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POSITIVE PERIODIC SOLUTIONS OF SYSTEMS
OF FUNCTIONAL DIFFERENTIAL EQUATIONS

YoUSsSEF N. RAFFOUL

ABSTRACT. We apply a cone theoretic fixed point theorem and
obtain conditions for the existence of positive periodic solutions of
the system of functional differential equations

z'(t) = A(t)z(t) + Af(t, z(t — 7(2)).

1. Introduction

In this paper, we are concerned with determining values for A so that
the system of functional differential equations

(1.1) T'(t) = A@)z(t) + M f(t, z(t — 7(t))

has a positive periodic solution. The matrix A(t) = diagla1(t), a2(¢), ...,
an(t)], a; € C(R,R),7 : R — R, are continuous and w-periodic, j =
1,2...,n with w > 0. The function f : R x R} — R} is continuous,
where R™ = (z1,Z2,...,2n)T and R? = {(z1,22,...,2,)T € R* : z; >
0,j=1,2,...,n}. We denote BC the normed vector space of bounded
functions ¢ : R — R™ with the norm ||@|| = >_7_, supcg |¢;(¢)| where
¢ = (¢1,02,...,0,)T. For each x = (x1,%2,...,7,)T € R", the norm
of z is defined as |z|o = 3>°7_, |2;], where we say that z is “positive”
whenever z € R7}. '

In this paper we not only carry the work of [17] to the continuous case,
but we generalize it to systems. In this research, the set up of the map-
ping is the same as in [10] in which A = 1. In arriving at our results, we
make use of Krasnosel’skii fixed point theorem ([11]). The existence of
positive periodic solutions of nonlinear functional differential equations
have been studied extensively, in recent years. For some appropriate
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references we refer the reader to [1], (2], [3], [4], [5], [6], [7], [8], [9], [12],
(13], [14], [15], [16], [19] and the references therein. This work is mainly
motivated by the work of [9], [17], and [18].

In section 2, we state Krasnosel’skii fixed point theorem ([11]), prove
two Lemmas that are essential to this research and construct the cone
of interest . In section 3, we present four theorems and a corollary. In
each of the theorems and the corollary an open interval of eigenvalues is
determined, which in returns, implies the existence of a positive periodic
solution of (1.1), by appealing to Krasnosel’skii fixed point theorem.

2. Preliminaries

THEOREM 2.1. (Krasnosel’skii) Let B be a Banach space, and let P
be a cone in B._Suppose 1 and Qg are bounded open subsets of B such
that 0 € 1 C ;1 C Q9 and suppose that

T:P0EL\QY) — P

is a completely continuous operator such that

3) |Tull < ||ull, w€ PNOQ, and ||Tul| > ||ul, uw € P NoQs; or
(i) |Tull = ||ull, v € PN o, and ||Tu| < ||u|, ue PN oQs.

Then T has a fixed point in P N (2\).
We denote f = (f1, fa, ..., fn)T and assume

(H1) / a;j(s)ds <0 for j=1,2,...,n
0

DEFINITION 2.2. Let X be a Banach space and K be a closed,
nonempty subset of X. K is a cone if

(i) au+ pv € K for all u,v € K and all a,3 >0

(ii) w, —u € K imply u = 0.
Define the set C,, by

Co={z e C(R,R"): z(t+w)==x(t), t € R}.

Then it is clear that C,, C BC when it is endowed with supremum norm
llzll = 3271 [|zllo, where [|z;|lo = supsepo o) |25 ()]-
Next, we consider the scalar differential equation
(2.1) z'(t) = a(t)z(t) + Af(t, z(t — 7(2)),

where A is constant, a € C(R,R),7 : R — R, are continuous and w-
periodic with w > 0. The function f : R x R — R is continuous and
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w-periodic in t. The proof of the next Lemma is trivial, and hence we
omit it.
LEMMA 2.3. z(t) € C,, is a solution of (2.1) if and only if

tho  exp([f u
(2.2) z(t) = )\/ o p}f alu )dd )_ 1f(s,:n(s —7(s))ds
t X 0 U

Now, we define the cone K and the Green’s function G(t, s) for equation
(1.1). For (t,s) € R% j=1,2,...,n, we define

