

ω−1∑
k=0

|a2(k)|+ ā2ω

≤ (Ā2 + ā2)ω.
(18)

where Ā1 =
1
ω

ω−1∑
k=0

|a1(k)|, Ā2 =
1
ω

ω−1∑
k=0

|a2(k)|.

Since {u(k)} = {(u1(k), u2(k))T } ∈ X , there
exist ηi, δi, i = 1, 2 such that

ui(ηi) = min
k∈Iω

ui(k), ui(δi) = max
k∈Iω

ui(k). (19)

By (16), we have

exp{u2(η2)}
ω−1∑
k=0

b2(k) ≤ ā2ω.

So

u2(η2) ≤ ln ā2
b̄2

. (20)

It follows from Lemma 2.2, (18) and (20) that

u2(k) ≤ u2(η2) +
ω−1∑
k=0

|u2(k + 1)− u2(k)|

≤ ln ā2

b̄2
+ (Ā2 + ā2)ω,

(21)
From (16) we also have

exp{u2(δ2)}
ω−1∑
k=0

b2(k) ≥ ā2ω −
ω−1∑
k=0

( q(k)E(k)

m1(k)E(k)

)
,

and so

u2(δ2) ≥ ln
a2 − (

q

m1
)

b̄2
. (22)
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It follows from Lemma 2.2, (18) and (22) that

u2(k) ≥ u2(δ2)−
ω−1∑
k=0

|u2(k + 1)− u2(k)|

≥ ln
a2 − (

q

m1
)

b̄2
− (Ā2 + ā2)ω,

(23)
which together with (21) leads to

|u2(k)| ≤ max
{ ∣∣∣ln ā2

b̄2
+ (Ā2 + ā2)ω

∣∣∣ ,
∣∣∣∣∣ ln

a2 − (
q

m1
)

b̄2
− (Ā2 + ā2)ω

∣∣∣∣∣
}

def
= H2.

(24)
It follows from (17) and (21) that

ω−1∑
k=0

|u1(k + 1)− u1(k)|

≤ (Ā1 + ā1)ω + 2
ω−1∑
k=0

c1(k) exp{u2(k)}

≤ (Ā1 + ā1)ω

+2
ω−1∑
k=0

c1(k) exp{ln ā2

b̄2
+ (Ā2 + ā2)ω}

≤ (Ā1 + ā1)ω

+2c̄1
ā2
b̄2

ω exp{(Ā2 + ā2)ω}
def
= Γ1,

(25)
It follows from (15) and (21) that

ω−1∑
k=0

b1(k) exp{u1(η1)}

≤ ā1ω +
ω−1∑
k=0

c1(k) exp{u2(k)}

≤ ā1ω +
ω−1∑
k=0

c1(k) exp{ln ā2

b̄2
+ (Ā2 + ā2)ω}

= ā1ω + c̄1
ā2
b̄2

ω exp{(Ā2 + ā2)ω},

and so,

u1(η1) ≤ ln ∆1

b1
, (26)

where

∆1 = ā1 + c̄1
ā2
b̄2

exp{(Ā2 + ā2)ω}.

It follows from Lemma 2.2, (25) and (26) that

u1(k) ≤ u1(η1) +
ω−1∑
k=0

|u1(k + 1)− u1(k)|

≤ ln ∆1

b1
+ Γ1

def
= M1.

(27)
It follows from (15) that

ω−1∑
k=0

b1(k) exp{u1(δ1)}

≥ ā1ω +
ω−1∑
k=0

c1(k) exp{u2(k)}

≥ ā1ω,

and so,

u1(δ1) ≥ ln ā1

b1
, (28)

It follows from Lemma 2.2, (25) and (28) that

u1(k) ≥ u1(δ1)−
ω−1∑
k=0

|u1(k + 1)− u1(k)|

≥ ln ā1

b1
− Γ1

def
= M2.

(29)
It follows from (27) and (29) that

|u1(k)| ≤ max
{
|M1|, |M2|

}
def
= H1. (30)

Clearly, H1 and H2 are independent on the choice of
λ. Already, in Lemma 2.3, we had showed that under
the assumption (12) hold, any solution (u∗1, u∗2) of the
system of algebraic equations

ā1 − b̄1 exp{u1}+ c̄1 exp{u2} = 0,

ā2 − b̄2 exp{u2}

− 1

ω

ω−1∑
k=0

q(k)E(k)

m1(k)E(k) +m2(k) exp{u2}
= 0.