(2.3) o= min{exp(—Z /Ow laj(s)|ds),j =1,2,... ,n},

exp(f aj(v)dv)
exp(— [y a;(v)dv) —1'

(2.4) Gt s) =

We also define
G(t,s) = diag|G1(t, s), G2(t, s), ..., Gn(t, s)].
It is clear that G(t,s) = G(t + w, s + w) for all (¢,s) € R? and by (H1)
and the assumption on f we have,
Gj(t,s) >0, fj(u,¢(u—7(u)) >0
for (t,s) € R? and (u, ) € R x BC(R,R%). Let K be the set defined by
K ={z € C,:z(t) > o|zj||, t € [0,w], z = (z1,72,... ,zn) T}

It is straight forward to verify that K is a cone.
Now, we are in a position to define an operator 1 : K — K as
t+w

(2.5) (Yz)(t) = G(t,s)f(s,z(s —7(s)))ds

¢
for z € K, t € R, where G(t, s) is defined following (2.4). We denote

T
(’(,bl') = (1/)1557 ¢2Ia S 7¢n$) .
Before we proceed any further we state the followings:
e~ f(;u a;(u)ldu

e 15 aj(u)du _ 1

(2.6) A; =

and

eJo’ las(w)ldu

2, B, = —% ,
(2.7) J e~ Jo ai(wdu _ 1
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for j =1,2,...,n. It is easy to see that for for j =1,2,...,n,
A; < Gy(t,s) < Bj

for all s € [t,t +w].
If we set A= min A; and B = max B;, then
1<j<n 1<5j<n

A< Gj(t,s) < Bforj=1,2,...,n.

LEMMA 2.4. If (¢zx)(t) is given by (2.5), then ¢y : K — K is com-
pletely continuous.

Proof. For each z € K, since f(t,z(t —7(t))) is a continuous function
of t, we have (yz)(t) is continuous in ¢ and

t+2w
(Yz)(t + w) :/t+ Gt +w,s)f(s,z(s — 7(s)))ds
t+w
=/ Gt+w,s+w)f(s+w,z(s +w—T7(s+w)))ds
t+w
= G(t,s)f(s,z(s — 7(s)))ds = () ().

t

Thus, (¢z) € C,,. Next we show that (yz) is continuous. For §, 9 € C,,,
|6 — 9| < 6 imply
€
; — — fi(s,9(s — .
sup 'f] (870(8 T(S))) f] (S, (S T(S)))I < A'I’LB](U

0<s<w

If 2, y € K with ||z — y|| < 6, then
) ()~ (9) ()]
14w
<\ / 1G5t 15 (525 — 7()) — £3(5, (s — 7(5)))ds
< ABgw sup |f5(8,0(¢ — 7(2)) ~ f(t, (¢~ ()

13
< =
n

for all ¢ € [0,w]. This yields to
(@) () — () (®)]lo < g.

Thus,
l|(¥z) — (vy)l] <e.
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Hence, 1) is continuous. For z € K, let
Wsa)(®) = A [ G5(t5)fy(s, s = r(s))ds
Then,
W
(bs)(0) < 7By [ 1f(s,s = 7(s))lds
and

(iz)(2) >AA/ 1£;(s, (s — 7(5))Ids

EJ‘“%”U“O = U”d’ﬂ’”O, Jj=12,.

Therefore, (¢yz) € K. The proof of ¢ being completely continuous is
similar to the proof of [10], and hence we omit it. This completes the
prove. O

3. Main results

Now we are ready to state and proof our results. But before we
proceed we state the following.

(L].) lim fj(svm(s_T(s))) = 00,

z; -0t 3
(L2) m}ii,nwf(s,w(i;T(S))) = 00,

(L3) lim fi(s,2(s—7(s))) _ -0
z;—0+ zj ’

(L4) lim faeloomN) _ o
Tj;—00 Tj ?

(L5) lim £26=TO) — . yniformly in s with 0 < I; < oo,

z;—0F i
and

(L6) lim £ x(s i C))) = L; uniformly in s with 0 < L; < o0,
Zj—00

for £ € R™. For notational convenience, we let
Ly = max Lj, Ly, = min Lj, Iy = maxly,
1<j<n 1<5<n 1<5<n

lm = minl; and |G(t, )| = max |G (t,8)].
1<J<n
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THEOREM 3.2. Assume that (H1), (L5), and (L6) hold. Then, for
each \ satisfying

woAL, << 0By

(1.1) has at least one positive periodic solution.

(3.1)

Proof. We construct the sets §2; and Q9 in order to apply Theorem
2.1. Let X be defined by (3.1), and choose € > 0 such that

woA(Ly, —€) = T wB(lpy+e€)
By condition (L5), there exists H; > 0 such that f;(¢,y) < (I; + €)y;
(Im + €)y;, for 0 < y; < Hy. Define O = {z € K : ||zjllo < Hy, j
1,--- ,n} and assume z € K N 9. Then

($52)(t) < AB /0 " Fi(s,a(s — 7(s))ds

[l IA

w
< ABw(l; + 6)/ (s, z(s — 7(s)))ds
0
< ABw(l; + ¢€)|zjllo
< ABw(lp + €)l|z;]lo
< [lz;llo-
In particular,

ll5z]lo < [|5lo
and

" n

(3:2)  lpall = llszllo < Y llzsllo = |lzl| for all z € K N8y

j=1 j=1
Next we construct the set (22. Considering (L6) there exists H, such
that f;(t,y) > (Lj — €)y; = (Lm — €)yj;, for all y; > Hy. Let Hy =
max{2H1, 22} and set

QQZ{LEEKZ ||.’BJ||0 <H2, j= 1,--- ,n}.
If z € K with ||z|| > Ha, then
z; > o||zj|| > Ha.

Thus

Wia)(t) > AA /waj(s,m—T(s)))dszAAwa(Lm—anxjno.
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Hence
1bszllo = llzjllo
and
n n

(33)  lyzll =Y [lbszllo > Y llzsllo = ||zl for allz € K N 0Q,.

j=1 j=1
Applying (7) of Theorem 2.1 to (3.2) and (3.3) yields that t has a fixed
point z € K N (22\1). The proof is complete. O

THEOREM 3.3. Assume that (H1), (L5), and (L6) hold. Then, for
each A satisfying

A
woAl,, <A< wBL )y,

(1.1) has at least one positive periodic solution.

(3.4)

Proof. We construct the sets £2; and € in order to apply Theorem

2.1. Let X be given as in (3.4), and choose ¢ > 0 such that
1 1
— <AL
0A(lm —€) =~ B(Lp+e)

By condition (L5), there exists Hy > 0 such that f;(t,y) > (I; — €)y,
(Im — €)y;, for 0 < y; < Hy. Define O = {z € K : ||zjllo < H1,J
1,2,---,-,-,n}, and assume z € K N 9. Then

(6;3)(8) > AA /0 fi(s,2(s — (s)))ds
> MMw(ly, — €)z;(t — 7(t))
> Aaw(lm — €)1z o
> J1z;1lo

v

In particular, ,
llvjzlo > ||z;5]lo for all x € K NI

and

n n
35) el = llzllo = D llajllo = ||zl], for all z € K N d0;.
j=1

Jj=1

Next we construct the set 3. Considering (L6) _there exists Hy such
that f;(t,y) < (L + €)y; < (Las + €)y;, for y; > Ha.
We consider two cases; f;(t,y) is bounded and f;(¢,y) is unbounded.
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The case where f;(t,y) is bounded is straight forward. If f;(¢,y) is
bounded by @ > 0, set

Hy = max{2H;,wAQB}.
Then if z € K and ||z||o = Ha, we have

($52)(t) < AB /O " f(s (s — 7(s)))ds
< wABQ < || zjlo-

Consequently, ||¥;z|lo < ||z;]lo, and hence ||vz|| < ||z||.
So, if we set

QZ = {y €K: “yJ” < HZaj = 1727'7'7'7n}7
then
(3.6) [zl < [lz]], for z € K N OQy.