(31)
satisfies

ln ā1
b̄1

≤ u∗1 ≤ ln
ā1 + c1

ā2
b̄2

b̄1
,

ln
a2 − (

q

m1
)

b̄2
≤ u∗2 ≤ ln ā2

b̄2
,

(32)

Let H = H1 +H2 +H3, where H3 > 0 is taken
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sufficiently enough large such that

H3 >

∣∣∣∣ln ā1
b̄1

∣∣∣∣+
∣∣∣∣∣∣∣∣ln

ā1+c1
ā2
b̄2

b̄1

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣ln
a2 − (

q

m1
)

b̄2

∣∣∣∣∣∣∣∣+
∣∣∣∣ln ā2

b̄2

∣∣∣∣ ,
and define

Ω =
{
u(t) = (u1(k), u2(k))

T ∈ X : ∥u∥ < H
}
.

It is clear that Ω verifies requirement (a) in Lemma
2.1. When u ∈ ∂Ω∩KerL = ∂Ω∩R2, u is constant
vector in R2 with ||u|| = B. Then

QNu =

 ā1 − b̄1 exp{u1}+ c̄1 exp{u2}

∆

 ̸= 0.

where

∆ = ā2 − b̄2 exp{u2}

− 1

ω

ω−1∑
k=0

q(k)E(k)

m1(k)E(k) +m2(k) exp{u2}
.

In order to compute the Brouwer degree, let us con-
sider the homotopy

Hµu = µQNu+ (1− µ)Gu, (2.31)

where

Gu =

(
ā1 − b̄1 exp{u1}+ c̄1 exp{u2}

ā2 − b̄2 exp{u2}

)
.

From the definition ofH , it follows that 0 /∈ Hµ(∂Ω∩
KerL) forµ ∈ [0, 1]. In addition, one can easily show
that the algebraic equation Gu = 0 has a unique so-
lution in R2. Note that J = I since ImQ = KerL,
by the invariance property of homotopy, direct calcu-
lation produces

deg(JQN,Ω ∩KerL, 0)

= deg(QN,Ω ∩KerL, 0)

= deg(G,Ω ∩KerL, 0)

= sgn
(
Γ
)
= 1 ̸= 0,

where
Γ = b̄1b̄2 exp{u∗1} exp{u∗2}

and deg(·, ·, ·) is the Brouwer degree. By now
we have proved that Ω verifies all requirements in
Lemma 2.1. Hence (13) has at least one solution
(u∗1(k), u

∗
2(k))

T in DomL ∩ Ω̄. And so, system (1)
admits a positive periodic solution (N∗

1 (k), N
∗
2 (k))

T ,
where N∗

i (k) = exp{u∗i (k)}, i = 1, 2, This com-
pletes the proof of Theorem 2.1.

3. Example

Now let us consider the following example.

Example 3.1.

N1(k + 1)

= N1(k) exp
{
0.5− 0.25 cos(πk)

−(1 + 0.5 sin(πn+ π
4 ))N1(k)

+(0.5 + 0.3 sin(πk + π
3 ))N2(k)

}
;

N2(k + 1)

= N2(k) exp
{
1.5 + 0.5 sin(πk + π

4 )

−(1 + 0.3 cos(πk + π
6 ))N2(k)

0.5 + 0.2 sin(πk + π
3 )

2 +N2(k)

}
.

(33)

Here, corresponding to system (1), we take

a1(k) = 0.5− 0.25 cos(πk),

b1(k) = 1 + 0.5 sin(πn+ π
4 ),

c1(k) = 0.5 + 0.3 sin(πk + π
3 ),

a2(k) = 1.5 + 0.5 sin(πk + π
4 ),

b2(k) = 1 + 0.3 cos(πk + π
6 ),

q(k) = 0.5 + 0.2 sin(πk + π
3 ),

E(k) = 1, m1(k) = 2,m2(k) = 1.

Obviously, in system (33)

a2 = 1.5 > 0.25 = (
q

m1
)

It follows from Theorem 2.1 that system (33) admits
at least one positive 2-period solution.
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3 Conclusion
In this paper, we propose a discrete Lotka-volterra
commensal symbiosis model with Michaelis-Menten
type harvesting, it seems that this is the first time such
kind of modelling was proposed. We show that under
some suitable condition, the system could admits at
least one positive periodic solution, which means that
two species could coexistent in a fluctuation state.

We will investigate the persistent property and sta-
bility property of the system in the future.
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