When f is unbounded, we let Hy > max{2H;, H>} be such that f;(t,y) <
fi(t, Hz), for 0 < y; < Hy. For z € K with |[z;][o = Ha,

(4;2)(t) < AB /0 " fi(s,2(s — (s)))ds
< AB /Ow £;(s, Hy)ds

W
< AB / (Lj + €)Hads
0

< ABw(Ly + €)||z5lo
< {lzjllo-

Consequently, ||1;z|| < ||z;]|o, which implies that

Wl =3 llwszllo <3 llzjllo = llzll.

i=1 =1
So, if we set ,
Qo ={z €K :|zjllo < H2,j=1,2,-,-,-,n},
then
(3.7) llvz|| < |lz||, for z € K N &Qs.

Applying (ii) of Theorem 2.1 to (3.5) and (3.6) yields that T has a fixed
point z € K N (Q2\). Also, applying (ii) of Theorem 2.1 to (3.5) and
(3.7) yields that 9 has a fixed point z € K N (Q22\Q1). The proof is
complete. O
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THEOREM 3.4. Assume that (H1), (L1), and (L6) hold. Then, for
each X satisfying

1
wALy’
(1.1)—(1.2) has at least one positive solution.
Proof. Apply (L1) and choose Hy > 0 such that if 0 < z; < Hy, then

.
. >
fit,z) 2 AvA

(3.8) 0<A<

Define
O ={z € K :||lzjllo < Hi}.
If x € K N9y, then

($52)(1) > AA /0 " fy(s2(s — 7(s)))ds

Y zi(s,s —7(s))
A A2 T\
> A /0 oA ds

2ol
- /0 AcA ds

= |lz;llo-

In particular, ||| > ||z||, for all x € K N 8Q;. In order to construct
23, we let A be given as in (3.8), and choose € > 0 such that

1
<AL —i—nw—.
0sas Bw(Lp +¢€)

The construction of 5 follows along the lines of the construction of
in Theorem 3.3, and hence we omit it. Thus, by (ii) of Theorem 2.1,
equation (1.1) has at least one positive solution. O

THEOREM 3.5. Assume that (H1), (L2), and (L5) hold. Then, for
each X satisfying

1
Buwlr’®
(1.1)—(1.2) has at least one positive solution.

Proof. Assume (L5) holds. Then, we may take the set £2; to be the
one obtained for Theorem 3.2. That is,

0= {CL‘ e K: ||x]||0 < Hy, j=1,2, n}

(3.9) 0<A<
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Hence, we have
||| < |lz||, for z € K NOy.
Next, we assume (L2). Choose . H, > 0 such that f;(t,z) > 324, for
T 2 H,. Let Hy = max{2H,, %2} and set
Q= {z€K: |zl < Ha}.

($52)(t) > AA /0 " (s, a(s — 7(s)))ds

Y xi(s,s—71(s))
>M | e
= /0 oA ®

“ ollz;llo
> AA —d
- /0 )\O'A s

= [ljllo-

In particular, ||¢z| > ||z||, for all x € K N 8. Consequently,
||pz|| > ||z||, for z € K N 0OQy.

Applying (i) of Theorem 2.1 yields that ¢ has a fixed point z € K N
(2\).

We state the next results as corollary, because by now, its proof can be
easily obtained from the proofs of the previous results.

COROLLARY 3.6. Assume that (H1) hold. Also, if either (L3) and
(L6) hold, or, (L4), and (L5) hold, then (1.1)—(1.2) has at least one
positive solution if \ satisfies either 1/(c ALy,) < A, or, 1/(cAlpy) < A
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